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Left: image acquired with CS 
Acceleration by a factor 2.5

An example from magnetic resonance imaging 

Measurements

Lustig, Donoho, Pauly ’07

Teaser:



Measurements

Possible applications

- Rapid Magnetic Resonance Imaging

- Image acquisition (single-pixel camera)

- DNA microarrays

- Group testing

- Fast data compression

- Herschel spacial telescope 

- Compressed Sensing Microscopes 

- Sparse Principal Component Analysis

- Compressed quantum state tomography

- ...
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M measurements
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M linear operations on the vector

Compressed sensing input:
The signal is sparse in an appropriate basis 

Image I

nxn pixels

vector of size
N=n×n 

�y =

�

�������

y1

.

.

.

.
yM

�

�������

vector of size M

�y = G
�I

G=M×
N matri

x

�I =

�

�������

I1

.

.

.

.
IN

�

�������

=y

M⨯N matrix

M }} G
~I N



How does compressed sensing work?
M measurements

=
M linear operations on the vector

���1
N×N matrix 

Direct and inverse 
Wavelet transforms

Image I vector of size
N=n×n 

nxn pixels�y =

�

�������

y1

.

.

.

.
yM

�

�������

vector of size M

�y = G
�I

G=M×
N matri

x

�I =

�

�������

I1

.

.

.

.
IN

�

�������



How does compressed sensing work?
M measurements

=
M linear operations on the vector

���1
N×N matrix 

Direct and inverse 
Wavelet transforms

Image I vector of size
N=n×n 

nxn pixels�y =

�

�������

y1

.

.

.

.
yM

�

�������

vector of size M

�y = G
�I

G=M×
N matri

x

�I =

�

�������

I1

.

.

.

.
IN

�

�������

Sparse vector 
of size N=n×n

�x =

�

�������

x1

.

.

.

.
xN

�

�������



How does compressed sensing work?
M measurements

=
M linear operations on the vector

���1
N×N matrix 

Direct and inverse 
Wavelet transforms

Image I vector of size
N=n×n 

nxn pixels�y =

�

�������

y1

.

.

.

.
yM

�

�������

vector of size M

�y = G
�I

G=M×
N matri

x

with

�y = F�x
F = G�

The problem to 
solve is now

F=M×N matrix

�I =

�

�������

I1

.

.

.

.
IN

�

�������

Sparse vector 
of size N=n×n

�x =

�

�������

x1

.

.

.

.
xN

�

�������



How does compressed sensing work?

M }N (R non-zeros)

}

• Need to find a sparse solution                          
of an under-constrained set of linear equations

• Ideally works as long as M>R

• Robust to noise

M⨯N matrix

=y F
x

with

�y = F�x
F = G�

The problem to 
solve is now

F=M×N matrix



The reconstruction problem: 
Inverting an underconstrained linear system

Consider a system of linear measurements
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Signal
MeasurementsMeasurements
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The problem:
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Generically:     if M = N

Unique solution obtained by inversion
x = F

�1
y

, find x

=y F x

    if M > N solution obtained from the 
N ⇥Ninversion of a            submatrix of     with full rankF

NB: too many equations, redundant system, but consistent 
because the    measurements are obtained asy

y = Fx
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The “simple” algorithm we have presented is too slow! 
(need to try exponentially many cases)



Compressed Sensing

=y F
x

One can reconstruct a N-dimensional sparse signal with R 
non-zero components from N>M>R measurements

M⨯N matrix

M }N (R non-zero)

}
• Less measurements (gain of time and precision)
• Data already compressed (gain of memory storage)
• Price to pay: a reconstruction algorithm is needed

The goal of CS theory:
Determine a sensing matrix F and a reconstruction algorithm 

such that the reconstruction is possible in practice   
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A phase diagram



State of the art in CS

• Incoherent samplings (i.e. a random matrix F)

• Reconstruction by minimizing the L1 norm

=y F
x

M⨯N matrix

M }N (R non-zeros)

}

||�x||L1 =
�

i

|xi|

Candès & Tao (2005)
Donoho and Tanner (2005)
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Example: measuring a picture
Many measurements (scaling product with many random patterns) 



Example: measuring a picture
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Example: measuring a picture
From 106 points, 

but only, 25.000 non 
zero

F

x xF

xGI
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Compressed Sensing:
A (short!)review of the present litterature:

• Record data already in a compressed form

• Less measurements (faster, more precise)...

• ... but need for a reconstruction algorithm!

• State of the art: L1-minimization and random measurements
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A statistical-physics approach to compressed sensing

signal
matrixmeasurements

How to reconstruct   from      ?F, �y

�y = F�x

P (A|B)P (B) = P (B|A)P (A)
Rev. Thomas Bayes 1702-1762
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Theorem: sampling from P(x|y) gives the correct 
solution as long as α>ρ0 if: a) Φ(x)>0 ∀x and b) 1>ρ>0

The probabilistic approach is optimal, even if we do not know 
the correct Φ(x)! In practice, we use a Gaussian distribution



A sketch of the proof

1) Y(0) is infinite if α>ρ0 (equivalently if M>R) 
(just count the delta functions! N-R+M deltas versus N integrals...)

2) Y(D) is finite for any D>0 
(bound by a first moment method, or “annealed” computation)

Consider the system constrained to be at 
distances larger than D with respect to the solution
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(just count the delta functions! N-R+M deltas versus N integrals...)
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Consider the system constrained to be at 

distances larger than D with respect to the solution
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• What is compressed sensing? 

• What is the link between statistical physics and 
compressed sensing? 

•How can one use statistical physics to 
improve on compressed sensing technics?

Compressed sensing
or y=Ax revisited



A statistical physics approach 
to compressed sensing

One can use statistical physics tools for

1) Computing phase transitions analytically 
(reconstruction/non reconstruction, etc...)
Tools: Replica method from spin glass theory, etc...

II) Develop new algorithms, and design new matrices to 
improve on the L1 state-of-the art.

Tools: Replica and Cavity method from spin glass theory,
Mean field methods from stat-phys, Physics intuition, etc....
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Model with N infinite-range 1d interacting particles with positions xi

Use a random matrix F, and Gauss-Bernoulli signal

Averaging over disorder: 
Fµi iid Gaussian, variance 1/N
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Analytic study: cavity equations, 
density evolution, replicas
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• Maximum is at E=0 (as long as α>ρ0): Equilibrium behavior dominated by the original signal 
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• Maximum is at E=0 (as long as α>ρ0): Equilibrium behavior dominated by the original signal 
• For α<0.58, a secondary maximum appears (meta-stable state): spinodal point
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• Maximum is at E=0 (as long as α>ρ0): Equilibrium behavior dominated by the original signal 
• For α<0.58, a secondary maximum appears (meta-stable state): spinodal point
• A steepest ascent dynamics starting from large E would reach the signal for α>0.58, but 
would stay block in the meta-stable state for α<0.58, even if the true equilibrium is at E=0.
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• Maximum is at E=0 (as long as α>ρ0): Equilibrium behavior dominated by the original signal 
• For α<0.58, a secondary maximum appears (meta-stable state): spinodal point
• A steepest ascent dynamics starting from large E would reach the signal for α>0.58, but 
would stay block in the meta-stable state for α<0.58, even if the true equilibrium is at E=0.
• Similarity with metastable phase in first-order transition (supercooled liquids)
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A steepest ascent of the free entropy should perform      
a perfect reconstruction until the spinodal line: 

This should be more efficient than L1-minimization 

Computing the Phase Diagram

0 0.05 0.1 0.15 0.2 0.25 0.3

0.1

0.15

0.2

0.25

D
Φ(
D
)

α = 0.62
α = 0.6
α = 0.58
α = 0.56

E
(E

)



A statistical physics approach 
to compressed sensing

One can use statistical physics tools for

1) Computing phase transitions analytically 
(reconstruction/non reconstruction, etc...)
Tools: Replica method from spin glass theory, etc...

II) Develop new algorithms, and design new matrices to 
improve on the L1 state-of-the art.

Tools: Bethe-Peirls method/Belief propagation,
Mean field methods from stat-phys, Physics intuition, etc....



The Belief-Propagation algorithm
(a sketchy description)

• NO averaging: work on a given problem

•Compute                                     ,   the potential with 
constrained local probabilities (marginals) for each variable.

•Derive the recursion equation for by steepest ascent/descent:

f ({Pi(xi)}) = log Z ({Pi(xi)})
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The Belief-Propagation algorithm
(a sketchy description)

• NO averaging: work on a given problem

•Compute                                     ,   the potential with 
constrained local probabilities (marginals) for each variable.

•Derive the recursion equation for by steepest ascent/descent:

f ({Pi(xi)}) = log Z ({Pi(xi)})

•This approach has been used :
• Mean-field, Curie-Weiss, TAP (Thouless-Anderson-Palmer), or Cavity 
Method in Physics,  and can be traced to Bethe-Peierls and Onsager (’35).
• Belief Propagation in Artificial Intelligence (Pearl, ’82)
• Sum-Product in Error-Correcting-Codes (Gallager, ’60)
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How does BP works?
Gibbs free energy approach:

The BP recursion is given by the 
steepest ascent method

With

logZ = max

{P(~x)}
f

Gibbs

({P(~x)})
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Gibbs

({P(~x)}) = �hlogP (~x|~y)iP(~x) �
Z

d~xP(~x) logP(~x)



How does BP works?
Gibbs free energy approach:

P(~x) =
Y

i

Pi(~xi)Mean-Field    ⇒

The BP recursion is given by the 
steepest ascent method

With

logZ = max

{P(~x)}
f

Gibbs

({P(~x)})

f

Gibbs

({P(~x)}) = �hlogP (~x|~y)iP(~x) �
Z

d~xP(~x) logP(~x)



How does BP works?
Gibbs free energy approach:

P(~x) =
Y

i

Pi(~xi)Mean-Field    ⇒ Not correct
+Convergence problems

The BP recursion is given by the 
steepest ascent method

With

logZ = max

{P(~x)}
f

Gibbs

({P(~x)})

f

Gibbs

({P(~x)}) = �hlogP (~x|~y)iP(~x) �
Z

d~xP(~x) logP(~x)



How does BP works?
Gibbs free energy approach:

P(~x) =
Y

i

Pi(~xi)Mean-Field    ⇒

P(~x) =

Q
ij Pij(~xi, ~xj)Q
i Pi(~xi)M�1Belief-Propagation⇒

Not correct
+Convergence problems

The BP recursion is given by the 
steepest ascent method

With

logZ = max

{P(~x)}
f

Gibbs

({P(~x)})

f

Gibbs

({P(~x)}) = �hlogP (~x|~y)iP(~x) �
Z

d~xP(~x) logP(~x)



How does BP works?
Gibbs free energy approach:

P(~x) =
Y

i

Pi(~xi)Mean-Field    ⇒

P(~x) =

Q
ij Pij(~xi, ~xj)Q
i Pi(~xi)M�1Belief-Propagation⇒

Not correct
+Convergence problems

(asymptotically) 
exact in CS

with random matrices

The BP recursion is given by the 
steepest ascent method

With

logZ = max

{P(~x)}
f

Gibbs

({P(~x)})

f

Gibbs

({P(~x)}) = �hlogP (~x|~y)iP(~x) �
Z

d~xP(~x) logP(~x)



How does BP works?
Simplification thanks to the dense matrix limit: 

Projection on first two moments is enough :

}Belief-Propagation 
equations
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Simple
algebraic

operations!}

}
And finally at the end:

�xi� = fa (Ui, Vi)

Complexity is O(N2×convergence time)
http://aspics.krzakala.org
http://kl1p.sourceforge.net/home.html
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• Maximum is at E=0 (as long as α>ρ0): Equilibrium behavior dominated by the original signal  
• For α<0.58, a secondary maximum appears (meta-stable state): spinodal point
• A steepest ascent dynamics starting from large E reaches the signal for α>0.58, but stay blocked            
in the meta-stable state for α<0.58, even if the true maximum is at E=0.
• Similarity with the physics of supercooled liquids
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A steepest ascent of the free entropy allows  
a perfect reconstruction until the spinodal line. 

This is more efficient than L1-minimization 

Computing the Phase Diagram
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BP + probabilistic approach
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BP + probabilistic approach
• Efficient and fast

• Robust to many type of noises (measurement, matrix coefficients, etc..)

• Very flexible (more information can be put in the prior, correlated 
variables, etc...)
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BP + probabilistic approach
• Efficient and fast

• Robust to many type of noises (measurement, matrix coefficients, etc..)

• Very flexible (more information can be put in the prior, correlated 
variables, etc...)

P (�x|�y) =
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GOOD!

• Still not optimal BAD!



The dynamics is stuck in a metastable state, just as 
a liquid cooled too fast remains in a supercooled 

liquid state instead of crystalizing

This is good, but not good enough
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The dynamics is stuck in a metastable state, just as 
a liquid cooled too fast remains in a supercooled 

liquid state instead of crystalizing

This is good, but not good enough
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The dynamics is stuck in a metastable state, just as 
a liquid cooled too fast remains in a supercooled 

liquid state instead of crystalizing

This is good, but not good enough
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How to pass the 
spinodal point?

By nucleation!

Special design of 
“seeded” matrices
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3) Choose parameters such that the first 
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A coupled one-dimensional system:



4) The solution will appear in the first 
sub-system (with large α), and then 

propagate in the system
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Block 1 has a large value of 
M such that the solution 
arise in this block...
... and then propagate in 
the whole system!



Replica solution for 
coupled seeded matrix

(after a bit of work...)
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Generic proof for optimal reconstruction 
(when the prior matches the signal):
D. Donoho, A. Javanmard, & A. Montanari, ’11 

This strategy allows an Optimal reconstruction 
(up to α=ρ) in the limit of large signals



Best measurement rates reached!
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A combination of Statistical physics technics (Bethe-Peierls, 
Replica) and concepts (dynamics, nucleation and growth) has 
allowed to solve a major problem in signal processing theory
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Conclusions...
• A probabilistic approach to reconstruction 

• Analysis of best possible reconstruction for different class of signals

• The Belief Propagation algorithm

• Optimality achieving seeded measurements matrices

... and perspectives:
• More information in the prior (Correlated measurement, wavelets, etc...)

• Other matrices with asymptotic measurements?

• Non-random matrix (e.g. Radon operator in Tomography, Fourier, etc..)

• Additive and multiplicative noise, Quasi-sparsity, etc... ?

• Calibration, and matrix/dictionary learning?

• Applications ?
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