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Introduction

The Kardar-Parisi-Zhang (KPZ) equation describes
an interface growth with a height field h(x, t)

deh(x, t) = 2 h(x, t) + (Oxh(x, t))? + V2¢(x, t)

¢ is a unit white noise E [¢(x, t)¢(y, t')] = 6(x — y)d(t — 1)

This describes an out-of-equilibrium physics problem.
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My work

My interest lies in the connexions between asymptotic random
matrix ensemble distributions, non-interacting fermions at finite
temperature in quantum mechanics and solutions of the KPZ
equation.

| want to extract information on the distribution of the solution of
the KPZ equation and especially the large deviations away from its
typical behavior.

This research is made within the group of Pierre Le Doussal (ENS),
Satya N. Majumdar and Gregory Schehr (Orsay).
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Plan of the talk

1. Physics motivation and some experimental observations

2. Mapping to the directed polymer, the replica method, the
quantum delta Bose gas

3. Exact solutions of the KPZ equation at all times and Fredholm
determinants

4. Exact solutions at short time and the matching with high
precision simulations
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Physics motivation

Since its birth in 1986, the KPZ equation was applied to describe

» Growth of interfaces

» Burgers turbulence

» Directed polymers in random media

» Chemical reaction fronts

» Slow combustion

» Coffee stains

» Conductance fluctuations in Anderson localization

» Bose Einstein superfluids

v

Quantum entanglement growth
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Physics motivation - experiment on liquid-crystal turbulence

K. Takeuchi, M. Sano, Evidence for Geometry-Dependent Univer-
sal Fluctuations of the Kardar-Parisi-Zhang Interfaces in Liquid-
Crystal Turbulence J. Stat. Phys. (2012)

(videos on youtube)
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Physics motivation - experiment on liquid-crystal turbulence

a b
30 X .
1000 x 2000 — o circular
W b = flat slope 1/3 _ -~
500 s
2l 201500 H Pl
0 ) = -
2l 000 s /
g =
-500 St ° 298
500 o
-1000
0s 0 0 1 2
-1000 0 1000 (um) -1000 0 1000 (um) 10 10
droplet flat 7(s)

Define the temporal fluctuations

W(t) = V/([h(x, t) = (W)]?) o £3

Similarly, take the roughness

C(t,t) = V/{[h(x + €, t) — h(x, D)) o £2/2

The scaling exponents for the 1D KPZ equation are
Sh o t1/3 oc x1/2

The large time limit is h(x, t) =¢s1 Voot + xtY/3, where y is a
random variable
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Physics motivation - experiment on liquid-crystal turbulence

Fig. 8 Histogram of the rescaled
local height

g = (h — voot)/(I't)'/3 for the
circular (solid symbols) and flat
(open symbols) interfaces. The
blue circles and red diamonds
display the histograms for the
circular interfaces at # = 10 s and
30 s, respectively, while the
turquoise up-triangles and purple
down-triangles are for the flat
interfaces at # =20 s and 60 s,
respectively. The dashed and
dotted curves show the GUE and
GOE TW distributions, 107 |
respectively, defined by the
random variables xgyg and
XGOE- (Color figure online)

prob. density

2
rescaled height ¢

x is called a Tracy-Widom random variable, it describes the dis-
tribution of the largest eigenvalue of a class of random matrices.

Alexandre Krajenbrink A bottom-up approach to the KPZ equation



Initial conditions

Full-space:
x e€R

» Flat, h(x,t =0)=0
> Droplet (wedge), h(x,t = 0) = —w|x| + log(%5), w>1
» Brownian, h(x,t = 0) = B(x)

Half-space:
x € RT with the b.c. dxh(x,t) [x=0o= A, Vt > 0.
It corresponds to the presence of a wall at the origin.
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Cole-Hopf mapping

Defining Z(x, t) the partition function as
Z(x,t) = exp (h(x, 1))
It verifies in the Ito sense the stochastic heat equation

MZ(x,t) = I Z(x,t) + V2Z(x, t)E(x, t)
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Directed polymer mapping |
Take a polymer on a rotated square lattice with coordinates (y, t).
The allowed moves are
> (v, t) > (y£1,t+1)
Define random site variables

V¢, a temperature T and

the associated Boltzmann

weight exp(— V}’t).

Take one path 7 : (0,0) — (xf, L), its weight is defined by
Vx,t
Wy, = H e T

(x,t)ey

Define the partition sum for all such paths v, Zy, 1 =3, w,

Discretized version of the SHE
ZX,H—I = (ZX—Lt + ZX+1,t) e*BVx,Hl
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Directed polymer mapping Il

The algorithmic method to solve this problem is called the transfer
matrix method.

If we want to compute the partition sum up to time t, the
complexity is of order O(t?).

At zero temperature, T — 0, defining the free energy
Fxt = —T log Zy + we have

Fx,t+1 = min(FX—l,h Fx—l—l,t) + Vx,t—l—l

which in the math literature is sometimes referred to as the
Bellman equation or Dijkstra’s algorithm.
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High temperature limit of the polymer

In the high temperature regime,
T — 0o, we obtain the continuum z
polymer using the mapping
. 4Xf ~ 2L
X = ﬁ = ﬁ
According how you choose your end
points, you obtain the solution of the
stochastic heat equation for different
initial conditions.

For a fixed end point x¢, Z,, ;| — Z(X, ), solution of the SHE for
droplet initial condition (point to point polymer).

Stat. mech. problem at equilibrium at temperature T in the
canonical ensemble = out-of-equilibrium problem
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The replica method

We define the n-th replica at equal time as
n
Zo(xas % t) =B ] 2(xi, 1)
i=1

where the average is taken over the KPZ white noise and initial
condition (if random).
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What do we call solving the KPZ equation ?

Taking the replica at equal position, we obtain the n-th moment of
the partition function

Zn(x,...,x,t) =K [Z"(x, t)]

Formally, we can define the generating function of Z as
— )n n
=1+ Z E [Z"(x, t)]
n=1
=E [exp ))]

—E [exp h(x, f))]

From g¢(z) one can in principle obtain the distribution of h(x, t)
by doing an inverse Laplace transform.
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Lieb-Liniger equation |

Using Ito formalism, the n-th replica verifies an imaginary time
Schrodinger equation

at.“Zn = _HnZn
n
82
T Z ax2 2 Z Oxi =)
i=1 ! 1<i<j<n

This is called the attractive delta Bose gas model or attractive
Lieb-Liniger model.

Because the interaction is attractive, particles want to form bound
states, clusters. In momentum space, the structures formed are
called strings.
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Lieb-Liniger equation Il

Each string has a certain number of particles and a momentum k;.
Ground state (ns = 1) is W(xq,...,Xp) X exp(—% dici i = x1)

k

1

Fixed number of particles — fixed number of strings

E[Z"] — Z,,
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Lieb-Liniger equation Il

For some initial conditions

= / oc / dvy ... dvp, det [Rt:z(vi’ VJ)} 7;‘:1

Then the moment generating function becomes

[e.9]
:1+Z
n=1

n

E [Z"(x, t)]

ns:1 ns!
1)
=1+ Z (= /dv1 /dv,,s det Ktz v,,vj)}
ns=1

= Det [/ - Ktvz} — FREDHOLM DETERMINANT
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Applications and evaluation of Fredholm determinants

Fredholm determinants appear in

» Random matrix theory

v

One dimensional path integrals in field theory

v

Partition functions in string theory

v

Fermionic systems at finite temperature in quantum mechanics

v

Determinantal process in probability
... the KPZ equation.

v

F. Bornemann On the numerical evaluation of Fredholm determi-
nants Mathematics of Computation (2010)

Introduces a Matlab toolbox to evaluate Fredholm determinants.
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Known results for all times

1. Full-space problem :
Droplet  Sasamoto, Spohn ('10), Calabrese, Le Doussal ('10),
Dotsenko ('10), Amir, Corwin, Quastel ('10)
Flat Calabrese, Le Doussal ('11)
Brownian Imamura, Sasamoto ('12)

2. Half-space problem : only Droplet initial condition
A=o00  Gueudré, Le Doussal ('12)
A=0 Borodin, Bufetov, Corwin ('15)
A= —% Barraquand, Borodin, Corwin, Wheeler ('17)
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Example : droplet initial condition in full-space

Take H(t) = h(0, t) — (h(0, t)), the moment generating function of
el(®) is given by

Expz [exp (—zeH(t)>] = Det [I — Rt’z}
The Fredholm determinant is associated to the kernel
Rt7z(u, u’) = 0t (u)Kai(u, u')
defined in terms of the Airy kernel and the weight function
+00
Kai(u,u') = /0 dr Ai(r + u)Ai(r + o)

z

orz(u) = 7 1 et
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Determinantal point process : quantum mechanics 101

Take a simple problem in quantum mechanics where you consider n
fermionic particles. If the eigenfunctions of the one particle
Hamiltonian are 1j(x) for j > 1, then the ground state of the
n-particles problem is

1
 Val

n

W(x1,...,%n) det (¢i(’<j))iJ:1

The probability density is then
1 n
[W(xi,. .. 7Xn)|2 = Edet [K(Xivxj)] ij=1

where

K(x,y) =Y ()i (y)
j=1

Note the determinantal structure!
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Duality between KPZ and determinantal point process

From the theory of determinantal processes

n

Ex H [1—0(x)]| =Det[l—oK]
i=1

Specifying to 0 = 0, and K = Kj;, we have

E oy {exp (—zeH(t))} = Ex,, ﬁ [1—0t.(x)]

i=1

This duality is at the core of the link between the KPZ equa-
tion, fermions in quantum mechanics. The eigenvalues of ran-
dom matrices also form a determinantal process, so there is also
a connexion.
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Known results for short times

Take H(t) = h(0, t) — (h(0, t)), then for all known initial
conditions, the probability density function is given by a Large
Deviation Principle at short time t < 1

P(H,t) ~ exp(—cp\([l;l))

where the rate function ® has the universal properties

c_|H>? H - -0
d(H)~{ H?, |H <1
c H32 H — 400

the coefficients c_, ¢p, ¢y depend on the initial condition.
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Cumulant expansion

» For a random variable X
[oe) z”
0gEle™] =Y ko2 w1 =EIX], r2 = E[X?] — E[X]
n=1

» For a determinantal point process {a;};cy with kernel K

e n
log Bicle > ZF e = 3 (i)
n=1 ’

k1(p) = —Tr(pK),  ka(p) = Tr(¢°K) — Tr(pKpK)

where the trace is defined as Tr(¢K) = [dv o(v)K(v,v)
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First cumulant approximation

At short time, we find for all studied initial conditions

1
K =0(—), k = 0O(1),
1() = O( \/E) 2(¢) = 0(1)
The higher the cumulant, the higher the power in time, therefore
we truncate the sum at the first cumulant

log Ex[e™ P so(x;)] r<§1 k1()

For example, for droplet initial condition,

ale) = 2222 | o)
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Final expression of the rate function

The rate function of the droplet IC is given by
» For H < H. = log((3)

1 ) .
®(H) = - Var ze[inll,r]roo[[zeH + Lis2(=2)]
» for H> H,
1 _ ) 8/

®(H) is analytic, the left tail is ®(H) ~y— 1%“'/‘5/2 and the
right tail is ®(H) ~py— 100 %H3/2.
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Recent progress on numerics for droplet IC

A. K. Hartmann, P. Le Doussal, S. N.

Majumdar, A. Rosso, G.

Schehr, High-precision simulation of the height distribution for

the KPZ equation arXiv:1802.02106

Simulation of a directed
polymer on a square lattice of
size L at temperature

T* = 2L using importance
sampling.

P(H,0)

H(x = 0,t) = log(%")

t=1/16 |

30
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Recent progress on numerics for droplet IC
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Figure: Details of the left and right tails compared to the analytical
prediction at short time.

Alexandre Krajenbrink A bottom-up approach to the KPZ equation



Exact short-time height distribution for the Brownian IC

The distribution of H(t) at x = 0, time t is given by

P(H,t) ~ exp (—qi([lj))

= |HIP/2,H — —o0
S(H) ~ ?Hz, |H| < 1
e H32 H — +o00

where c; = 3 (resp. ¢} = 3) for
the analytic (resp. non-analytic)
branch.

-10 -5 0 5 10 15

H. =2In(2e —Z) — 1, with
T—1/(%g [1 i l] V¥ Note that for the flat:
T fO 4 y]etye q)ﬂat(H) = 273/2¢br0wn—analytic(2H)
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Singularity and dynamical phase transition

o'(H)

-5 0 5
H

Figure: The function ®'(H). The blue line corresponds to the H < 0
solution, the red line to the first continuation for 0 < H < H,, the green
line to the analytic branch H. < H and the brown line to the non-analytic

branch for H. < H. Note the singularity for the brown line.
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Bonus
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Physics motivation - experiment on chemical reaction fronts

S. Atis, A. K. Dubey, D. Salin, L. Talon, P. Le Doussal, K. J.
Wiese, Experimental Evidence for Three Universality Classes for
Reaction Fronts in Disordered Flows Phys. Rev. Lett. (2015)

(videos on the PRL webpage)
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Physics motivation - experiment on chemical reaction fronts
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Figure: For the above video, F = 4

Define the temporal fluctuations
w(At) = /([Ax, ©) — (M) o Ar3

Similarly, take the roughness
w(Ax) = /([h(x + Ax, t) — h(x, t)]2) x Ax/?
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How to obtain the cumulant expansion ?

log Ex[e™* 2519090 = log Det[l — (1 — e *¥)K]

= Trlog[l — (1 — e *?)K]

Expand the logarithm and the exponential as a series.

The n-th cumulant x,(y) is defined as n! times the term of order
A" in this expansion.
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