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We study the second-moment correlation length and the reduced susceptibility of two ferromag-
netic Ising models with zero-temperature ordering. By introducing a scaling variable motivated by
high-temperature series expansions we are able to scale data for the one-dimensional Ising ferromag-
net rigorously over the entire temperature range. Analogous scaling expressions are then applied to
the two-dimensional fully-frustrated Villain model where excellent finite-size scaling over the entire
temperature range is achieved. Thus we broaden the applicability of the extended scaling method
to Ising systems having a zero-temperature critical point.
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I. INTRODUCTION

Studying the critical behavior of systems that order
at zero temperature is challenging because the typically-
used Monte Carlo methods are generally unable to
probe the critical behavior close enough to the zero-
temperature critical point for traditional1 finite-size scal-
ing approaches to yield precise critical parameters. It is
thus necessary to either incorporate scaling corrections2

or find better approaches to scale the data.3,4

Using the intuition gained from high-temperature se-
ries expansions (HTSE) a scaling approach has been in-
troduced with the aim of extending the validity of crit-
ical scaling expressions to temperatures well above the
critical region. So far, the approach has been applied
to a number of model systems having finite ordering
temperatures.5–8 Inherently, this approach is ideal to
study systems which order at zero temperature—such as
a magnetic system below the lower critical dimension—
since there only temperatures above the critical point can
be accessed numerically. Thus, an important first step in
adapting the extended scaling approach to these systems
involves the appropriate choice of a scaling variable.

In this paper we derive extended scaling relations
for two sample ferromagnetic models with no disor-
der in the interactions and which only order at zero
temperature. First, we study the exactly-solvable one-
dimensional Ising ferromagnet and then use insights ob-
tained to analyse the nontrivial two-dimensional fully-
frustrated Villain Ising model.9 Data generated using
Monte Carlo simulations for large system sizes and very
low temperatures validate our scaling approach.

The paper is structured as follows: In Sec. II we dis-
cuss the extended scaling approach and how to adapt
it to systems ordering at zero temperature, illustrating
the results with the one-dimensional case in Sec. III. In
Sec. IV we introduce the (Villain) fully-frustrated Ising
model and present details of our numerical calculations.
The numerical data are then analysed with the extended
scaling approach, followed by concluding remarks.

II. EXTENDED SCALING

Conventionally, at a continuous phase transition the
power-law critical behavior of any observable O in the
thermodynamic limit can be written as1

O[t(T )] ∼ t−y (1)

with t = (T − Tc)/Tc a scaling variable, T the tem-
perature and Tc the critical temperature at which the
phase transition occurs. The exponent y describes the
“strength” of the divergence at Tc. Alternatively, other
critical variables which yield the same limiting behavior
at criticality such as

τ = (T − Tc)/T = [1 − β/βc], (2)

where β = 1/T , can be used. For certain models further
scaling variables have been introduced, e.g.,

τs =
1

2

[

sinh−1(2β) − sinh(2β)
]

(3)

for the two-dimensional (2D) Ising ferromagnet10–12 or

τg = [1 − (β/βc)
2] (4)

for spin glasses with zero-mean symmetric interaction
distributions.5,13 All these scaling variables are propor-
tional to (T − Tc) for T → Tc. However, T is not a
sensible scaling variable for a zero-temperature (Tc = 0)
transition.14 Cardy et al.15 have given a renormalization
group technique rule for low-temperature limiting scaling
variables at zero-temperature transitions. For example,
for the Potts model studied by Cardy et al. the appro-
priate renormalization group “temperature” scaling vari-
able is proportional to exp(−β). By analogy, for a 1D
ferromagnetic Ising model for which Tc = 0 the scaling
variable should be proportional to exp(−2β).14

Scaling expressions may also include temperature-
dependent prefactors, which are noncritical but which



2

can be relevant in analyses that include a range of tem-
peratures far above (or below) Tc. For instance, the re-
duced susceptibility χ(β) measured in numerical simu-
lations (see below) is related to the thermodynamic sus-
ceptibility χth(β) (which is the physically-measurable ob-
servable) through χ(β) = χth(β)/β. Thus, critical be-
havior of the form χ(β) ∼ t−γ implies χth(β) ∼ βt−γ ,
i.e., with a prefactor β.

The two thermodynamic limit observables that we dis-
cuss here are the ferromagnetic reduced susceptibility χ
and the second-moment correlation length ξ. The ferro-
magnetic reduced susceptibility is given by

χ = N〈m2〉, (5)

where

m =
1

N

N
∑

i=1

Si (6)

is the magnetization per spin, N is the number of spins in
the system and 〈· · · 〉 represents a thermal average. The
second-moment correlation length is given by

ξ =

[

µ2

zχ

]1/2

, (7)

where

µ2 =

N
∑

i,j=1

r2
ij〈SiSj〉 (8)

is the second moment of the correlation function, z is the
number of nearest neighbors and rij is the distance be-
tween spins i and j.16 For a hypercubic lattice z = 2D,
where D is the space dimension. Note that numerically
we measure the finite-size correlation length [which is
equivalent to the expression presented in Eq. (7)]:

ξ =
1

2 sin(|km|/2)

[

χ

χ(km)
− 1

]1/2

, (9)

where km = (2π/L, 0) is the smallest nonzero wave vec-
tor (here in 2D), and χ(k) is the wave-vector-dependent
reduced susceptibility:

χ(k) =
1

N

N
∑

i,j=1

〈SiSj〉e
ik·rij . (10)

High-temperature series expansions (HTSE) of the Ising
ferromagnet in large space dimensions (i.e., in the mean-
field regime)7 show that simple relations for the reduced
susceptibility, namely

χ(β) = τ−1, (11)

and for the second-moment correlation length defined in
Eq. (7)

ξ(β) = β1/2τ−1/2 (12)

are exact for all T > Tc = 1. Thus, in this limit with the
scaling variable τ [Eq. (2)], the critical power laws for the
reduced observables χth(β)/β and ξ(β)/β1/2 hold exactly
over the entire range of β from βc to zero. In finite-
dimensional ferromagnetic systems—if the same basic
variables and expressions are used5–7 with the modifica-
tion necessary to give the right high-temperature limits—
one obtains “extended scaling” equations in which the
leading terms are

χ(β) = Cχτ−γ + (1 − Cχ) (13)

and

ξ(β) = β1/2[Cξτ
−ν + (1 − Cξ)] . (14)

In Eqs. (13) and (14) Cχ and Cξ are critical amplitudes,
and γ and ν are the standard critical exponents.1 With
the appropriate critical parameters (critical temperature,
critical exponents, as well as critical amplitudes) these
expressions are exact by construction at the β → βc and
β → 0 limits. Elsewhere, the expressions are not ex-
act but have been shown to give good approximations to
the true behavior for the entire paramagnetic tempera-
ture region. By introducing small correction terms these
approximations can be improved considerably.

The expression for finite βc given in Eqs. (13) and (14)
cannot be used for systems with Tc = 0 because βc =
∞. In the next section we present an “extended scaling”
approach tailored to systems having Tc = 0 and a unique
nearest-neighbor interaction strength |Jij | (in this case
|Jij | = 1 ∀ i, j and no bond disorder).17 We first present
simple exact expressions for the one-dimensional (1D)
Ising ferromagnet for which the scaling variable

τt(β) = 1 − tanh(β) (15)

works well. This is consistent with the Cardy et al. rule15

because τt is equal to 2 exp(−2β) at low temperatures,
but, like (1−β/βc), τt tends to 1 for T → ∞. In the light
of this result we then apply the same approach using τt

to the nontrivial 2D fully-frustrated Villain model. Our
analysis shows that the extended scaling scenario with
τt as a scaling variable gives an excellent account of the
behavior of the correlation length and reduced suscepti-
bility extrapolated to infinite size over the entire temper-
ature range.

III. ONE-DIMENSIONAL ISING MODEL

To motivate the scaling expressions for ferromagnetic
Ising models with zero transition temperature, we use as
a toy model the one-dimensional Ising ferromagnet

H1D =

L
∑

i=1

Ji,i+1SiSi+1 (16)

with Ji,i+1 = 1 for all nearest neighbors i and i + 1. The
model orders only14 at T = 0 and expressions for ξ(β)
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FIG. 1: (Color online) Scaled ferromagnetic reduced suscep-
tibility [Eq. (5)] for the 1D Ising ferromagnet according to
Eq. (25). The data scale perfectly and thus validate the de-
rived scaling expressions. The inset shows the unscaled data
for different system sizes, as well as the thermodynamic limit
(thick gray line).

and χ(β) in the infinite-size limit are easily calculated
from HTSE. The reduced susceptibility can be expanded
as

χ(β) = 1 + 2[tanh(β) + tanh2(β) + tanh3(β) + . . .] (17)

and the second-moment of the correlation is

µ2(β) = 2[tanh(β) + 22 tanh2(β) + 32 tanh3(β) + . . .].
(18)

The second-moment correlation length is then given by
Eq. (7) with z = 2 in 1D. Using the mathematical iden-
tities

∞
∑

n=1

xn =
x

1 − x
and

∞
∑

n=1

n2xn =
(x + 1)x

(1 − x)3
, (19)

the exact expressions for susceptibility and correlation
length are thus

χ(β) = exp(2β) =
2

1 − tanh(β)
− 1 (20)

and

ξ(β) =
1

2
[exp(4β) − 1]1/2

=
tanh1/2(β)

1 − tanh(β)
. (21)

Note that these expressions are valid for the entire tem-
perature range.

Equations (20) and (21) are of the extended scaling
form7 [see Eqs. (13) and (14)] with τt [Eq. (15)] replacing

τ in the extended scaling expressions for the ferromagnets
with finite ordering temperatures. Finally, temperature-
dependent effective exponents can be defined as

γ(β) = −dlog[χ]/dlog[1 − tanh(β)] (22)

and

ν(β) = −dlog[ξ(β)/ tanh1/2(β)]/dlog[1−tanh(β)] . (23)

In the limit T → Tc = 0 the critical exponents are thus
γc = νc = 1.

For the Ising ferromagnet in one space dimension with
linear extent L = N the Fisher finite-size scaling rule1

for an observable

O(L, β) ∼ Ly/νF [L/ξ(β)] (24)

when applied to the reduced susceptibility leads to

χ(L, β) + 1

L/ tanh(β)1/2
∼ Fχ

[

L[1− tanh(β)]

tanh1/2(β)

]

≡ F ′
χ

[

ξ(β)

L

]

. (25)

In Fig. 1 we illustrate the previously-derived scaling re-
lations with data for the reduced susceptibility for finite

system sizes. The data are obtained by starting with the
partition function Z = (λL

+ + λL
−) for a one-dimensional

system of L spins in a field H ,18 with

λ±=eβ

[

cosh(βH) ±

√

cosh2(βH) − 2e−2β sinh(2β)

]

.

(26)
To obtain the thermodynamic susceptibility χth(β), we
perform a second-order derivative of the free energy per
spin, F = −(1/β) lnZ(L), with respect to H , subse-
quently setting H = 0. The raw data for χ = χth/β
(inset) are scaled according to Eq. (25). The scaling is
perfect.

IV. TWO-DIMENSIONAL VILLAIN MODEL

The two-dimensional fully-frustrated Ising model, or
Villain model,9 consists of Ising spins on a square lattice
with nearest-neighbor bonds |Jij | = 1; in the x direc-
tion all bonds are ferromagnetic, while in the y direction
columns of bonds are alternately ferromagnetic and an-
tiferromagnetic. The Hamiltonian is thus given by

H = −
∑

〈i,j〉

JijSiSj , (27)

where Si = ±1 represent Ising spins on a square lattice
with N = L2 spins. The system is fully frustrated, i.e.,
the product of the bonds around each plaquette of the
system is negative:

∏

�

Jij = −1 . (28)
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TABLE I: Parameters of the simulations: L denotes the sys-
tem size, Nsa is the number of independent runs to improve
the statistics and Nsw is the total number of Monte Carlo
sweeps performed in a single run for each of the 2NT replicas.
Tmin and Tmax are the lowest and highest temperatures sim-
ulated, respectively, and NT is the number of temperatures
used in the parallel tempering method.

L Nsa Nsw NT Tmin Tmax

8 1000 131072 30 0.1 3.0
12 1000 131072 30 0.1 3.0
16 1000 131072 30 0.1 3.0
24 1000 262144 30 0.1 3.0
32 1000 262144 30 0.1 3.0
48 500 2097152 30 0.1 3.0
64 100 2097152 30 0.1 3.0
96 100 2097152 30 0.1 3.0

The model does not order at a finite temperature,19 but
exhibits a critical point at zero temperature with diverg-
ing ferromagnetic reduced susceptibility and a ground-
state degeneracy which grows exponentially with the sys-
tem size.

For the scaling analysis we compute the reduced sus-
ceptibility [Eq. (5)] and the finite-size second-moment
correlation length [Eq. (9)]. The simulations are done us-
ing exchange (parallel tempering) Monte Carlo20–22 and
the simulation parameters are presented in Table I. Equi-
libration is tested by a logarithmic binning of the data.
Once the last three bins for all observables agree within
error bars the system is considered to be in thermal equi-
librium. We use periodic boundary conditions to reduce
finite-size corrections.

Forgacs19 has shown analytically that the limiting low-
temperature thermodynamic behavior of the correlation
length of the 2D fully-frustrated Villain model is strictly
exponential, i.e., ξ(β) ∼ exp(2β). Furthermore, the crit-
ical exponent η describing the decay of the correlation
at Tc is exactly 1/2 such that in the low-temperature
limit—using χ(β) ∼ ξ(β)γ/ν [Eqs. (13) and (14)] and
the standard scaling relation γ = (2 − η)ν—we obtain
χ(β) ∼ ξ(β)2−η = exp(3β). Based on an analysis of the
size dependence of the energy by Lukic et al.23 it has been
conjectured that the low-temperature limit for the cor-
relation length is exactly ξ(β) = (1/2) exp(2β). No full
HTSE study seems to have been carried out to date, how-
ever, by inspection, the leading HTSE terms for the re-
duced susceptibility are χ(β) = 1+2β+O(β2) and for the
second-moment of the correlation length µ2 = β+O(β2).

Scaling dimensionless ratios of finite-size data for the
correlation length [ξ(2L, β)/ξ(L, β)] and susceptibility
[χ(2L, β)/χ(L, β)] vs the two-point finite-size correlation
length divided by the system size [ξ(L, β)/L], which is
also a dimensionless quantity,3 yield unique curves de-
pending only on the universality class if there are no
finite-size corrections to scaling. For the system sizes
studied, the Villain model shows weak corrections to scal-
ing. This can be seen in Figs. 2 and 3 where the ratios

FIG. 2: (Color online) Scaling ratio ξ(2L, β)/ξ(L, β) for the
2D Villain model as a function of exp[−L/ξ(L, β)] for different
system sizes L. The dashed horizontal line corresponds to the
exact infinite size value ξ(2L, βc)/ξ(L, βc) = 2 at the critical
point. The vertical line corresponds to the estimated infinite-
size limit ξ(βc)/L = 0.488 (see text).

are shown as functions of exp[−L/ξ(L, β)].3 In principle,
it should be possible to use the ansatz of Calabrese et

al.,24 i.e.,

ξ(2L, β)

ξ(L, β)
= F [L/ξ(L, β)] + L−ωG[L/ξ(L, β)], (29)

where ω is the finite-size scaling correction exponent and
F and G are scaling functions. (Similar relations ap-
ply for the susceptibility χ). As shown below when
T → 0, ξ∞(β) diverges until ξ∞(β) � L; the values of
the observables saturate at ξ(L, β) → ξ(L, βc = ∞) and
χ(L, β) → χ(L, βc). The lowest temperature at which
the simulations have been carried out is T = 0.1. At this
temperature we find ξ(L = ∞, β) ∼ 2.8·108, thus for all L
studied ξ(L = ∞, β) � L and we can take the measured
values of observables at all L as good approximations
to the T = 0 value. Hence, for β → βc the pre-factor
sin(|km|/2) is the only L-dependent factor in Eq. (9),
which leads to ξ(2L, βc)/ξ(L, βc) → 2. Furthermore, be-
cause η = 1/2, χ(2L, βc)/χ(L, βc) → 22−η = 2.82843 . . .
exactly. Figure 4 (a) shows χ(2L, βc)/χ(L, βc) and (b)
shows ξ(2L, βc)/ξ(L, βc) against 1/L; it can be seen that
the ratio behaves approximately as χ(2L, βc)/χ(L, βc) ∼
2.8284 + 0.14/L [ξ(2L, βc)/ξ(L, βc) ∼ 2 − 0.24/L] show-
ing that the correction exponent for the leading correc-
tion at large L can be plausibly taken as ω ∼ 1 with
further terms appearing at smaller L. In panel (c) of
Fig. 4 we show data for χ(L, βc)/L2−η = χ(L, βc)/L3/2

against 1/L. Fitting the data assuming ω = 1 gives the
large-size limit χ(L, βc)/L3/2 ≈ 0.585(1) − 0.05/L. In
a similar way we find the approximate limiting value
of ξ(L, βc)/L ≈ 0.488(1) + 0.1/L [panel (d)] and of
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FIG. 3: (Color online) Scaling ratio χ(2L, β)/χ(L, β) as a
function of exp[−L/ξ(L, β)] for the 2D Villain model for dif-
ferent system sizes L. The dashed horizontal line corresponds
to the exact infinite-size value χ(2L, βc)/χ(L, βc) = 23/2

at the critical point since in general χ(Tc, L) ∼ L2−η and
η = 1/2. The vertical line corresponds to the estimated
infinite-size limit ξ(βc)/L = 0.488 (see text).

the Binder cumulant g(L, βc) ∼ 0.691(1) + 0.10/L (not
shown).

The analysis of the data at other temperatures is also
consistent with a leading correction with an exponent
ω ∼ 1 plus further correction terms for smaller L. At
all temperatures studied the difference between the es-
timated infinite-size values for the observables and the
measured large-L values are always less than 0.5% of the
measured large-L values.

Inspired by the results on the 1D Ising ferromagnet
outlined in Sec. III with τt = 1 − tanh(β) as a scaling
variable we now test an analogous scaling of the data for
the 2D fully-frustrated Ising model.

The critical exponents for the 2D fully-frustrated Ising
model, Eqs. (22) and (23), are γc = 3/2, νc = 1 and
ηc = 1/2.19 We thus construct trial expressions for the
different observables:

χFF(β) = Cχ[1 − tanh(β)]−3/2 + (1 − Cχ) (30)

and

ξFF(β) = tanh1/2(β)

[

Cξ

1 − tanh(β)
+ (1 − Cξ)

]

, (31)

where the critical amplitudes Cχ and Cξ are the only ad-
justable parameters. It turns out that for the correlation
length, the expression with Cξ = 1.00(1), i.e.,

ξFF(β)/ tanh1/2(β) = [1 − tanh(β)]−1 (32)

gives an excellent overall fit to ξ∞(β)/ tanh1/2(β), the
normalized infinite-size limiting curve estimated from the

FIG. 4: (Color online) Scaling ratios χ(2L, β)/χ(L, β) [panel
(a)] and ξ(2L, β)/ξ(L, β) [panel (b)] plotted against 1/L. The

dashed line corresponds to χ(2L, β)/χ(L, β) ∼ 23/2 + 0.14/L
(ξ(2L, β)/ξ(L, β) ∼ 2−0.24/L). The full symbol corresponds

to the exact thermodynamic value 23/2 in panel (a) and 2 in

panel (b). Panel (c): χ(L, β)/L3/2 vs 1/L. The dashed line

corresponds to χ(L, β)/L3/2 ∼ 0.585 − 0.05/L. Deviations
appear for smaller values of L. Panel (d): ξ(L, β)/L plotted
against 1/L. The dashed line corresponds to ξ(L, β)/L ∼
0.488 + 0.1/L. The data thus suggest that a corrections to
scaling exponent ω ≈ 1 is plausible. All data are for T = 0.10.
Note that the data point for L = 96 is generally a bit high
possibly due to the small statistics used in the simulation.
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FIG. 5: (Color online) Normalized correlation length

ξ(β)/ tanh1/2(β) for the 2D fully-frustrated Ising model for
different system sizes L as a function of 1−tanh(β). The thick
line corresponds to the extended scaling correlation length ex-
pression Eq. (32).

scaling curves; see Fig. 5. Over the entire temperature
range the maximum difference between the fit and the nu-
merical curve is approximately 0.5%. The expression in
Eq. (32) with Cξ = 1 is identical to the exact expression
for the 1D Ising ferromagnet. In the low-temperature
limit with Cξ = 1, ξFF → (1/2) exp(2β) meaning that
the present data and analysis are consistent with the Lu-
kic et al. conjecture23 within numerical precision. In the
high-temperature limit ξFF → β1/2, which is consistent
with the first term of the HTSE for ξ(β).

For the reduced susceptibility the fits to the numerical
data for χ∞(β) with Eq. (30) indicate that Cχ is equal
to 2.00(5), see Fig. 6. The fit in the higher-temperature
range can be improved further by a correction term cho-
sen so that there is exact agreement between the high-
temperature limit obtained from the first two terms in
the HTSE, namely χ(β) = [1 + 2β2 + . . .] as β → 0. We
thus obtain:

χFF(β) = 2.0[1−tanh(β)]−3/2−2.0+[1−tanh(β)]. (33)

With the extended scaling expressions given above
[Eqs. (32) and (33)] the standard Fisher FSS [Eq. (24)]
is modified (see Refs. 5 and 6 for details). For the finite-
size correlation length we thus obtain from Eqs. (24) and
(32)

ξ(L, β)/L ∼ Fξ

[

L[1 − tanh(β)]

tanh1/2(β)

]

≡ F ′
ξ

[

ξFF

L

]

, (34)

whereas for the normalized reduced susceptibility we ob-

FIG. 6: (Color online) Data for the susceptibility χ(L, β) of
the 2D fully-frustrated Ising model for different system sizes
L as a function of 1− tanh(β). The thick line corresponds to
the extended scaling expression in Eq. (33).

tain from Eqs. (24), (33) and (32)

χn(L, β) ≡
[χ(L, β) + 2− (1 − tanh(β))]

[L/ tanh(β)1/2]3/2

∼ Fχ

[

L[1 − tanh(β)]

tanh1/2(β)

]

≡ F ′
χ

[

ξFF

L

]

. (35)

A finite-size scaling analysis of the data for the second-
moment correlation length and the susceptibility using
Eqs. (34) and (35) is shown in Figs. 7 and 8, respectively.

The scaling curves have a characteristic form. Quite
generally, at small ξ∞/L, ξ(L, β)/L = ξ(L = ∞, β)/L
so the log-log plot of, e.g., Fig. 7 is initially a straight
line of slope 1 passing through the point [1, 1]. At the
large ξ∞/L limit (which is equivalent to T = 0 for all
L) the curves tend to plateau values, Kχ = χ(L)/L3/2 =
0.585(1) and Kξ = ξ(L)/L = 0.488(1), estimated above.
If we ignore the marginal corrections to finite-size scaling,
the crossover can be expressed phenomenologically as

ξ(L, β)/L =

[

[ξ∞(β)/L]zξ

1 + (1/Kξ)zξ [ξ∞(β)/L]zξ

]1/zξ

, (36)

where zξ is a crossover exponent. In the present case
zξ ≈ 2.5. For the reduced susceptibility the initial small-

ξ∞/L behavior is χ(L, β)/L2−η ∼ [ξ∞(β)/L](2−η) and
the analogous phenomenological crossover equation is

χ(L, β)/L2−η = Λ

[

[ξ∞(β)/L]zχ(2−η)

1 + (Λ/Kχ)zχ [ξ∞(β)/L]zχ(2−η)

]1/zχ

,

(37)
where zχ is the crossover exponent, Λ is a constant, and
Kχ is the plateau value. The phenomenological fit values
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FIG. 7: (Color online) Finite-size scaling of the two-point
correlation length data of the 2D fully-frustrated Ising model
using the extended scaling expression, Eqs. (32) and (34).

FIG. 8: (Color online) Finite-size scaling of the susceptibil-
ity of the 2D fully-frustrated Ising model using the extended
scaling expression for the normalized susceptibility χn(L, β),
Eqs. (33) and (35).

in the present case are zχ ≈ 2.0, Λ ≈ 1.95. For both
observables the fits with crossover are of excellent quality.

V. SUMMARY AND CONCLUSION

We have presented scaling expressions motivated via
high-temperature series expansions which extend the
scaling functions across the whole temperature range for
systems which order at zero temperature.

For the 1D Ising ferromagnet we can derive exact “ex-

tended scaling” expressions of the form χ(β) = 2τ−1
t − 1

and ξ(β) = τ−1
t tanh1/2(β) with the scaling variable

τt = 1 − tanh(β), critical exponents γc = νc = 1 [defined
via Eqs. (22) and (23)], and critical amplitudes Cχ = 2,
Cξ = 1.

From the insights gained from the study of the 1D fer-
romagnet, we use the same temperature variable τt to
analyse numerical data for the 2D fully-frustrated (Vil-
lain) model. The exact critical exponents are known:19

γc = 3/2, νc = 1. We find that for the second-moment

correlation length ξ(β) = τ−1
t tanh1/2(β) with Cξ = 1

just as for the 1D ferromagnet. Furthermore, this re-
sult is consistent within numerical accuracy with the
low-temperature-limit conjecture of Lukic et al.23 that
ξ(β) → (1/2) exp(2β) for T → 0; however the present
expression covers the entire temperature range. The ap-
proximate expression for the susceptibility of the Villain
model, Eq. (33), with critical amplitude Cχ = 2.00(5)
is in good agreement with the numerical data over the
entire temperature range covered.

Summarizing, the temperature dependence of observ-
ables above a ferromagnetic transition (including Tc = 0
transitions) can be written in terms of generic “extended
scaling” forms5–7 expressed to leading order as

ξ(x) = x−1/2[Cξ(1 − x)−ν + (1 − Cξ)] (38)

and

χ(x) = Cχ(1 − x)−γ + (1 − Cχ) (39)

with the scaling variable x and critical parameters de-
pending on the system studied. The expressions are ex-
act by construction in the limits β → βc and β → 0 if the
critical parameters are known. For a ferromagnet with
Tc > 0 x = β/βc. Note that in the high-dimensional limit
Eqs. (38) and (39) are exact.7 In finite dimensions (but
with nonzero Tc) the expressions remain good approxi-
mations over the entire temperature range. For the two
ferromagnets with |Jij | = 1, Tc = 0, and no bond dis-
order, x = tanh(β) and thus τt = [1 − tanh(β)] replaces
[1−β/βc] as the scaling variable. Effective exponents are
defined through Eqs. (22) and (23). These relations are
validated with numerical data on the 2D fully-frustrated
Ising model.

There are numerous possible candidate systems to
which this approach should in principle be applicable mu-

tatis mutandis. These include for instance the family of
fully-frustrated 2D systems studied by Forgacs,19 the 2D
3-state Potts antiferromagnet,3,15 the 2D σ models,3,25 as
well as 2D Heisenberg models.26 An interesting further
step would be to determine scaling expressions for the
two-dimensional bimodal Ising spin glass with |Jij | = 1
but with random signs for the interactions, which also
orders at zero temperature. In that case the critical be-
havior of the model is highly controversial27–32 and cur-
rent data at finite temperature do not have the necessary
quality within “traditional” scaling approaches to deter-
mine the true nature of the transition.
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