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What is compressed sensing?

4 Wavelet Coefficients
x 10

L | L

Why do we record a huge amount of data, and then keep
only the important bits?

Couldn’t we record only the relevant information directly?

Compressed Sensing

1) Record directly in compressed form (gain of time and storage)
2) Reconstruct the original signal afterwards
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Teaser:

An example from magnetic resonance imaging

Left: image acquired with CS
Acceleration by a factor 2.5

Lustig, Donoho, Pauly 07



Possible applications

- Rapid Magnetic Resonance Imaging

- Image acquisition (single-pixel camera)
- DNA microarrays

- Group testing

- Fast data compression

- Herschel spacial telescope

- Compressed Sensing Microscopes

- Sparse Principal Component Analysis

- Compressed quantum state tomography
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Problem: you know y and G, how to reconstruct I ?

If M<N &= under-constrained system of equations
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How does compressed sensing work?

vector of size

M measurements N=nxn
= [T
M linear operations on the vector ,
[ v ) .
| \ 1V
y = |
\ v )
vector of size M
! N
MY = G
MxN matrix

Compressed sensing input:
The signal is sparse in an appropriate basis
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How does compressed sensing work?

. N (R non-zeros)
M { gyl = F

MxN matrix

The problem to

solve is now e Need to find a sparse solution
— — of an under-constrained set of linear equations
y — Faj

with F' = G

F=MXN matrix

* |deally works as long as M>R

e Robust to noise



The reconstruction problem:
Inverting an underconstrained linear system

Consider a system of linear measurements

y=Fcx

Measurements \

/ yl \ Slgna| L =

\ v

F = M x N matrix
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The problem:y = Fz ,find «

Generically: o if M =N
Unique solution obtained by inversion 5 = F—1y

o If M >N solution obtained from the
inversion of a N x N submatrix of F with full rank

NB: too many equations, redundant system, but consistent
because the y measurements are obtainedas y = F'x




The problem:y = Fz ,find «

Generically: o if <N

Not enough measurements to determine the signal =
from its linear transform ¥



The problem:y = Fz ,find «

Generically: o if <N

Not enough measurements to determine the signal =
from its linear transform vy

To invert, you need as many measurements (M)
as number of unknowns (N)
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The problem:y = Fz ,find «

o if M <N but T is sparse (only R of its components

are #£0)

R non zero
N-R zero

CLAIM:To invert, you need as many
measurements (M) as number of unknown (R)

-

If R<M < N :the reconstruction of the signal =

from the measurement y is possible

~
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The problem:y = Fz ,find «

o if M <N but T is sparse (only R of its components
are #0 )
b

x e.g.

x1,...,or # 0

A ‘simple’ solution: guess the positions where =i # 0
R

1=1

R < M ===p> tOO many equations

= generically inconsistent (no solution), except if
the guess of locations of z; £ 0 was correct



The problem:y = Fz ,find «

o if M <N but T is sparse (only R of its components

are #0 ) }R
T e.g
J “ F L1y, xr # 0
A £ ()
N .
( R ) possible guesses
e Long, but finite time... |
rxcept if

the guess of locations of »;, -« 0 was correct
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Compressed Sensing
One can reconstruct a N-dimensional sparse signal with R
non-zero components from N>M>R measurements

N (R non-zero)

MxN matrix

* Less measurements (gain of time and precision)
e Data already compressed (gain of memory storage)
* Price to pay: a reconstruction algorithm is needed

The “simple” algorithm we have presented is too slow!
(need to try exponentially many cases)



Compressed Sensing
One can reconstruct a N-dimensional sparse signal with R
non-zero components from N>M>R measurements

N (R non-zero)

MxN matrix

* Less measurements (gain of time and precision)
e Data already compressed (gain of memory storage)
* Price to pay: a reconstruction algorithm is needed

The goal of CS theory:
Determine a sensing matrix F and a reconstruction algorithm
such that the reconstruction is possible in practice




A phase diagram

Reconstruction
possible

using a time
O(e™)




State of the artin CS

. N (R non-zeros)
M { gyl = F

MxN matrix

® |ncoherent samplings (i.e.a random matrix F)

® Reconstruction by minimizing the Li norm ||Z|[1 = ) ||

Candes & Tao (2005)
Donoho and Tanner (2005)
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State of the art in CS

For a signal with
(I-p)N zeros
R=pN non zeros

and a Gaussian
random matrix

with M = N

Reconstruction
impossible

0 0.2 0.4 R 0.6 0.8 1

Reconstruction limited by the Donoho-Tanner transition
for the L| norm minimization



Example: measuring a picture

One measurement (scaling product with a random pattern)

e Each measurement touches every part of the underlying signal/image



Example: measuring a picture

Many measurements (scaling product with many random patterns)

<
-
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Example: measuring a picture

Measurements

signhal



Example: measuring a picture

. From 10° points,
e Take K = 96000 incoherent measurements y = (I but only, 25.000 non

Zero

e Solve
min ||X||¢, subjectto G¥x=1y

¥ = wavelet transform

original (25k wavelets) perfect recovery



Compressed Sensing:

A (short!)review of the present litterature:

Record data already in a compressed form
Less measurements (faster, more precise)...

... but need for a reconstruction algorithm!

State of the art: L1-minimization and random measurements
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® What is the link between statistical
physics and compressed sensing?

® How can one use statistical physics to improve on
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—

j = F
/ ’ T x(\signal

measurements matrix

How to reconstruct® fromZF, i ?

Inference problem:

Estimate P(x|y), and choose x accordingly
But how to estimate P(x|y)?
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A statistical-physics approach to compressed sensing
ij= Fi

signal
measurements  matrix

How to reconstructz fromZFE, i ?

P@@) . .
p(y) W) =

Bayes Theorem: W) P(Z|)) =

P(Zly) =

Solution of
the linear system

Sparse vector
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A statistical-physics approach to compressed sensing
ij= FZ

signal
measurements  matrix

How to reconstructz fromZFE, i ?

Bayes Theorem: » P(Z|7) = i Eg P(§17) = P(:E); (Y

A mean-field disordered statistical physics problem

P(E|) = = e~ Zitalog Pl@) =35 X300 (0 =20L, Fuiwi)?



A statistical-physics approach to compressed sensing
ij= FZ

signal
measurements  matrix

How to reconstructz fromZFE, i ?

Bayes Theorem: » P(Z[7) = i Eg P(j|7) = P(:E); (Y

A mean-field disordered statistical physics problem

Hamiltonian

.

e — == = —

L _ = — _ = ——
p— = — —_—
— - .

—

N

1 ' & Z N 1 M S
217 — &2 i log P(ri)—5x D=1 (Yu—2_521 Fuizi)” J
P(x|y) — N — 1 =1 2A Lap=1\Jp —1 u i)

S~
—~ TS
. _— e —— . S — R
————— — - — — e —— —— — ——



A statistical-physics approach to compressed sensing
ij= FZ

signal
measurements  matrix

How to reconstructz fromZFE, i ?

Bayes Theorem: » P(Z|§) = i Eg P(§li) = P(:E)I;(mf)

A mean-field disordered statistical physics problem

Hamiltonian

Partition sum l
p<\*>‘\ 3o 108 P T - S0 P2
Z|y (2~ —— -

—————— - —— —-— — = - = — =



A statistical-physics approach to compressed sensing
ij= FZ

signal
measurements  matrix

How to reconstructz fromZFE, i ?

Bayes Theorem: » P(|7) = 1; Eg P(ij|7) = P(Z)P(y|x

A mean-field disordered statistical physics problem

Disordered
Interaction

[

P(Z|]) = —e~ 21108 P(ei)=gx 35y (vu =i fF i)



A statistical-physics approach to compressed sensing
ij= FZ

signal
measurements  matrix

How to reconstructz fromZFE, i ?

Bayes Theorem: » P(Z[7) = i Eg P(j|7) = P(:E); (Y

A mean-field disordered statistical physics problem

Mean-field
long-range interactions

o I _
P(Z|§) = e =



A statistical-physics approach to compressed sensing

— —

= F
/ ’ T x(\signal

measurements matrix

Estimating the probability of each value
of x is equivalent to solving a mean-field
disordered statistical physics problem

P(#[7) = Lo S 108 P2 S0 =Y, Bz



A statistical-physics approach to compressed sensing
ij= FZ

signal
measurements  matrix

How to reconstructz fromZFE, i ?

Bayes Theorem: » P(Z]7) = igf;;p(gf) _ P@)P(y]7)




A statistical-physics approach to compressed sensing
ij= FZ

signal
measurements  matrix

How to reconstructz fromZFE, i ?

Bayes Theorem: » p(f|y—*) _ P(x) P(§|f) _ P(:IZ)P(y|:c)

P(y)

1= ) —

P(Z|y) = %HP(%) 1] (yu — ZFMZ$Z> with P(z;) = (1 — p)d(z;) + po(z;)

Theorem: sampling from P(X|y) gives the correct
solution as long as xX>po if: a) P(x)>0 vx and b) 1>p>0

The probabilistic approach is optimal, even if we do not know
the correct ®(x)! In practice, we use a Gaussian distribution




A sketch of the proof

Consider the system constrained to be at
distances larger than D with respect to the solution

N
(D, €) /H (dxi [(1 — p)d(z;i) + po(x H (ZF“, i — Si ) (Z(.I'i—si)z = .\'D>

pu=1

1) Y(0) is infinite if ®>po (equivalently if M>R)

(just count the delta functions! N-R+M deltas versus N integrals...)

2) Y(D) is finite for any D>0

(bound by a first moment method, or “annealed” computation)



A sketch of the proof

Consider the system constrained to be at
distances larger than D with respect to the solution

N
(D, €) /H (dxi [(1— p)d(x;i) + po(a H D¢ (Z Hui(zy — 83 ) (2(1, —.Q‘i)z > .\'D)

p=1 1=1

1) Y(0) is infinite if ®>po (equivalently if M>R)

(just count the delta functions! N-R+M deltas versus N integrals...)

2) Y(D) is finite for any D>0

(bound by a first moment method, or “annealed” computation)

If &X>po, the measure is always dominated by the solution




A sketch of the proof

Consider the system constrained to be at
distances larger than D with respect to the solution

log Y 4
N |
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|) Computing phase transitions analytically
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Mean field methods from stat-phys, Physics intuition, etc....
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One can use statistical physics tools for

~

.
|) Computing phase transitions analytically

(reconstruction/non reconstruction, etc...)
Tools: Replica method from spin glass theory, etc...

J

Il) Develop new algorithms, and design new matrices to
improve on the L, state-of-the art.

Tools: Replica and Cavity method from spin glass theory,
Mean field methods from stat-phys, Physics intuition, etc....



Statistical physics of compressed sensing

Model with N infinite-range 1d interacting particles with positions x;

What is the phase diagram of the system!?
/dez (z|y) F(y) = —log Z(y)
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Model with N infinite-range 1d interacting particles with positions x;
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Use a random matrix F and Gauss-Bernoulli signal
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What is ]Ehe phase diagram of the system!?
2(y) = | [ doiPlaly F(7) = ~log 2(7)

Use a random matrix F and Gauss-Bernoulli signal

Averaging over disorder:

F . iid Gaussian, variance 1/N

Yy = Z Fiz? where z¥ are iid distributed from (1 — po)d(z?) + podo(z;)
1=1



Statistical physics of compressed sensing

1 1 2
P(z]y) = Ee_ Similog P(@i)—gx 1 (Yu =320 Fuizi)

What is ]Ehe phase diagram of the system!?
2(y) = | [ doiPlaly F(7) = ~log 2(7)

Use a random matrix F and Gauss-Bernoulli signal

Averaging over disorder:

F . iid Gaussian, variance 1/N

Yy = Z Fiz? where z¥ are iid distributed from (1 — po)d(z?) + podo(z;)

i—1
Replica method »

AL |
log Z = lim
n—0 n




Analytic study: cavity equations,
density evolution, replicas

E(Z™) = max Nn®(Q,q,m,Q,4,m)
Q? q7 m7 Q? d’ m

g—2m+p+A, 1 QAQ .44
Q, Q, = — — log (A, +Q — — — —
®(Q,q,m,Q,q,m Z A, +Q—q QNZM: og (A, + q) + 5 mm+2

Q+4

+/DZ/d£U0 (1 = po)d(xo) + podo(xo)]log {/dl’ e~ Amano VAT () p)s(z) + P¢($)]}

Order parameters:

Q=x bl a=y T’ m=g 3 el

() ()

Mean square error:  E= i3 S (i) —a9)" =g —2m + ((9)*)o



Computing the free entropy

Example with po=0.4, and ®¢a Gaussian distribution with zero mean and unit variance

0.25 [ B B B S B B L R B S B B B I B R B B R
'-‘ ceee X=0.62
—— ®=0.6
oY |
S
N
20
S
] ' 1 2
/\0'15 E:_E (<$z>_x?/0)
Q N 4
N——" 7
-
0.1 B
0 0.05 0.1 0.15 0.2 0.25 0.3

mean square error



Computing the free entropy

Example with po=0.4,and ®¢a Gaussian distribution with zero mean and unit variance

O°25|""l"''|""|""|""|""
'-‘ - ®=0.62
' —— ®=0.6
N\ |
N0
N
20
o
| |
| ' 1 2
AO.15 E:_E :(<$z>—$?)
Sa N ~
N——" 7
-
0.1+ B
0 0.05 0.1 0.15 0.2 0.25 0.3

mean square error

* Maximum is at E=0 (as long as &x>p0): Equilibrium behavior dominated by the original signal



Computing the free entropy

Example with po=0.4,and ®¢a Gaussian distribution with zero mean and unit variance

0‘25 [ ! ! ! | ! ! ! ! | ! ! ! ! | ! ! ! ! | ! ! ! ! | ! ! ! !
- &=0.62
e X =0.6
N\ |
N
20
Q
r—
| ' 1
N 2
50 B= 3 (o) - 9)
- N
N—" 7
-
0.1} i
0 0.05 0.1 0.15 0.2 0.25 0.3

mean square error

* Maximum is at E=0 (as long as &x>p0): Equilibrium behavior dominated by the original signal
* For 6<0.58, a secondary maximum appears (meta-stable state): spinodal point



Computing the free entropy

Example with po=0.4,and ®¢a Gaussian distribution with zero mean and unit variance

2.2 o rn—"—r+—+—+-—-+—1r—+—"v—+—r——r—rr+——1——
x=0.62
x=0.6
(S ! x=0.58
EEL 0.2 F «=0.56
N
20
< ' _
| [ ' 1
0.15 | ] o 0 2
= L E=5 ) () —al)
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* Maximum is at E=0 (as long as &x>p0): Equilibrium behavior dominated by the original signal
* For 6<0.58, a secondary maximum appears (meta-stable state): spinodal point

* A steepest ascent dynamics starting from large E would reach the signal for x>0.58, but
would stay block in the meta-stable state for ®<0.58, even if the true equilibrium is at E=0.



Computing the free entropy

Example with po=0.4,and ®¢a Gaussian distribution with zero mean and unit variance
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* Maximum is at E=0 (as long as &x>p0): Equilibrium behavior dominated by the original signal
* For 6<0.58, a secondary maximum appears (meta-stable state): spinodal point
* A steepest ascent dynamics starting from large E would reach the signal for x>0.58, but

would stay block in the meta-stable state for ®<0.58, even if the true equilibrium is at E=0.
* Similarity with metastable phase in first-order transition (supercooled liquids)
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Computing the Phase Diagram
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A steepest ascent of the free entropy should perform
a perfect reconstruction until the spinodal line:

This should be more efficient than L1-minimization



A statistical physics approach
to compressed sensing

One can use statistical physics tools for

|) Computing phase transitions analytically

(reconstruction/non reconstruction, etc...)
Tools: Replica method from spin glass theory, etc...

.
Il) Develop new algorithms, and design new matrices to

\_

improve on the L, state-of-the art.

Tools: Bethe-Peirls method/Belief propagation,
Mean field methods from stat-phys, Physics intuition, etc....

~N

J




The Belief-Propagation algorithm
(a sketchy description)

* NO averaging: work on a given problem

eCompute f ({P;(x;)}) =log Z ({P;(z;)}) the potential with
constrained local probabilities (marginals) for each variable.

*Derive the recursion equation for by steepest ascent/descent:

P =V f({P1})



The Belief-Propagation algorithm
(a sketchy description)

* NO averaging: work on a given problem

eCompute f ({P;(x;)}) =log Z ({P;(z;)}) the potential with
constrained local probabilities (marginals) for each variable.

*Derive the recursion equation for by steepest ascent/descent:

P =V f({P1})

* This approach has been used :

® Mean-field, Curie-Weiss, TAP (Thouless-Anderson-Palmer), or Cavity
Method in Physics, and can be traced to Bethe-Peierls and Onsager ('35).
* Belief Propagation in Artificial Intelligence (Pearl, ’82)

* Sum-Product in Error-Correcting-Codes (Gallager, ’60)
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Gibbs free energy approach: logZ = max, faives ({P(Z)})

With S ({P@)}) =~ {log P@7)pis) ~ [ dP(@)log P(@)
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How does BP works?

Gibbs free energy approach: logZ = max, faives {P(T)})

With  famss ({P(@)}) = —(log P(T17)) p(z) — / 4P (i) log P(%)

: . . Not correct
Mean-Field = P(@) = H Pi(@:) +Convergence problems

Belief-Propagation= P(%) = H‘-P = v



How does BP works?

Gibbs free energy approach: logZ = max, faives {P(T)})

With S ({P@)}) =~ {log P@7)pis) ~ [ dP(@)log P(@)
Not corr
Mean-Field = 7(@) = HP"(@) +Convergte(r:1ce |:e>|€:>blems

o TIP3 ) (asymptotically)
Bellef-Propagatlon=> P(T) = [T, 7. (2:) ] exact in CS
v with random matrices




How does BP works?

f (APi(x;), Pij(wi, xj)})

Belief-Propagation D
equations




The Belief-Propagation algorithm

Iterate these variables
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And finally at the end:
<sz> — fa (Uu ‘/7,)



The Belief-Propagation algorithm

|terate these variables

1
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Using these functions:

~1
fal 10 = [(1 er)i)f”/2 6Y2/(2(1+X))] [1 N (1+ §()1/2 €Y2/(2(1+X))]
~1
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And finally at the end:

(i) = fa (Ui, Vi)



The Belief-Propagation algorithm

|terate these variables
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The Belief-Propagation algorithm

|terate these variables

1
D o
M zu: A, +~®
(¢)

— 1
Vi(tﬂ) _ I Z_(yu ;) tf, (Ui(t),‘/;(t)) @
Zu,: RV M;Auﬂ(”

()
(t+1) _ E : , (t+1) y (t+1)y (Y —ap’) 1 Jfa ( (t41) (t—l—l))
R Pt ol U V) = 8 N2 gy (U

7

1
A = N 2 LU V)

Using these functions:

—1

_ PY  vrioaax)| |4 p Y2/(2(1+X))
fa(va) - [(1 _|_X)3/2€ 1 p—|— (1 —|—X)1/2€

2 —1
- P Y2/(2(14X Y P Y2/(2(14X 2
fc(X7Y) — [(1+X)3/26 2 ) <1+ 1—|—X>] [1 —,0—|- (1+X)1/26 [ ))] _fa(X7Y)

And finally at the end:

http://aspics.krzakala.org
(i) = fo (Ui, Vi) http://kl1p.sourceforge.net/home.html



http://kl1p.sourceforge.net/home.html
http://kl1p.sourceforge.net/home.html
http://www.pct.espci.fr/~florent/ASPICS/ASPICS.html
http://www.pct.espci.fr/~florent/ASPICS/ASPICS.html
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Steepest ascent of the free entropy
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MSE

Steepest ascent of the free entropy
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Thermodynamic potential BP convergence time
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Spinodal transition

® Maximum is at E=0 (as long as &x>p0): Equilibrium behavior dominated by the original signal

* For <0.58, a secondary maximum appears (meta-stable state): spinodal point

* A steepest ascent dynamics starting from large E reaches the signal for >0.58, but stay blocked
in the meta-stable state for @<0.58, even if the true maximum is at E=0.

e Similarity with the physics of supercooled liquids



Computing the Phase Diagram
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Computing the Phase Diagram

A steepest ascent of the free entropy allows

a perfect reconstruction until the spinodal line.

This is more efficient than L1-minimization
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BP + probabilistic approach



® Efficient and fast

® Robust to many type of noises (measurement, matrix coefficients, etc..)

® Very flexible (more information can be put in the prior, correlated
variables, etc...)

1
A

1

N
P(z]y) =

(1= p) 6(xi) + po(ai)] | | 0 (yu — Z Fﬁ)

1



® Efficient and fast

® Robust to many type of noises (measurement, matrix coefficients, etc..)

® Very flexible (more information can be put in the prior, correlated
variables, etc...)

1
A

1

N
P(z]y) =

(1= p) 6(xi) + po(ai)] | | 0 (yu = Z Fﬁ)

1

e Still not optimal



This is good, but not good enough
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The dynamics is stuck in a metastable state, just as
a liquid cooled too fast remains in a supercooled
liquid state instead of crystalizing



This is good, but not good enough

How to pass the

spinodal point? 025

0.2 }

0.1+

© 0.15 }

The dynamics is stuck in a metastable state, just as
a liquid cooled too fast remains in a supercooled
liquid state instead of crystalizing



This is good, but not good enough

How to pass the

spinodal point? 025

By nucleation!

L4
A - R s A"y
\ 3..1‘ &t%’l"‘ —~
& a

N

Special designh of

‘“seeded” matrices |

© 0.15 }

The dynamics is stuck in a metastable state, just as
a liquid cooled too fast remains in a supercooled
liquid state instead of crystalizing



A coupled one-dimensional system:
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A coupled one-dimensional system:

2) Add a first neighbor coupling
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2) Add a first neighbor coupling



A coupled one-dimensional system:

3) Choose parameters such that the first
system is in the region of the phase
diagram where there is no metastability




A coupled one-dimensional system:

3) Choose parameters such that the first
system is in the region of the phase
diagram where there is no metastability
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A coupled one-dimensional system:

3) Choose parameters such that the first
system is in the region of the phase
diagram where there is no metastability
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A coupled one-dimensional system:

3) Choose parameters such that the first
system is in the region of the phase
diagram where there is no metastability

(i (g g e et
L

value of  values of

X X On average, X is still low !



A coupled one-dimensional system:

4) The solution will appear in the first

sub-system (with large ), and then
propagate in the system



A coupled one-dimensional system:

4) The solution will appear in the first

sub-system (with large ), and then
propagate in the system
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Block | has a large value of “gg. it coupling
M such that the solution

e . : coupling /
arise in this block...

: coupling />
: no coupling (null elements)
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Block | has a large value of g. it coupling

M such that the solution
arise in this block...

. and then propagate in
the whole system!
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Replica solution for
coupled seeded matrix

The order parameters are now

W, [ 1 R 2 ¢
—_— / 12 e > ., 2 — . .
QP — j\_r 2 <‘Ll > ) qP = ,\_7 2 <:LL> 3 771‘1) — !\‘r . Si (xl}

P ieB, P icB

P

in each block p € {1,...,L.}. The free entropy analogous to that in Eq. (112) becomes

‘I’({Qp},[;;v {qP};[;;h {-mp}f;;l, {Qp},l;;v {qu};];;v {7?7'19};[;;1) o

L, L.
1
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2
qg=1 =1
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+Zn,p/dg (1 _po +p000 ]/D 100{/(11‘? Qp; P *+r(mps+~\/;)[ ( )+P(D( )]}’
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dq —~‘27'72.q + Pq + Ao
Qq o q~q + A

(A+Qq_Qq

(after a bit of work...)



Comparing the algorithm and replica theory

BP analyzed by density evolution versus

an actual test with N=40000

(MSE in the different block versus time)
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Comparing the algorithm and replica theory

BP analyzed by density evolution versus

an actual test with N=40000

(MSE in the different block versus time)

BP reconstruction time for
for seeded and non seeded matrices
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(up to X=pP) in the limit of large signals

L

Generic proof for optimal reconstruction
(when the prior matches the signal):
D. Donoho, A. Javanmard, & A. Montanari, '11
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Best measurement rates reached!

L
| | Seeded matrix
Spinodal line | [
0.8 L \/
0.6 L
6 L
04|
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A combination of Statistical physics technics (Bethe-Peierls,
Replica) and concepts (dynamics, nucleation and growth) has
allowed to solve a major problem in signal processing theory



An example

Shepp-Logan phantom, in the Haar-wavelet representation



A more interesting example

x=p=~0.24

BEP

s-BP

x=0.6 x=0.5 x=0.4

The Lena picture in the Haar-wavelet representation



Conclusions...

A probabilistic approach to reconstruction
Analysis of best possible reconstruction for different class of signals
The Belief Propagation algorithm

Optimality achieving seeded measurements matrices

...and perspectives:

More information in the prior (Correlated measurement, wavelets, etc...)
Other matrices with asymptotic measurements!?

Non-random matrix (e.g. Radon operator in Tomography, Fourier, etc..)
Additive and multiplicative noise, Quasi-sparsity, etc... ?

Calibration, and matrix/dictionary learning?

Applications ?
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SPECIAL ANNOUNCEMENTS

2 Post-doc openings on these topics for 201 3

If you work in Statistical physics, Information science, Signal processing, etc...

ASPICS

Pro Applying Statistical Physics to Inference in Compressed Sensing
roject http://krzakala.org
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SPECIAL ANNOUNCEMENTS

2 Post-doc openings on these topics for 201 3

| AEPICS Applying Statistical Physics to Inference in Compressed Sensing
Coanry - Tolect http://krzakala.org
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COMING SOON: An interdisciplinary school on these topics:
Les Houches, October 2013, Organizers F Krzakala & L. Zdeborova
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