Environ Ecol Stat
DOI 10.1007/s10651-008-0098-4

Fourth-corner generation of plant functional response
groups

Veiko Lehsten - Peter Harmand - Michael Kleyer

Received: 24 April 2008 / Revised: 24 April 2008
© Springer Science+Business Media, LLC 2008

Abstract Plant functional response groups (PFGs) are now widely established as a
tool to investigate plant—environment relationships. Different statistical methods to
form PFGs are used in the literature. One way is to derive emergent groups by classify-
ing species based on correlation of biological attributes and subjecting these groups to
tests of response to environmental variables. Another way is to search for associations
of occurrence data, environmental variables and trait data simultaneously. The fourth-
corner method is one way to assess the relationships between single traits and habitat
factors. We extended this statistical method to a generally applicable procedure for
the generation of plant functional response groups by developing new randomization
procedures for presence/absence data of plant communities. Previous PFG groupings
used either predefined groups or emergent groups i.e. classifications based on corre-
lations of biological attributes (Lavorel et al Trends Ecol Evol 12:474-478, 1997),
of the global species pool and assessed their functional response. However, since not
all PFGs might form emergent groups or may be known by experts, we used a per-
mutation procedure to optimise functional grouping. We tested the method using an
artificial test data set of virtual plants occurring in different disturbance treatments.
Direct trait-treatment relationships as well as more complex associations are incorpo-
rated in the test data. Trait combinations responding to environmental variables could
be clearly distinguished from non-responding combinations. The results are compared

V. Lehsten - M. Kleyer
Landscape Ecology Group (IBU), University of Oldenburg, Oldenburg, Germany

V. Lehsten ()

Department of Physical Geography and Ecosystems Analysis (INES), Centre for GeoBiosphere
Science, Lund University, Solvegatan 12, 223 62 Lund, Sweden

e-mail: veiko.lehsten @nateko.lu.se

P. Harmand
Institute of Mathematics, University of Oldenburg, Oldenburg, Germany

@ Springer



Environ Ecol Stat

with the method suggested by Pillar (J Veg Sci 10:631-640) for the identification of
plant functional groups. After exploring the statistical properties using an artificial
data set, the method is applied to experimental data of a greenhouse experiment on the
assemblage of plant communities. Four plant functional response groups are formed
with regard to differences in soil fertility on the basis of the traits canopy height and
spacer length.

Keywords Canopy height - Plant - Fourth-corner method - Functional groups -
Functional response groups - Null models - Plant traits - Seed weight - Spacer length

1 Introduction

The ability to predict vegetation response to climate or land use change requires a
functional classification of plants based on plant traits (Lavorel and Garnier 2002).
Trait analysis may contribute to a general understanding of plant allocation strategies,
plant—environment relationships (Wright et al. 2002) as well as upscaling strategies
for population viability analysis to risk assessment of communities (Henle et al. 2004).
This has previously been done using knowledge-based a priori grouping (Condit et al.
1996) or multivariate methods such as clustering (Skarpe 1996).

The number of functional groups identified in any particular study varies accord-
ing to the number of recorded traits, the species set, and the classification method
(Bugmann 1996; Nygaard and Ejrnaes 2004) which limits generalisations across stud-
ies. The critical methodological problem is to link three tables with different units into
a fourth one that replaces species by functional groups and can therefore be subjected
to further analysis. The three tables are an environmental factors X site matrix, a spe-
cies x site matrix, and a species X traits matrix. Such an analysis should comply with
the definition of plant functional groups (PFGs) as groups of species that respond
similarly to environmental settings and share common functional attributes (Lavorel
et al. 1997; Semenova and van der Maarel 2000). The simultaneous fulfillment of
these conditions differentiates this type of analysis from a conventional single trait
analysis (e.g. Kahmen and Poschlod 2004; Vesk et al. 2004). One general objective
of PFG analysis is to identify trade-offs between different traits having significant
relationships with environmental factors (called functional traits in the present paper,
following Suding et al. 2003). Trade-offs operate at the species level; if trade-offs
between functional response traits are to be found, species identity has to be main-
tained during the statistical process of identifying PFGs. In many studies published
so far, this is not the case (e.g. Fernandez et al. 1993; Jauffret and Lavorel 2003), as
the simple multiplication of the site x species matrix (m x k) with the species X traits
matrix (k x n), which produces a site x traits matrix (m x n), pools all species at a
given site into a single value per trait (e.g. weighted means of a metric variable, or
frequencies of nominal classes). Since information on cross-trait relationships at the
species level is lost before entering the environmental ordination, negative correlation
between traits cannot be interpreted as trade-offs.

Several approaches to develop plant functional groups have been published, but
none of them has been accepted as a standard procedure so far (Nygaard and Ejrnaes
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2004). Among them are complex multivariate ordination techniques (Doledec et al.
1996; Lavorel et al. 1999), generalised linear modeling in combination with ordina-
tion (Mclntyre and Lavorel 2001), or logistic regression models of functional response
groups (Kleyer 1999, 2002). Another approach aimed to identify optimal plant func-
tional groups is the procedure proposed by Pillar (1999). It permutes the traits and
searches for the optimal trait combination by a similarity analysis. In terms of yielding
PFGs, the aim is not only to identify the functional traits per se but also the combina-
tion of attributes or trait classes that form a functional group of species. The statistical
analysis also depends on the study design, i.e. whether environmental predictors are
continuous gradients or categorical treatments (factors). Here, we will concentrate
on treatment designs which are coded like factors. Legendre et al. (1997) developed
the ‘fourth-corner method’ to relate single traits to environmental factors using the
product of the three matrices. The resulting traits x environmental factors matrix lists
the number of species with a certain trait attribute recorded at sites with similar envi-
ronmental factors as long as all matrices contain only zeros and ones. The test of the
null hypothesis that treatments have no effect on the trait distribution is performed
by using null models which generate randomized patterns of ecological data. Some
elements of the data are held constant, while others are allowed to vary stochasti-
cally to account for underlying ecological processes (Gotelli and Graves 1996). The
‘fourth-corner method’ (Legendre et al. 1997) uses a null model technique to ana-
lyze the relationship between biological traits and environmental conditions (habitat
characteristics), thereby calculating the correlation of predefined species groups with
similar trait attributes to environmental variables.

One of the resulting matrices of P-values can be used to answer the question: “What
range of sites is occupied by a given species group (realised niche breadth)?’, which is
different from the question: ‘“Which groups are occurring at a certain site (community
assembly)?’. To answer this question, a different null model is necessary. Legendre
et al. (1997) do not consider groups, but only the relationship between single traits
and environmental variables.

In the present paper, we use the fourth-corner method to investigate the relationships
between trait class combinations i.e. groups (Lavorel et al. 1997) and environmental
variables.

We propose a procedure to create and compare various groupings of species accord-
ing to their biological attributes into functional response groups. The method is applied
to an artificial data set and its results are compared to the results of an analysis of
the same data using a procedure to identify optimal plant functional types by Pillar
(1999) to demonstrate its statistical merits. Finally, we also analyze a greenhouse
experiment on the assembly of plant communities at different levels of fertility and
disturbance.

2 Methods
2.1 Test data generation

We generated an artificial test data set (see Appendix 3) and applied the proposed
method, as suggested by Semenova and van der Maarel (2000). We used disturbance
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Occurrence Proportion

Fig. 1 The relationship between height and occurrence proportion for four disturbance intensities in the
test data set. Under rarely disturbed site conditions (disturbance intensity = 1), tall plants (plant height =4)
are superior, while small plants (plant height = 1) have the highest occurrence proportion at highly disturbed
sites

as the only environmental variable, with four levels and 20 replications for each level.
Virtual plant communities were constructed on the basis of four traits, which are plant
height (4 classes), seed number (3 classes), spacer length (distance of mother plant
from clonal offspring, 3 classes: no, short and long spacer) and colour of flowers
(4 classes). Combining the traits height, seed number, and spacer length resulted in
a total of 36 plant groups. The four classes of colour were randomly assigned to the
plant groups in order to represent a non-responsive trait. For each species x site com-
bination, a proportion of the occurrences was assigned by (i) incorporating a linear
relationship of plant height with disturbance and (ii) a more complex relationship of
a syndrome of seed number and spacer length. Here we follow the definition of the
term syndrome coined by Mclntyre et al. (1999) as a combination of trait attributes.
When considering only above-ground disturbance such as mowing, small plants were
found to prevail at intensively disturbed sites (e.g. lawns), while tall plants become
dominant at less disturbed sites (see Fig. 1).

We assumed that certain combinations of seed number and spacer length are func-
tional only at the highest disturbance level. They are not responsive at lower disturbance
levels. Atintensely disturbed sites (e.g. fields), species may either maximize their seed
production for dispersal, or invest in rapidly regenerating elongated rhizomes, having
only limited resources left for seed production (see Fig. 2). These two traits are evenly
crossed with the trait plant height. A detailed description of the construction of the
test data set is given in Appendix 3.

2.2 Plant group definition

Aggregating plants to plant groups requires traits as well as ranges of the ordinal
trait attributes forming a group to be chosen. Due to limitations of computing power,
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Fig. 2 The relationship of spacer length, and seed number to occurrence proportion for highly disturbed
conditions in the test data set. The combination of high seed number/no spacers or low seed number/long
spacer is advantageous under highly disturbed conditions. In case of intermediate and low disturbance, the
trait attributes are evenly distributed and not shown here

it is often not feasible to generate all possible trait class combinations while testing
their response. However, all trait values are measured with a limited precision, and
many of them vary according to growth conditions. We took this into account by
systematically generating a subset by fixing the minimum class range and the max-
imum number of classes. Species sharing a combination of trait classes belong to a
‘plant group’ (PG). A new table was constructed for these plant groups. It replaced
the original traits-by-species table and was subjected to the ‘fourth-corner method’
in order to determine whether the classification is responsive. If this is the case, a
plant group (PG) was called a plant functional group (PFG). Consider the following
example:

If 6 different heights were measured in the trait data set and the minimum class
range is set to 2, a total of 4 classifications are possible ([1-6]; see also example in
Appendix 1). Each combination of syndromes was tested and the total number of
required tests will be the product of the number of classifications for all single traits.

2.3 The fourth-corner method

To extend the ‘fourth-corner method” by Legendre et al. (1997) from single trait to
PFG analysis, we replaced the species x trait matrix by a plant group matrix that rep-
resents all reasonable trait combinations, each combination representing a logically
possible species.

The presence/absence of a set of k species on m sites was recorded in matrix A
(k x m) (Fig. 3). Another matrix B (k x n) assigned each species (row) to a plant group
(column), based on a common combination of trait classes. Different class ranges for
each trait yielded different matrices B;, as exemplified in Appendix 1. To find the
optimal classification for each trait, each matrix B; was subjected to the fourth-corner
analysis. Matrix C (p x m) contained in its rows the treatments applied to each site
(columns).
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Fig. 3 The fourth-corner Presence/absence PG table (B)
method incorporates three matrix (A)
matrices of observed values (A, species sitel site2 species  small tall
B, C). All observations have to 1 1 0 1 spi 1 0
be classified, a 1 marking the P P
membership of each site or sp2 1 0 |sp2 1 0
species to the associated sp3 1 10 |sp3 1 Y
environmental or trait class. The sp4 1 1 |sp4 1 0
fourth matrix is calculated as spS 0 1 | sp5 0 1
D =C x A’ x B. It lists the sp6 0] 1]sps6 0 1
frequency at which each species sp7 1 1 | sp7 0 1
group occurs under the 8 0 1 |sps 0 1
associated environmental
conditions. The P-values shown sp 9 0 1 |sp9 0 !
in matrix D indicate the sp 10 0| 1 |splO 0 1
probabilities at which the cell
value generated by the null Environmental PG-Frequencies
model is more extreme than or conditions(C) (D=CA'B)
equal to the cell value of the sitel site2 small tall
observation infertile | 1 0 | infertile 4 1
p=0.086 |p=-0.086
fertile 0 1 | fertile 1 6
p=-0.011 | p=0.011

The matrix product D = CA’B (A’ is the transposed matrix of A) listed the frequen-
cies at which each plant group occurs at a given treatment (Fig. 3). Matrix D could
also have been derived by constructing an inflated data table as described by Legen-
dre et al. (1997). These count data were not suitable for Chi-square testing, because
the observations were not independent of each other (several species may occur at
one site) thus requiring randomization (null model) test. Matrix A was permuted and
for each permutation Aper a new matrix Dper was computed (Dper = CA;)erB)' For
each cell in D, the frequency of cases containing a value greater than or equal to the
associated cells in the set of Dper was calculated. For this we followed the common
practice of including the observed value of the statistic to the distribution gener-
ated by the 103 — 1 permutations (Hope 1968, see also Manly 1997) unless stated
otherwise. If an entry in Dy, is only rarely greater than or equal to the corresponding
entries in D, the trait combination is thought to occur more often than expected by
the null model, and is positively related to the treatment. Given a large set of per-
mutations, this frequency is an estimator of the one—tailed probability (P-value) of
D(cell) > Dpe(cell). If the P-value is below 0.03, the group is considered to respond
to the associated treatment. Values higher than 0.5 indicate a negative association,
i.e. the plant group occurs less often than expected by the null model. In this case a
(—) sign indicates the probability of generating a value less than or equal to the value
inD.

Legendre et al. (1997) corrected their P-values to accommodate the increased
probability of committing a Type I error in the case of multiple simultaneous tests.
We did not correct the matrix of P-values in the optimization process, because the
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P-values are only used to rank the classification. However, when we drew ecological
conclusions from the final partition into PFG’s, we did correct the P-values as
Legendre et al. (1997) did.

2.4 Optimization criteria

Criteria to find PFGs with optimal trait class ranges can be chosen according to differ-
ent objectives. One might aim at a small set of PFGs with strong relationships between
each PFG and all treatments—at the expense of not identifying PFGs which only have
significant relationships to some treatments (case 1). On the other hand, a larger set of
PFGs can result in more significant PEFG—treatment relationships in total, but fewer
per PFG (case 2).

If the analysis is carried out to find relevant PFGs to be incorporated in a mechanistic
model (e.g. Lehsten and Kleyer 2007), a small number of plant functional groups is
required with a strong response to the treatment (case 1). In this situation the first
optimization method would be chosen. If, on the other hand, a more precise view
on the effect of an environmental variable on a certain system is investigated (e.g.
the effect of different levels of land use intensities on the occurrence of plant func-
tional groups, Castro et al. submitted), the second optimization criterion would be
appropriate (case 2).

The optimal set of PFGs is chosen in a two-step procedure. In the first step, a selec-
tion is carried out by discarding sets which are subdivisions of other sets without an
increase in the explanatory value. The second step chooses the optimal set from the
reduced collection of PFG sets.

Next we specify the first step: if a small set of PFGs with a high average number
of significant P-values per PFG is preferred (case 1), all classifications are discarded,
in which subdivided PFGs yield a smaller or equal average number of significant P-
values per PFG. If a larger set is preferred (case 2), only the classifications in which
the subdivided PFG has significant P-values with the same type of response (nega-
tive or positive, see below) as the undivided PFG are discarded. For instance, if the
subdivision results in two PFGs, one having a positive and one having a negative rela-
tionship to the treatment, while the undivided PFG has a negative relationship, then
the subdivided set will not be discarded.

The step of discarding sets is necessary to assure that the procedure is not skewed
towards large sets. From all sets with equal explanatory value, only the smallest set is
retained.

In the second step, the categorization with the highest number of significant
P-values is chosen from the remaining set. This categorization is optimal with respect
to the selected criterion (see Appendix 1 for an example). If several sets are similar
according to this criterion the set with the smallest number of PFGs is preferred. If this
does not result in a unique selection the one with the most even distribution of limits
is chosen. If that is still not sufficient to make a decision, the one with the lowest total
sum of significant P-values is preferred.

This procedure is useful, if the whole set of species has to be categorized and
no special attention is paid to certain species or groups. If, on the other hand, the

@ Springer



Environ Ecol Stat

response of a certain set of predefined plant groups is of interest, one can write the
plant groups directly into matrix B and apply the fourth-corner analysis without any
optimization.

2.5 Null models

To test for plant group responsiveness, we used the ‘lottery’ model (Sale 1978; Legen-
dre et al. 1997). This null model permutes species occurrences at random within each
site. The null hypothesis is that the number of niches per site is fixed and that all spe-
cies have an equal chance of establishment and persistence. The alternative hypothesis
is that some species perform better at some sites and will out-compete other species.
This model is aimed to detect competitive advantages of one species over the other
species. If the analysis is not performed at the species level, but at the PFT level,
it can detect competitive advantages (or disadvantages) of PFTs over other PFTs. If
the plant groups consist of different numbers of species within the total species pool,
this can be taken into account by multiplying all cells in D by the average number of
species per plant group divided by the number of species covered by the plant group
that corresponds to the cell. The uncorrected null model assumes the occurrence prob-
abilities of species per plant group to be similar, e.g., if a plant group is comprised of
more species than another plant group, it is also expected to have a higher occurrence
frequency according to the null model. The corrected version assumes the absolute
number of species per plant group to be similar, e.g. all plant groups are expected to
have similar occurrence frequencies. The correction is performed prior to comparison
of Dpe; to D.

To derive the realized niche of a PFG we used a null model with fixed row
and column sums. Legendre et al. (1997) used the ‘Environmental control model’
which fixes only the row sums for a similar task. The hypothesis stated by this null
model is that all sites are equally suitable for all species, their occurrence probabil-
ity thus being similar at each site. The alternative hypothesis is that some species
are better suited at some sites with optimal conditions. This model also relies on
the assumption that all sites have similar species diversity. However, species diver-
sity has been shown in various studies to depend on the site conditions such as
area of the site, disturbance regime, or climate. Therefore, we included this con-
straint in the null model. We used the sequential swap algorithm (Manly 1997) and
applied a bias correction (Zanman and Simberloff 2002). The ‘noise test’ (Gotel-
li 2000) was applied to find the appropriate thinning rate in both data sets (100
swaps).

2.6 Identification of optimal plant functional response groups by similarity analysis

Another method for PFG identification was proposed by Pillar (1999). The traits of
the PFGs were systematically permuted and the optimal trait set was chosen by max-
imizing the correlation coefficient (Pearson p) between the ecological distances of
the sites based on the environmental factors and the distances of the same sites based
on the observed PFGs. We applied the method to 100 test data sets, to each of which
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the trait attribute for the trait colour was assigned at random in order to estimate the
correlation coefficient and its standard deviation.

2.7 The Greenhouse experiment on the assembly of plant communities

The experiment was carried out in two greenhouses in the botanical garden of
Oldenburg. In order to produce differences in soil fertility, the topsoil from one
greenhouse was removed and transferred to the other. The fertile soil received an
additional application of NPK fertiliser equivalent to 13kg N/ha. Furthermore, five
disturbance treatments were applied; monthly moving (eight times a year), moving
twice a year, moving every second year, rotating every second year and free suc-
cession (no treatment). The combined fertility/disturbance treatments were applied
to four to five replicates each. The plots were arranged in a latin-square design
and each plot was separated from the other plots by netting above ground and by
plastic plates below ground (down to a depth of 30cm). Sowing of 32 plant spe-
cies took place after heat sterilisation of the soil in January 2000 and species fre-
quencies were recorded in 2002. The list of species and their traits is given in the
Appendix 4 (Table A4.1). Their occurrences can be found in Lehsten (2005). Traits
were measured according to Cornelissen et al. (2003) and quoted as mean values of
20 specimens. Since trait sampling was destructive, we did not sample the species
in the plot, but growing under optimal conditions. Hence, the trait attributes repre-
sent potential values for optimal conditions as suggested by Cornelissen et al. (2003).
The trait values for spacer length were taken from a database (Klimes and Klimesova
1999).

Plant functional response groups were formed based on the traits canopy height and
spacer length. Forming all possible classifications of canopy height alone leads to a
maximum of 1.07 s 10? classifications. Bearing in mind that there are only two treat-
ments, the data were binned into two classes of canopy height with a minimum class
width of 5cm and a minimum difference of classification of 5 cm. These parameters
allow 19 classifications of canopy height to be defined.

3 Results

Although the algorithm was designed to analyse PFGs, we started by using single traits
for both data sets. Each set of PGs produced a matrix of P-values of the relationship
of the plant group to the treatment.

3.1 Test data—plant height only

The P-values for a grouping based only on plant height are listed in Table 1 for a
subset of the possible classifications (see also Table A2.1 in the Appendix).Tall plants
occurred more frequently than small plants at rarely disturbed sites and vice versa.
However, when using all four classes of plant height, intermediate height classes
2 and 3 were not significantly related to intermediate disturbance levels. If three
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Table 1 PFGs categorized for vegetation composition, based on plant height

No. of PGs P-values of the relationships
Trait class Disturbance regime
Height (h) 1 2 3 4
4 Very small (1) —0.001 —0.009 0.009 0.001
Small (2) —0.012 n.s. n.s. 0.011
High (3) 0.012 n.s. n.s. —0.018
Very high (4) 0.001 0.012 —0.013 —0.001
3 Small (1) —0.001 —0.005 0.015 0.001
Medium (2-3) n.s. n.s. n.s. n.s.
High (4) 0.001 0.011 —0.010 —0.001
2 Small (1-2) —0.001 —0.026 0.025 0.001
High (3-4) 0.001 0.026 —0.025 —0.001

This table lists a subset of the possible trait class combinations. A full list is given in Table A1.2.1. Sepa-
rating four, three or two height classes results in a total of twelve (4 PGs) or eight (2-3 PGs) statistically
significant P-values (P < 0.05). Although the classification into four PGs results in the highest number of
P-values below 0.05, the categorization into two classes is preferred, because the small and the very small
PG of the first PG set are subdivisions of the small PG from the last PG categorization and the number of
significant P-values per PG does not increase. The values indicate the association (sign) and the statistical
significance (P-values)

height classes are used instead of four, the intermediate plant group was not respon-
sive to the treatments. We considered the categorization into two height classes to
be optimal, because the small and the very small PG of the first PG set are sub-
divisions of the small PG from the last PG categorization and the number of sig-
nificant P-values per PG does not increase. The third classification was preferred
to the second because of its smaller number of PGs. Three classifications in two
height classes were possible [1-4], all resulting in the same number of significant
P-values. The first classification was preferred, because the class limits are most evenly
distributed.

3.2 Test data—-colour

Using 1,000 test data sets in which the trait colour was assigned at random, we found
4.85% significant P-values for the colour—disturbance relationship at a significance
level of 0.0, i.e. false positive results. Hence, the randomisation test controlled the
Type I error as required.

3.3 Test data—plant groups
Combining the traits seed number and spacer length led to nine PGs (3 classes x 3
classes), of which three syndromes (no spacer and low seed number; short spacer

and medium seed number; long spacer and high seed number) were disadvantageous
(P <0.001), two combinations were advantageous (P < 0.001) to the other trait com-
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binations and the remaining syndromes showed no response (n.s.). The values correctly
reflect the relationships incorporated in the artificial data set.

Combining traits yielded fewer significant P-values, which may result from the
reduced total differences between the now smaller groups as well as from the reduced
number of observations in each test, which in turn increased Type II error. Form-
ing a set of 36 PFGs considering the three traits of height, spacer length and seed
number, resulted in statistically insignificant relationships for all PGs under medium
disturbed conditions, and for medium sized PGs under rarely disturbed conditions, see
Table A2.2 in the Appendix 2. This table shows that the calculated P-values correspond
to the expectation for all PGs.

3.4 The niche of a PFG

We applied the null model with fixed row and column sums (sequential swap algo-
rithm, Manly 1997) to analyze the niche of a PG. The hypothesis behind this null model
is that all sites are equally suitable for all species, the alternative hypothesis being that
some species perform better at certain sites because of suitable growth conditions.
These sites form their ‘realized niche’. Table A2.3 (Appendix 2) lists the associations
and P-values for each group—treatment combination for the trait plant height for
the classification in four PGs. The differences from the results of the ‘lottery’ model
(Table 1) are marginal because of the symmetry in the height-disturbance relationship,
but the results differ for more complex trait-environment relationships. The P-values
for the realized niche of plant groups composed of the traits seed number and spacer
length are listed in Table 2. The plant group without spacers and low seed number
was absent under highly disturbed conditions (Fig. 2) and responds positively to the
other treatments. Plant groups with only one trait being in the medium class occurred
under highly disturbed conditions with the same frequency as in the other treatments.
Accordingly, the method detected no significant difference in the number of occurring
species of these groups (P > 0.05).

3.5 Correlation of dissimilarities

Using the procedure by Pillar (1999), the trait combination plant height, spacer length
and seed number gave the highest Pearson correlation coefficient p (0.910), followed
by the combinations plant height and spacer length (0.809) and the combination height,
spacer length and colour (0.619). This conforms to the structure incorporated in our
test data. The ranking of p-values and associated plant traits is listed in Table A2.4
in the Appendix 2. Since the trait colour was assigned at random, we list means and
standard deviations derived from 1000 different test data sets for each trait combina-
tion. The lower ranks are highly random, while the first ranks are correctly determined
with a high probability. The single trait ‘colour’ has the lowest correlation coefficient.
These results confirm that the traits plant height, spacer length and seed number were
correlated with the occurrence of species within our artificial test data set.
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Table 2 The realized niche of the PFG of the artificial data set based on the traits spacer length and seed
number

P-values of the relationships

Trait classes Disturbance regime

Spacer Seed 1 2 3 4

1 1 0.001 0.001 0.003 —0.001
1 2 n.s. n.s. n.s. n.s.
1 3 —0.001 —0.001 —0.001 0.001
2 1 n.s. n.s. n.s. n.s.
2 2 0.001 0.001 0.002 —0.001
2 3 n.s. n.s. n.s. n.s.
3 1 —0.001 —0.001 —0.004 0.001
3 2 n.s. n.s. n.s. n.s.
3 3 0.001 0.001 0.003 —0.001

Three classes for spacer length (p; 1 =no spacer, 2=medium spacer length, 3=long spacer) and three seed
number classes (s; 1 =low seed number, 2=medium seed number, 3 =high seed number) are combined to
nine PGs. The values indicate the association (sign), and the statistical significance (P-values)

3.6 The greenhouse experiment

The greenhouse experiment was designed to investigate the assembly of plant com-
munities in terms of the probabilities and total number of occurrences of plant groups
(realized niche breadth) at the different sites, but not in terms of community structure.
Therefore, we only applied the ‘lottery’ model for the classification of species.

The optimization procedure maximized the total number of significant trait—
treatment relationships hence aiming for a larger set of PFTs (see 2.4 Optimization
criteria). The functional classification as well as the species traits are given in Table
A4.1 in the Appendix 4.

3.7 Single trait analysis of the greenhouse experiment

Figure 4 displays the expected and observed values of plant occurrences based solely
on the trait canopy height using the ‘lottery’ null model without correction for plant
group size. Under fertile soil conditions, the observed values of plant group occurrence
below a certain canopy height were always below the expectation (though sometimes
not significantly). Class limits that determine plant groups could therefore be chosen
freely. Under infertile soil conditions, the expected value was above the observed value
up to a height of 37 cm and below the observed value for all other canopy heights.

The first criterion for optimization was to reach the highest number of P-values
smaller than 0.05. Eleven out of 19 classifications result in the same number of
P-values smaller than 0.05. Hence, all of them were equally valid and the classi-
fication into a small (smaller than 78 cm) and a tall plant group (taller than 78 cm) was
chosen, because it results in the most similar class width.
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Fig. 4 Expected (dashed line) and observed (solid line) number of occurrences of species smaller than a
certain canopy height. The expected values are based on the assumption that all sites have a fixed species
diversity, but species are randomly distributed (‘lottery model”). Note that the total number of occurrences
is greater at infertile sites than at fertile sites

Table 3 P-values for single trait classifications based on canopy height and spacer length using the model
of fixed number of species per site (‘lottery model’)

Small Tall Annual or Long spacer
short spacer

Uncorrected for species per PFG

Infertile site 0.024 —0.024 —0.001 0.001
Fertile site —0.001 0.001 —0.03 0.03
Corrected for species per PFG

Infertile site 0.001 —0.001 0.004 —0.042
Fertile site 0.001 —0.001 0.114 —0.191

Small PFGs comprise species with a canopy height below 78 cm. Uncorrected values indicate P-values
for increased or decreased (—) probability of occurrence. Corrected values list P-values for increased or
decreased (—) total occurrence

Though the relationship between fertility and canopy height was positive as might
be expected, applying the fourth-corner method with a correction for plant group size
results in a different relationship. Table 3 shows that small species were more frequent
and tall species are less frequent under both fertile and infertile conditions. Here, the
total number of occurrences was evaluated, while the chance of occurrences for a
species within a PG was considered in the former analysis.
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Table 4 P-values for trait syndrome classifications based on canopy height and spacer length using the
model of fixed number of species per site (‘lottery model”)

PFG small, annual PFG small, PFG tall, annual  PFG tall, long

or short spacer long spacer  or short spacer spacer
Uncorrected for species per PFG
Infertile site —0.001 0.001 0.001 —0.001
Fertile site —0.001 0.48 0.001 0.002
Corrected for species per PFG
Infertile site 0.001 0.001 —0.001 —0.001
Fertile site 0.001 0.039 —0.004 —0.037

Small PFGs comprise species with a canopy height below 104 cm. Uncorrected values indicate P-values
for increased or decreased (—) probability of occurrence. Corrected values list P-values for increased or
decreased (—) total occurrence

Table 3 also displays the P-values for plant groups formed solely on spacer length.
Though species with long spacers has a higher probability of occurrence, the total
number of occurring species with long spacers was lower than the number of the other
species (though the relationship is not significant under infertile conditions). This
effect occurred, because the number of species which were either annual or had short
spacers is higher than the number of species with long spacers (see Table A4.1 in the
Appendix 4).

3.8 Plant group analysis of the greenhouse data

Combining the traits canopy height and spacer length led to a total of 38 PG classifi-
cations. The optimal classification (according to the above-mentioned criterion) had
four PFGs (see Table 4). The changing point between small species and tall species
was at a height of 104 cm. Seven out of eight PFG factor relationships were significant.

The P-values indicate an increased probability of occurrence for small species with
long spacers or tall species with short or no spacers at infertile sites, while all other
species (PFGs) had a lower chance of occurrence. At fertile sites, tall species had a
higher chance of occurrence and small species with short or no spacers had a lower
chance of occurrence (upper part of Table 4, uncorrected P-values).

Similar to the single trait—treatment relationship, the plant group—treatment rela-
tionship also differed substantially between the probabilities of occurrence and the
total number of occurrences of species within a plant group because of different num-
bers of species per plant group. Regardless of the fertility treatment, total occurrences
of small plants were higher than total occurrences of tall plants. Here, spacer length
has only a marginal influence on the P-values (lower part of Table 4).

4 Discussion

All trait—disturbance relationships incorporated in the artificial test data set could be
detected using the extended fourth-corner method.
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4.1 Comparison with other approaches

The original method developed by Legendre et al. (1997) focuses on establishing rela-
tionships between single traits and environmental factors and not on testing all possi-
ble combinations of traits. A second branch in the three-table joint analysis is based
on correspondence analysis and includes the RLQ technique (Doledec et al. 1996;
Ribera et al. 2001) or consecutive multivariate techniques (MclIntyre and Lavorel
2001). A third branch resides in the framework of Generalized Linear Modeling and
logistic regression techniques (Kleyer 1999; Jauffret and Lavorel 2003). Among these
techniques, the one by Nygaard and Ejrnaes (2004) is most similar to ours. Similar to
Legendre et al. (1997), they test a global relationship of functional response groups to
treatments, which restricts the understanding of the contribution by individual traits or
trait combinations to plant—environment relationships. The latter can be achieved by
optimization methods as presented in our approach or by Pillar (1999, 2003). More-
over, we consider null models as a straightforward method in order to cope with the
lack of independence between observations.

The results of the optimization procedure by Pillar (1999) are correct for the artifi-
cial test data set. However, it detects only the functional response traits, but neither the
direction of the association to the environmental variables nor their significance. His
algorithm will result in a trait ranking, even if none is functional-responding, while
our method tests the significance of the association of each PG to each environmental
factor. Pillar (2003) enhanced his method by using a cluster analysis to find the opti-
mal trait classes of the PGs. However, he still uses the correlation of dissimilarities to
discriminate the optimal trait set. Hence, the results concerning our data set would be
similar.

To identify co-occurring PFGs in a given treatment we used the ‘lottery’ null model
(Sale 1978). It hypothesizes a founder-controlled community with no differences in
competitive ability between species. The alternative hypothesis to this model is that
species belonging to certain plant groups perform better than others. Using the model
without correction assigns, on average, the same number of species to each plant
group. It therefore evaluates, whether the observed plant groups occur proportional to
the number of species they cover. However, if total number of species per plant group
is of concern, normalizing group sizes assumes not the occurrence probabilities of
single species but the expected number of species per group to be equal. The alter-
native hypothesis is that there are some PGs which were observed more frequently
than others. The frequency of occurrences indicates which PG will dominate within a
treatment.

If the occurrence of a PFG across treatments (niche analysis) is of interest (not PFG
composition per treatment for community analysis), a different null model is required.
The environmental control model (Whittaker and Goodman 1979), as used by Legen-
dre et al. (1997), assumes species occurrence to be independent of environmental
factors. The alternative hypothesis is that a given species is confined to appropriate
environmental conditions. While the number of observations of each species (rarity)
is seen as a constraint, no interactions between species (e.g. competition, mutualism)
are assumed. If the species diversity differs between sites with different environmental
conditions, the method is biased because it overestimates the frequencies of species
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that tend to occur at species-rich sites and vice versa. Hence, we decided to use a null
model with fixed row and column sums to fix species rarity and diversity per site.

The artificial test data set incorporates only one environmental gradient. However,
various gradients may influence the species composition simultaneously. To incorpo-
rate several environmental factors, each factor needs to be categorized into discrete
classes and each site has to be assigned to a combination of factor classes (treatments).
The ability to correctly discriminate PFGs (Type I error) is strongly influenced by the
number of sites and the number of traits used to compose the PFGs. Increasing the
number of sites may allow one to use more traits for PFG generation.

4.2 Syndrome versus single trait analysis

Marby et al. (2000) concluded that the importance of analyzing multiple traits (e.g.
syndromes), rather than single traits, is supported by a wide range of traits which
different authors consider to be functional-responding. Not only the traits thought
to be functional-responding differed, but also the relationships between traits and
environmental factors.

Jauffret and Lavorel (2003) used a generalized linear model to identify the attribute
response to a factor. Attributes showing a significant response in frequency in one
direction of a factor were labelled as ‘decreaser’ or ‘increaser’ according to the direc-
tion of the response, or as ‘inconsistent’, if no significant changes along the gradient
could be detected. This procedure would label the traits seed number and spacer length
as ‘inconsistent’ in our artificial test data set, because the frequency of each state of
these traits is similar over the whole disturbance gradient. However, the combination
of the traits has a high functional response. Whether such complex relationships are
relevant to field data or only occur in our artificial test data set, has to be shown by
further field work.

A trait effect may even be reversed depending on another trait attribute. While the
occurrence of PGs with either high seed number or long spacers is positively related
to highly disturbed treatments, the combination of both trait states is disadvantageous
(Fig. 2). Determining PFGs from single trait analysis would not produce a valid PG
factor relationship in this case.

Another issue in the determination of PFGs by single trait analysis is to ensure that
the trait classes co-occur in the species (Jauffret and Lavorel 2003). All PGs identi-
fied by the proposed method comprise species, since our null model only randomizes
the observed data. The necessity of analyzing functional groups instead of combining
single trait analysis is also stressed by Marby et al. (2000) who analyzed species level
distribution of traits in a temperate woodland flora and associated the environmental
conditions with different groups of traits which tend not to co-occur within species.

4.3 The Greenhouse experiment
The classification of species from the greenhouse experiment on the assembly of plant

functional response groups was performed using the traits canopy height and spacer
length. Both traits are responsive on a single trait basis. Our results concerning plant
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height are consistent with the expectation that tall plants have a higher probability
of occurrence at fertile sites. Since ploughing with a subsequent regeneration from
seeds or subsurface buds was only applied to one fifth of the plots, we also expected
long spacers to be advantageous regardless of the fertility level. The simultaneous
analysis of the two traits resulted in a set of four plant functional response groups for
which a significant relationship between the probability of occurrence of a species
within the PFG and the treatment was found for seven out of eight PFG—treatment
combinations. Here, the separation between tall and small plants was made at a height
of 104 cm—instead of 78 cm for the single trait analysis—hence, a combination of
the optimal trait classes for single traits would not lead to the optimal grouping at
a multi-trait level. Tall plants have an increased chance of occurrence at fertile sites
regardless of their spacer length, similar to the single trait analysis. Small plants with
short or no spacers have a decreased chance of occurrence at both fertility levels. This
trait combination would be attributed to intensely and frequently disturbed conditions,
which only occurred in a small proportion of the experiment. The increased probabil-
ity of occurrence of tall species with short or no spacers at infertile sites is a result
of the relative high abundance of a single species, Ranunculus acris, which limits the
relevance of this PG for both treatments.

5 Perspectives

We have presented null models based on presence/absence data. Using abundance data
can improve such an analysis (Gotelli et al. 1987) and this extension can be done by
designing a new null model which suits this kind of data. The results obtained using
our method can be used to build scenarios of vegetation development under changing
environmental conditions. Applying the ‘lottery’ model and projecting the derived
PFG-environmental conditions relationships on a hypothetical map of site conditions
(incorporating climate or land use change) results in a map of communities of plant
functional response groups. Such maps are, for instance, available to future land use
for different climate change scenarios (e.g. Reginster and Rounsevell 2006).

Our method requires all environmental factors to be arranged in classes or treat-
ments, while GLMs predict species occurrences over continuous gradients. This may
be a disadvantage if sampling points are evenly spaced and classification of the gra-
dient, i.e. dividing the variable representing the gradient into classes is problematic.
However, it has the advantage of requiring fewer data to detect a significant relation-
ship by reducing the continuous gradient into several classes. The proposed method
is also able to deal with heteroscedastic data and will give a valid result for the pro-
portion of the gradient (or the treatments) for which the vegetation responds to the
environmental variable. A program applying the procedure, including an additional
null model for frequency data as well as the test data set, can be obtained from the
authors.
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Appendix 1 Example generation of PFGs using the fourth-corner method

Species traits Treatment (matrix C) Presence / Absence (matrix A)
Sp.  Height (h) sitel  site2 Sp. sitel  site2
sp 1 1 infertile(inf.) 1 0 sp 1 1 0
sp2 1 fertile(fert.) 0 1 sp2 1 0
sp3 2 sp3 1 0
sp4 2 sp4 1 1
sp5 3 sp5 0 1
sp6 4 sp 6 0 1
sp7 5 sp7 1 1
sp 8 6 sp 8 0 1
sp9 6 sp9 0 1

sp 10 6 sp 10 0 1

Possible classifications according to plant height (h) into small (s) medium (m) and tall (t) sized
species. constraints: minimum class number:2 minimum class size:2

1.PG set 2.PG set 3.PG set 4.PG set

PG (B) PG (B) PG (B) PG (B)
Sp. h s t h s t h s t h s m t
spl 1] 1 0 1 1 0 1 1 0 1 1 0 0
sp2 1] 1 0 1 1 0 1 1 0 1 1 0 0
sp3 2| 1 0 2 1 0 2 1 0 2 1 0 0
sp4d 2| 1 0 2 1 0 2 1 0 2 1 0 0
spS5 3]0 1 3 1 0 3 1 0 3 0 1 0
sp6 4| 0 1 4 0 1 4 1 0 4 0 1 0
sp7 5|0 1 5 0 1 5 0 1 5 0 0 1
sp8 6| 0 1 6 0 1 6 0 1 6 0 0 1
sp9 6| 0 1 6 0 1 6 0 1 6 0 0 1
spl0 6| 0 1 6 0 1 6 0 1 6 0 0 1
Matrix B contains a 1 if the species is assigned to the PG stated in the column.
D=CA’B

S t h t S t s m t
inf. 4 1 inf. 4 1 inf. 4 1 inf. 4 0 1
fert. 1 6 fert. 2 5 fert. 3 4 fert. 1 2 4
The p-values generated by the fourth-corner method using the 'lottery' model (Legendre et. al 1997).

s t S t s t s m t
inf. [0.02  ]-0.02 inf. 0.1 |-0.1 inf. ]0.02 |-0.02 inf. [0.001 |-0.2 -0.2
fert. |-0.001 |0.001 fert. |-0.1 0.1 fert. |0.16 |0.16 fert. [-0.02 |0.4 0.001

The tall plant group from the first set comprises the medium and tall plant group of
the fourth set. The average number of significant P-values for the subdivided plant
groups (m and t; 1/2=0.5) is lower than the number of significant P-values for the
tall PG in the first categorisation (2/1 = 2). The fourth set will therefore be discarded.

Grouping criterion nps = total number of P-values below 0.05

1.PG set 2.PG set 3.PG set 4.PG set
nps= 4 nps = 0 Nps = 2 Discarded

The optimal PFG classification is into two height classes of 1-2 and 3-6
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Appendix 2 Results of the fourth corner analysis of the artificial test data set

Table A2.1 Full set of PFGs categorized for vegetation composition, based on plant height. The values
indicate the association (sign) and the statistical significance (P-values)

No. of Comb. P-values of the relationships
Trait class Disturbance regime
Height (h) 1 2 3 4
1 Very small (1) —0.001 —0.009 0.009 0.001
Small (2) —0.012 n.s. n.s. 0.011
High (3) 0.012 n.s. n.s. —0.018
Very high (4) 0.001 0.012 —0.013 —0.001
2 Small (1) —0.001 —0.005 0.015 0.001
Medium (2-3) n.s. n.s. n.s. n.s.
High (4) 0.001 0.011 —0.010 —0.001
3 Small (1-2) —0.001 —0.027 0.024 0.001
Medium (3) 0.012 n.s. n.s. —0.018
High (4) 0.001 0.012 —0.013 —0.001
4 Small (1) —0.001 —0.009 0.009 0.001
Medium (2) —0.012 n.s. n.s. 0.011
High (3-4) 0.001 0.026 —0.024 —0.001
5 Small (1-3) —0.001 —0.009 0.012 0.001
High (4) 0.001 0.009 —0.012 —0.001
6 Small (1-2) —0.001 —0.026 0.025 0.001
High (3-4) 0.001 0.026 —0.025 —0.001
7 Small (1) —0.001 —0.010 0.012 0.001
High (2-4) 0.001 0.010 —0.012 —0.001

Table A2.2 PFGs are generated by the ‘lottery’ model for vegetation composition using the three traits

P-values of the relationships

Trait class Disturbance regime

Height Spacer Seed 1 2 3 4

1 1 1 —0.007 n.s. (—0.2) n.s. (0.3) —0.0002
1 1 2 —0.005 n.s. (—0.2) n.s. (0.3) 0.002
1 1 3 —0.001 n.s. (—0.1) n.s. (0.2) 0.0001
1 2 1 —0.0006 n.s. (—=0.1) n.s. (0.2) 0.0005
1 2 2 —0.006 n.s. (—0.2) n.s. (0.3) —0.0002
1 2 3 —0.005 n.s. (—0.2) n.s. (0.3) 0.003
1 3 1 —0.0001 n.s. (—0.2) n.s. (0.1) 0.0001
1 3 2 —0.002 n.s. (—0.2) n.s. (0.3) 0.0032
1 3 3 —0.005 n.s. (—0.2) n.s. (0.3) —0.0002
2 1 1 n.s. (—0.2) n.s. (—0.5) n.s. (0.4) —0.0001
2 1 2 n.s. (—0.3) n.s. (—0.5) n.s. (0.4) n.s. (0.09)
2 1 3 n.s. (—0.2) n.s. (—0.5) n.s. (0.3) 0.0001
2 2 1 n.s. (—0.2) n.s. (—0.5) n.s. (0.4) n.s. (0.07)
2 2 2 n.s. (—0.2) n.s. (—0.5) n.s. (0.4) —0.0001
2 2 3 n.s. (—0.2) n.s. (—0.5) n.s. (0.4) n.s. (0.1)
2 3 1 n.s. (—0.2) n.s. (—0.5) n.s. (0.4) 0.0001
2 3 2 n.s. (—0.2) n.s. (—0.5) n.s. (0.4) n.s. (0.1)
2 3 3 n.s. (=0.2) n.s. (—=0.5) n.s. (0.4) —0.001
3 1 1 n.s. (0.2) n.s. (0.3) n.s. (—0.5) —0.001
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Table A2.2 continued

P-values of the relationships

Trait class Disturbance regime

Height Spacer Seed 1 2 3 4

3 1 2 n.s. (0.2) n.s. (0.4) n.s. (—0.5) n.s. (—0.3)
3 1 3 n.s. (0.2) n.s. (0.4) n.s. (—0.5) 0.02

3 2 1 n.s. (0.1) n.s. (0.3) n.s. (—0.5) n.s. (—0.2)
3 2 2 n.s. (0.2) n.s. (0.4) n.s. (—0.5) —0.0001

3 2 3 n.s. (0.2) n.s. (0.4) n.s. (—0.5) n.s. (—0.3)
3 3 1 n.s. (0.2) n.s. (0.4) n.s. (—0.5) 0.02

3 3 2 n.s. (0.2) n.s. (0.4) n.s. (—0.5) n.s. (—0.3)
3 3 3 n.s. (0.2) n.s. (0.4) n.s. (—0.5) —0.0003
4 1 1 0.02 n.s. (0.3) n.s. (—0.2) —0.0002
4 1 2 0.02 n.s. (0.3) n.s. (—0.2) —0.01

4 1 3 0.02 n.s. (0.3) n.s. (—0.2) n.s. (—0.2)
4 2 1 0.006 n.s. (0.2) n.s. (—0.1) —0.0003
4 2 2 0.02 n.s. (0.3) n.s. (—0.2) —0.0001

4 2 3 0.003 n.s. (0.3) n.s. (—0.1) —0.001

4 3 1 0.02 n.s. (0.3) n.s. (—0.2) n.s. (—0.2)
4 3 2 0.02 n.s. (0.3) n.s. (—0.2) —0.02

4 3 3 0.02 n.s. (0.3) n.s. (—0.2) —0.005

Under medium disturbance regimes (2-3), no significant association was detected. Although very tall and
very low species show significant differences from the null model community, if this trait is considered
alone (Table 1), taking all three traits into account leads to insignificant P-values. The total frequencies of
the PFG’s are reduced, hence P-values are decreased

Table A2.3 The realized niche of the PFG is determined using the sequential swap

No. of PGs P-values of the relationships
Trait class Disturbance regime
Height (h) 1 2 3 4

4 Very small (1) —0.001 —0.006 0.005 0.001
Small (2) —0.013 n.s. n.s. 0.017
High (3) 0.011 n.s. n.s. —0.019
Very high (4) 0.001 0.010 —0.003 —0.001

The association is based on plant height, separating four height classes. The values indicate the association
(sign), and the statistical significance (P-values). These associations are similar to the associations derived
by the ‘lottery’ model because of the symmetry in the height—disturbance relationship

Table A2.4 The optimal trait set is derived with the algorithm by Pillar (1999) for the test data set

Pearson p Std. Trait combination

0.910 0 Height, spacer length, seed number
0.809 0 Height, spacer length

0.619 0.011 Height, spacer length, colour
0.604 0 Height, seed number

0.598 0 Spacer length, seed number
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Table A2.4 continued

Pearson p Std. Trait combination

0.578 0.006 Height, spacer length, seed number, colour
0.332 0.013 Height, seed number, colour

0.276 0.022 Spacer length, seed number, colour

0.271 0.015 Height, colour

0.062 0.027 Spacer length, colour

0.060 0.026 Seed number, colour

0.002 0.030 Colour

The Pearson correlation coefficient p is calculated for the dissimilarity matrices of the sites by species
(squared cord distance) and sites by the environmental variables (Euclidian distance). The traits plant
height, spacer length and seed number influence the species occurrence in the test data set. This combina-
tion has the highest correlation coefficient. Trait sets not including colour are fully deterministic. Hence,
the standard deviation is zero. The correlation coefficient for single traits except colour cannot be calcu-
lated, since, for example, each different plant height class occurs at least once in each site, leading to a
dissimilarity matrix of sites with only zeros. Using different trait class classifications did not increase the
Pearson correlation coefficients within our data set

Appendix 3 Construction of the test data set

Matrix A—observation

Four treatments with 20 replicates each result in 80 sites and hence 80 columns in
matrix A. The species diversity is set to 20. Each species may occur only once, for
simplicity reasons; hence, 1,600 species and rows are in Matrix A. The first 20 rows
have a 1 in the first column, the second 20 rows in the second line and so on.

Matrix B—traits

The heights are distributed according to Table A3.1.

Table A3.1 Distribution of the trait canopy height of virtual plants in the artificial data set

Height/treatment  No. of species

Disturbance level 1  Disturbance level 2 Disturbance level 3 Disturbance level 4

B W N =
N B~ N0
A~ N
N W
o0 QN B~

At the highest disturbance level, the traits seed number and spacer length are distrib-
uted according to Table A3.2.

Matrix C—treatment

The first 20 columns (sites) have a 1 in the firstrow, i.e. they belong to the first treatment
recorded. The second 20 columns have a 1 in the second row and so on.

@ Springer



Environ Ecol Stat

Table A3.2 Distribution of the traits spacer length and seed number of the virtual plants

Treatment/trait Disturbance level 1-3 Disturbance level 4
Spacer Seed no. 10 sites 10 sites
1 1 2 0 0
2 1 2 2 1
3 1 2 7 6
1 2 2 1 2
2 2 2 0 0
3 2 2 2 2
1 3 3 6 7
2 3 2 1 1
3 3 0 0

The traits seed number and spacer length are equally distributed at disturbance levels 1-3. To maintain
constant species diversity, two sites received three instead of two species of similar trait state. Twenty sites
have the disturbance level four, of which ten have a similar trait distribution

Appendix 4 Results of the greenhouse experiment

Table A4.1 Species of the greenhouse experiment with allocated traits and optimized functional classifi-
cation by the extended fourth-corner method

Species name Height cm Life cycle/ spacer length Functional group
Alopecurus pratensis 71 2 1
Apera spica-venti 71 1 1
Arenaria serpyllifolia 7 1 1
Arrhenatherum elatius 96 2 1
Bellis perennis 4 2 1
Bromus erectus 37 2 1
Centaurea jacea 30 2 1
Chenopodium album 81 1 1
Coronilla varia 65 3 2
Cynosurus cristatus 37 2 1
Festuca ovina 37 2 1
Festuca rubra 53 2 1
Galeopsis tetrahit 102 1 1
Galium verum 62 3 2
Glechoma hederacea 4 3 2
Lathyrus pratensis 32 3 2
Luzula campestris 23 3 2
Origanum vulgare 74 3 2
Papaver rhoeas 96 1 1
Phalaris arundinacea 205 3 4
Poa annua 13 2 1
Poa pratensis 38 3 2
Ranunculus acris 111 2 3
Rumex acetosa 55 2 1
Saxifraga tridactylites 4 1 1
Silene vulgaris 48 2 1
Solidago canadensis 170 3 4
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Table A4.1 continued

Species name Height cm Life cycle/ spacer length Functional group
Stellaria media 25 1 1
Tanacetum vulgare 105 3 4
Thymus serpyllum 10 3 2
Trifolium repens 14 3 2
Urtica dioica 190 3 4

The responses of the functional groups are indicated in Table 4. Life cycle/spacer length (1: annual, 2: peren-
nial with short spacers, 3: perennial with long spacers); Functional groups (1: small annuals or perennials
with short spacers, 2: small perennials with long spacers, 3: tall annuals or perennials with short spacers,
4: tall perennials with long spacers)
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