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1 Introduction

The present era of high technology, with its enormous production capacities and ever-increasing rate of

invention, has generated a great need for tools to make new solutions reliable and safe. It is indispensable

to test prototypes experimentally to find design flaws, improve concepts and increase outputs. In serial

production of delicate and expensive items, it is desirable to distinguish faulty pieces quickly from good

ones without subjecting them to excessive stress and possibly destroying them; consequently, these

methods are referred to as non-destructive.

While non-destructive testing (NDT) supports industrial development, it is also suitable to deal with some

consequences of industrialisation, which has given rise to environmental pollution, changing into

destruction in the past few decades. Due to air pollution, the decay of historical buildings and monuments

has accelerated in a disquieting way since about the middle of the 20th century. In exact opposite to serial

production, the role of NDT in this context is to assist in valuation of measures to preserve unique works

of art. The Applied Optics workgroup at the Carl von Ossietzky University of Oldenburg has been

working in this field for more than two decades.

Interferometry is an elegant way to accomplish these contradictory tasks, with the additional benefit of

being non-contacting, in contrast to, e.g., strain gauges. The sensitivity of interferometric methods

depends largely on the wavelength of the used radiation; for the optical wavelength range, the sub-µm

scale is therefore easily accessible, and with some care, even the nm scale can be reached. Since the

invention of strong sources of coherent light [Mai60], interferometric methods can be conveniently

utili sed for a multitude of measuring problems.

However, with the advent of masers and lasers, the so-called speckle effect, known since the 19th century,

became very important. As opposed to classical interferometry with polished parts li ke lenses and mirrors,

optically smooth surfaces are generally rare; they seldom occur in industrial processes, and almost never

in studies of historical objects. The wavefront coming back from a scattering object has a random

intensity and phase structure, the speckle pattern; therefore, a general approach to interferometry requires

comparing such a wavefront with itself.

This was initially done by holographic interferometry, where a hologram of the object provides the

reference. By viewing the object through the hologram, a real-time interference of the reference and the

slightly different momentary wavefront is observed. Depending on whether the wavefronts are locally in

phase or out of phase, the object appears covered by a pattern of bright and dark fringes that can easily be

interpreted as iso-lines of equal object deformation. Thanks to the high spatial resolution of holographic

silver halide emulsions, these fringes are very clear for the most part and very small speckles are

allowable.

A significant disadvantage of holographic interferometry is the necessity of relatively long exposure

times, typically about a second; therefore great stabilit y, most probably in a laboratory, is required, or
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pulse lasers must be used. Also, the wet processing of the holographic plate takes some time. Therefore, it

is diff icult to carry out in-situ measurements, or quick serial testing, with holographic interferometry.

Moreover, it has been realised quite early [But71, Enn97] that holographic resolution is superfluous in

many applications and that useful displacement information can also be obtained from a much coarser

speckle pattern. This enables the use of two-dimensional solid-state light detector arrays with a relatively

poor resolution, but high sensitivity and short exposure times in the ms range, and electronic image

processing. This was the invention of TV holography or electronic speckle pattern interferometry (ESPI)

that has evolved into a very powerful diagnostic method in the 1970s. The disadvantage of high speckle

noise in the fringe patterns is more than outweighed by the mobilit y and real-time capabilit y. Moreover,

ESPI is more environmentally friendly since no chemical waste is produced.

When computer technology gathered speed in the 1980s, ESPI was soon extended by digital image

processing methods and called digital speckle pattern interferometry (DSPI) but today the term ESPI

includes both analogue and digital methods, enabling e.g. analysis of microstructure changes and static as

well as periodical or transient dynamic displacements.

Since the brightness of the (two-beam) interference has a cosinusoidal profile, it does not reveal

information about the sign of the displacement gradient, e.g., an elevation on the object gives the same

fringe pattern as a depression of the same magnitude. To get rid of this ambiguity, a technique called

synchronous detection was adopted from communication theory, initially for interferometry of smooth

surfaces. It relies on retrieving several samples of the interference intensity while the optical phase

difference between object and reference wavefront is being varied stepwise or linearly. With the intensity

being proportional to the cosine of the phase difference, one can establish an equation system into which

the actual intensity readings are inserted to solve for the phase difference unambiguously. This approach

is today known as temporal phase shifting (TPS). It enhances accuracy and opens up a way to largely

automatic data evaluation. In practice however, the shifts of the reference phase never coincide perfectly

with theory, since time- and space-dependent disturbances, as vibrations of the interferometer,

fluctuations of the medium's optical properties, or even occasional rapid movement of the object itself, are

hard to suppress. Hence, measurement errors are introduced or the data are even useless.

The time-dependent part of the disturbances can be eff iciently minimised when the phase-shifted data are

recorded simultaneously. There are several ways to do so; all of them can be summarised under the term

spatial phase shifting (SPS). For this approach, the necessary phase-shifted images are generated statically

on several image sensors, or on separate or interlocked parts of one sensor; hence the phase shifts are

constant in time. Provided the exposure time is suff iciently short, it thus becomes possible to "freeze" all

motion and obtain clear phase maps even under adverse conditions. Space-dependent errors, as generated

by, say, inhomogeneities of the medium, cannot be suppressed by SPS either.

As no dynamic phase shifting is involved, SPS systems do not require moving parts and controlli ng

subsystems, which is advantageous in mobile use. Moreover, the built -in capabilit y of real-time phase
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retrieval can help to increase the temporal resolution of measurements. The implementation of SPS is by

far easiest with the so-called "spatial-carrier" approach; in a different terminology, this method would be

called off-axis image-plane (TV) holography (cf. [Lei62]). By suitable adjustment of the reference

wavefront, the speckle interferogram acquires a "carrier" fringe pattern, so that the phase difference

between object and reference wave varies linearly in one spatial direction. The phase signal is encoded in

slight variations of this carrier fringe pattern and the phase-shifted data are available from a one-

dimensional spatial sequence of sensor pixels.

With this simple method however, there are some disadvantages to SPS in speckle interferometry. The

abovementioned equation system for phase reconstruction contains three unknowns: the background

intensity, the interferometric modulation depth, and the phase difference between the interfering

wavefronts. These quantities are assumed constant in solving for the phase difference, but the phase-

shifted intensity data come from – at least three – adjacent sensor elements, this is, different portions of

the object's speckle field. Therefore the random spatial variations of intensity and phase that are

characteristic of (and ultimately make up) a speckle pattern will im pair the phase calculation because the

constancy assumptions are always more or less violated. Hence, the speckle size must be large enough to

obtain the phase-shifted data (statistically) from an area with suff icient spatial coherence, i.e. with

tolerable fluctuations of the interferometric parameters. This entails a loss in spatial resolution of the

measurement, as well as a less economic utili sation of the object light, because the imaging aperture must

be stopped down to obtain larger speckles.

Due to these "built -in" drawbacks, deformation measurements with SPS can be expected to yield a

somewhat inferior fringe quality than those with TPS, as long as the latter can operate in a suff iciently

stable environment. Indeed, SPS appears to be considered as an alternative in speckle interferometry only

under very unstable conditions, and much effort has been spent on using TPS even in such applications.

Consequently, TPS has been investigated much more thoroughly than SPS.

Spatial-carrier SPS set-ups are so easy to construct and use that one can expect them to be rather useful in

practice. However there seemed to be a need for a deeper understanding of why, how, and how well

spatial phase sampling works in speckle interferometry.

The first aim of the present study is to provide a theoretical background for what one is doing when

extracting phases from a speckle field. While it has been observed before that phase measurements are

easily made with the SPS technique, the speckle aspect of the measurement has received only marginal

attention; in fact, littl e material is hitherto available that goes beyond the basic observations already stated

above.

A second main objective is to settle the question whether the common preference of TPS is justified, and

to see in what situations one could possibly do without TPS and still obtain "good" measurements with

SPS. In this context, it is also worthwhile to utili se the theoretical insights for improving the phase

reconstruction by SPS, and also to explore the versatilit y of SPS in practical tasks.
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Chapter 2 starts with a detailed survey of f irst- and second-order speckle statistics; but besides compili ng

and grouping today's knowledge of this field, we will keep an eye on the intended application to SPS,

where the phase shift takes place in one spatial direction, and put some emphasis on the one-dimensional

intensity and phase gradients. To ill ustrate the theoretical findings, experimental results from a large-

speckle interferometer are provided.

In Chapter 3, we will review and discuss the groundwork for ESPI and phase shifting, spending some

theoretical and experimental effort on finding the best way to calculate speckle phase differences. Then,

since SPS must rely on simple phase-sampling formulae with 3 or 4 samples, we examine the spectral

characteristics of such formulae by Fourier analysis and become acquainted with a useful generalisation of

their spectral behaviour. In the subsection on TPS, an easy way to determine small speckle sizes is

presented. The remainder of the chapter is concerned with a thorough investigation of the peculiarities of

SPS in ESPI.

Since it is our aim to quantify measurement accuracies, we need to obtain reference data with which we

can compare the experimental results. Chapter 4 is dedicated to this subject and starts with an overview of

methods that can be used to approximate ideal data, pointing out their strengths and weaknesses. This

discussion leads to the proposal of a new method which can generate noise-free images from a certain

class of fringe patterns with almost arbitrary amounts of noise, so that a standardised error quantification

is at our disposal.

In Chapter 5, the performance of SPS and TPS is experimentally compared to settle the question how

close the accuracy delivered by SPS measurements can get to that of the widespread and well -established

TPS method. Various experimental parameters are explored, such as object/reference intensity ratio, phase

shift, speckle size/shape and fringe density. The most common interferometer geometries are

implemented for both TPS and SPS to get a "three-dimensional" view of the measurement errors. The last

subsection is dedicated to the issue of light eff iciency that is among the most criti cal ones in practice.

Having learnt about the performance of SPS when implemented in a "standard" manner, we explore

various ways in Chapter 6 to improve the phase determination by means of SPS. Some computational

methods to diminish the influence of speckle intensity and/or phase fluctuations are discussed; but also a

change in the direction of the phase shift is shown to be helpful. With the assistance of these

improvements, we make the speckles as small as possible without sacrificing accuracy. Leaving the

terrain of phase sampling, we also consider the Fourier transform method as a candidate for a posteriori

data processing.

The last possibilit y of error reduction that we study is the merging of informations from orthogonally

polarised speckle fields produced by a de-polarising object, which reduces the influence of noisy pixels.

Finally, the single-frame measurement capabilit y of SPS is combined with the temporal phase unwrapping

method to solve two practical tasks in ESPI: automatic control of data storage in long-term observations

and displacement measurement of discontinuous objects.
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2 Statistical Properties of Speckle Patterns

When a rough object is ill uminated coherently, e.g. by a laser, the light field scattered back from it

acquires a random, grainy structure. The object can be considered "rough" as soon as the surface height

variations are on the scale of the light's wavelength. The irregular light field extends into space, and at

each spatial point we find a coherent superposition of many scattered elementary waves that all have

random intensities and phases. This produces a speckle pattern whose spatial intensity and phase structure

is random as well . Speckle noise is what makes holographic interferometry and ESPI measurements

inherently more noisy than those of classical interferometry. But the speckle effect is not restricted to

electromagnetic radiation; it has also received some attention in ultrasound research [Bur78, Wag83,

Hon97].

To get an idea of the phenomenon, we will consider the properties of speckle patterns in this chapter.

These are of course treated with the tools of statistics, and a wealth of knowledge has been collected since

the first pioneering studies [All63, Gol65, Low70, McKe74]. We begin with the first-order statistics of

intensity and phase and their gradients, putting some emphasis on the 1-D gradients that play an important

role for SPS. The gradient statistics provide useful facts for changes of the speckle field over distances

well below the coherence length, or speckle size; to get a description of the field for two points that are

arbitrarily far apart, we need the explicit second-order statistics. These are particularly important for SPS.

The discussion is restricted to the so-called fully developed speckle patterns, since these are generated by

the great majority of objects that are not optically smooth; in fact, the scatterers to produce partially

developed speckle patterns have to be specially prepared [Cha79, Tak75, Kad85, Mol90a]; a good general

survey on this topic is [Tak86]. Moreover, we assume the light to be perfectly monochromatic and

polarised. The treatment will be valid for free-space propagation (objective speckles) as well as image

fields (subjective speckles), provided the object´s microstructure is not resolved (see 2.2.1).

2.1 Experimental set-up

Where appropriate, we ill ustrate the findings by experimental results from a large-objective-speckle

interferometer with spatial phase measurement that was built as shown in Fig. 2.1 [Kun97]. Large

subjective speckles would be rather dark due to the small aperture needed; and also, since most apertures

are polygons, one would obtain anisotropic speckles. Of course, it is possible to design subjective-speckle

interferometers, and experimental findings for image-plane speckles produced by weak scatterers have

been reported in [Kad85].

The basic set-up is of Mach-Zehnder type. In contrast to [Kol99], our geometry should compensate for the

spherical part of the scattered field, so that we measure its speckled part only. This is indispensable if we

are to find out something about phase gradients. The adjustment of the interferometer therefore requires

special care, since the curvatures of the wavefronts should match exactly when they are brought back
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together. Another interesting possibilit y of measuring speckle phases is the Fizeau configuration reported

in [Mol90a,b].

HeNe laser  

BS L2

M2/SP
MO2

MO1

L1

CCDM1

NDF

P1 BSC

P2

Fig. 2.1: Optical set-up for generation of large speckles and phase measurement by SPS. Abbreviations: BS(C),

beam splitter (cube), NDF, neutral density filter, MO, microscope objectives, L, lenses, M, mirrors, SP,

scattering plate.

The laser beam is divided, expanded by microscope objectives of the same type and made convergent

again by lenses of the same type (f=120 mm); we call the path with component index 1 the reference path.

To adjust the speckle size, the scattering plate (matt white painted metal) is fit and L2 is slid back or forth

to produce the proper spot diameter (in our case, ¡3.1 mm). The neutral density filter is chosen so as to

maximise the modulation of the speckle interferogram. Here, we set R/nIo¡7:6. Then SP is replaced by

M2 and L1 is moved so that P1 and P2 acquire the same distance from the CCD chip; thus the curvatures

of the two spherical waves are matched. By rotating M1, the spatial phase shift can be adjusted with no

de-focusing: P1 is merely shifted sideways as M1 is rotated. The lateral offset between P1 and P2

determines the fringe density on the CCD, i.e., the spatial phase shift. An explanation of the underlying

geometry can be found in Chapter 3.4.1. Uniting the two fields involves sending at least one of them

through glass, which introduces spherical aberrations. Here, we subject both waves to almost the same

alteration by using a beam splitter cube with high-planarity surfaces. The attainable flatness of the

measured wavefront depends on the quality of the optical components; a residual error of about λ/4 was

found, which is tolerable for our range of speckle sizes. Also, any misalignment of the spatial phase shift

will generate an additional phase ramp; but since it is linear, we can easily detect and remove it by the

fitting procedure described in Chapter 4.2.

Once this calibration is done, M2 must be replaced by SP again, and their surfaces should be in exactly

the same position. For this purpose, we used an auxili ary adjustment frame that was removed afterwards.

The scattered light is weakly de-polarised (¡1:10); but as we will see, very littl e impact on the statistics is

found (for a detailed survey on partially polarised speckle fields, see [Bar85]). The laser beam has a
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Gaussian intensity profile; after expanding, only its innermost part is being transmitted by the lenses, so

that we can approximate the ill uminated scattering spot by a circle of uniform brightness.

Moving the CCD camera away from BSC offers the additional possibilit y to scan the speckle field in the

direction of propagation, which we label z. It is then not necessary to re-align the spatial phase shift: the

ratio of fringe density to speckle size, being the relative resolution of the speckle phase maps, will remain

constant. For a series of images with varying fringe density, the phase maps can most conveniently be

obtained by the Fourier transform method (see Chapter 6.5). A non-integer number of carrier fringes will

leave a residual global phase ramp after the FT evaluation. This bogus wavefront tilt must be removed if

we are to measure speckle phases only; and again, the "fringe" fitting algorithm of Chapter 4.2 is capable

of f inding the global ramp that we have to subtract.

The CCD camera used for this experiment was a SONY XC-75 with interline transfer sensor (dust cover

removed) and a resolution of 736�576 pixels of ¡(8.5 µm)2 each; we call dp = 8.5 µm the pixel size. the

video signal was digitised to 8 bits (256 grey levels) by a Data Translation DT3852B-2 frame grabber,

driven by the camera's pixel clock.

The example image that we will use to check our theoretical results has an average speckle size of

ds¡26 dp and a mean brightness of nI o¡56.2 grey levels. It is displayed in Fig. 2.2 together with its

interferogram.

 

Fig. 2.2: Left: sample speckle image; right: corresponding interferogram with spatial phase shift.

The interferogram has a carrier fringe spacing of ¡7 dp; on closer scrutiny, one finds many forks, both

upward and downward, in the fringe pattern. These indicate the so-called phase singularities that we will

discuss in detail i n 2.2.5. The phase map (Fig. 2.17) was calculated by the Fourier method, which is why

we consider 5122 pixels here.
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2.2 First-order speckle statistics

To simpli fy and generalise the treatment of f irst-order speckle properties, we will first derive a joint

probabilit y density function containing all the quantities of interest and then eliminate whatever we want

by integrating it.

2.2.1 Basic probability-density function

A light-scattering rough object can be regarded as an array of individual, mutually uncorrelated

microscopic scatterers, each of which sends an elementary wave into space. The coherent superposition of

all these contributions at a certain spatial point determines the speckle intensity and phase at that point.

The treatment is also valid for imaging geometries, provided that several point images of scatterers

overlap at each point of the image plane. This condition is also referred to as unresolved microstructure.

The elementary waves are most conveniently regarded as vectors A in the complex plane, with the

squared modulus |A|2 corresponding to their intensity I and the argument giving the phase ϕ. This

representation is well known and very useful; the complex vectors A are usually named phasors, or

complex amplitudes. Assumed that

(i)  the waveś  amplitudes |A| are independent of their phases,

(ii ) the phases are uniformly distributed over [–π,π), and

(iii ) the number N of scatterers is large enough (which begins to hold from N ¡ 50 on),

the summation of the contributions may be visualised as a random walk in the complex plane, putting N

phasors together in the manner of vector addition. Then we may use the central limit theorem [Pap65,

p. 266] to treat the speckle pattern formation as an asymptotically Gaussian process. If we denote the real

and imaginary parts of the phasors by Ar and Ai , the two are called jointly Gaussian variables [Goo75].

This assumption has been experimentally confirmed in [Mol90b]. As derived in [Pap65, pp. 253 and 475],

also the spatial derivatives Ar,x , Ai,x , Ar,y and Ai,y ,where Ar,x ¬ ∂Ar/∂x etc., are jointly Gaussian with Ar

and Ai . Assumed the standard deviation of Ar and Ai is σ, we can establish

( )p A A A A A A

A A

C

A A A A

C

r i r x i x r y i y

r i r x i x r y i y

, , , , ,

exp exp

, , , ,

, , , ,

=

−
+







 ⋅ −

+ + +









1

2 2

1

4 22

2 2

2
0

2 2

2 2 2 2

0σ π σ π
(2.1)

as detailed in [Och83, Fre95c, Leh98], with n�o denoting the ensemble average; 2σ 2 is indeed the average

speckle intensity nIo as will be derived in (2.7). C0 depends on the shape and size of the scattering spot or

aperture. It is essentially the curvature of the spatial amplitude autocorrelation function at its peak,

∂2(RAA*(∆x,∆y)|∆x=0, ∆y=0)/∂(∆x)2 = ∂2(RAA*(∆x,∆y)|∆x=0, ∆y=0)/∂(∆y)2, provided the source is symmetrical.

For circular scattering spots, we get [Fre95c, Leh98]
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C
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λ

, (2.2)

with D being the diameter of the spot, λ the wavelength and z the distance between scattering plane and

point of observation. C0 is inversely proportional to the square of the speckle size and scales the gradients

Ar,x etc. For our example image, we find C0¡0.152 grey levels/dp
2.

In order to come from the amplitude description to intensities and phases, we convert the variables to

polar co-ordinates:

A I A I
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with the Jacobian qJq=1/8; the procedure is described in more detail i n [Och83]. We arrive at
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(2.4)

with 0�I <7, –π�ϕ <π, –7�(Ix ,ϕx ,Iy ,ϕx)�7. Any desired marginal or joint probabilit y density function

of the involved quantities can be found from this expression. More general cases are of course the two-

dimensional gradients; the corresponding functions of p∇Ip and/or p∇ϕp are easily found from (2.4), and

we will also consider them below.

2.2.2 Intensity and phase

Now in a first step, we integrate over all gradients to find p(I, ϕ), and obtain

( )p I
I

I

I
, expϕ

π
= −





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1

2
; (2.5)

we note that ϕ  does not turn up in this equation, which means that I and ϕ  are statistically independent of

each other. Therefore, one can also write p(I, ϕ) = p(I)�p(ϕ), which functions are

p I
I

I

I
I

p

( ) exp ( )

( ) ( )

= −




 ≥

= − ≤ <

1
0

1

2
ϕ

π
π ϕ π .

(2.6)
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So the speckle intensity exhibits a negative exponential distribution and the speckle phases are uniformly

distributed. Furthermore we can state mean values and standard deviations for I (using (2.1) and

nIno/nIon=n! [Goo75]) and ϕ :

I I I II= = − =

= =

2

0
3

2 2 2σ σ

ϕ σ
π

ϕ .

(2.7)

An intensity distribution like the one predicted here would be very inconvenient for interferometry, since

the most frequent speckle intensity is zero, whence no signal can be obtained. On the other hand, this

fraction is still very small i n relation to the rest of the intensity scale. Moreover, any physically existing

detector has a finite area, which shifts the maximum of the intensity distribution function the farther away

from zero the more "speckle areas" fit into a pixel area [Goo75, p. 54]. The resulting function favours

speckle interferometry; but in any case, a fraction of dark pixels remains that deliver only a weak

interference signal upon superposition with a reference wave. In many ESPI measurements, these low-

response pixels are the main origin of the so-called "salt-and-pepper" noise in sawtooth images.

As for the phases, it can be easily understood from the random-walk model that there is no preferred

phase value in the speckle pattern; therefore the phases are uniformly distributed over their range. It has

been demonstrated that the measured speckle phase distribution can be helpful in calibration of phase-

sampling procedures; details on this will follow in Chapter 3.4.6.

The statement that the phase is a "free" quantity in our pdf's is of course valid for (2.4) as well; therefore

we can integrate ϕ out, rewrite (2.4) as

( ) ( )
p I I I

I

I

I C

I I

IC

I

Cx x y y
x y x y

, , , , exp exp expϕ ϕ
π

ϕ ϕ
= −


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
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⋅ −
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







 −

+













1 1

16 8 20
2 2

2 2

0

2 2

0
(2.8)

and proceed to the gradients.

2.2.3 Gradients in one dimension

In TPS, each pixel area integrates over some portion of the speckle pattern; if there are intensity and/or

phase deviations in it, the "pixel interferometer" will still function correctly, although with decreased

interferometric contrast. In SPS however, the fluctuations of intensity and phase play a significant role for

the measurement, since in this case we will encounter different mean intensities, modulation contrasts,

and phase offsets for adjacent pixels. As the spatial phase shift takes place in one spatial direction, we

start by investigating the gradients Ix and ϕx . Nonzero values of these quantities will result in linear

deviations of bias intensity and speckle phase; the latter is equivalent to a linear phase-shift

miscalibration. The 1-D treatment accounts for all directions of phase shift, as we are free to choose the

co-ordinates in the most convenient way.
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2.2.3.1 Intensity gradients

From (2.8) we get [Ebe79b; Gra94, formula 3.325]

p I
C I

I

C I
Ix

x
x( ) exp ,= −









 − ∞ < < ∞

1

2 2 20 0
, (2.9)

which function is called Laplacian density. It is a negative exponential function for either sign of Ix with a

mean value and standard deviation of

I C Ix I x
= =0 2 0σ , (2.10)

and has been experimentally verified in [Ebe79a]. The similarity between the distributions of the intensity

and its gradient has a simple and astonishing reason that has been found in [Fre96b]: speckles tend to be

"congruent", i.e. to have very similar intensity profiles, irrespective of their brightness. Hence, bright

spots are associated with large intensity gradients, while smaller gradients belong to dim speckles. The

speckles' congruence propagates the negative exponential intensity distribution to the gradients.

This observation implies that we find an interaction of the speckle intensity and its derivative in the

corresponding pdf. Indeed, the intensity and its gradient are not statistically independent since their joint

density

( )p I I
I

I

I I C

I

ICx
x, exp exp= −





 ⋅ −









1 1

2 2 80

2

0π
, (2.11)

found from (2.8) by integration, is not separable. This joint density function is plotted in Fig. 2.3.
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Fig. 2.3: Pseudo-3D plot of p(I, Ix).
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This graph shows that for small I, Ix also tends to be small; i ndeed it approaches 0 as I'0: loci of zero

intensity must at the same time be minima with vanishing intensity gradient (see also Fig. 2.15). A proof

of this property has been given in [Kow83]. Hence, the correlation of I and Ix is nearly perfect in regions

of low intensity. To learn how the gradients are distributed on the rest of the intensity scale, we consider

the correlation of I and pIxp. To obtain p(pIxp) and p(I, pIxp), we multiply the right-hand sides of (2.9) and

(2.11) with 2 and set 0 < pIxp < 7. Calculating the average of pIxp, we now obtain a non-zero value:

I C Ix I x
= =2 0 σ . (2.12)

Assuming a uniformly bright circular ill umination of the scattering spot, npIxpo¡ 1.92nIo/ds . This

demonstrates that it is almost certain to find substantial intensity variations on neighbour pixels, except

when the intensity itself is very low. To formulate this quantitatively, we calculate the correlation

coeff icient of I and pIxp [Pap65, p. 210] to be

r
I I I I

C I
I C I

I C II I
x x

I I
x

x

,

/

.=
−

=
−

=
σ σ

3

2
2

2
0 5

0
3 2

0

0
, (2.13)

where nIpIxpo¬ 0
∞
∫∫ IpIxpp(I, pIxp)dI dIx. This result is disadvantageous for spatial phase shifting: it indicates

a significant tendency of large intensity gradients, and hence phase errors, in those portions of the speckle

pattern that deliver the best interferometric signal due to their brightness, although, as pointed out in

[Ebe80], integration over the pixel area increases the probabilit y of f inding small gradients.

Having derived p(I, Ix), we can obtain another useful quantity: given a threshold brightness level It, the

above-level dwell distance d+(It) of speckle intensity reveals the spatial extent of structures that are

brighter than It. To clarify the meaning of d+(It) and to get an impression of the intensity fluctuations, we

consider the intensity profile at row 256, i.e. at the vertical centre, of our sample speckle pattern. This

gives the intensity curve I(x,256) plotted in Fig. 2.4, where x is the column number.
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Fig. 2.4: Intensity profile of row 256 of speckle image (Fig. 2.2, left side), normalised by �I�.
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We see that d+(It) is the distance over which I remains above the threshold It , which is set to 1.5nIo in this

example. We find three above-threshold events and hence obtain three different measurements of

d+(1.5nIo). But instead of collecting events, it makes of course more sense to aim analytically for an

average of the above-level distance, nd+o(It), and fortunately its theoretical derivation is available.

The number of events per length unit that the signal crosses It , the so-called level-crossing density, can be

calculated by means of a long-known formula by Rice, as detailed in [Ebe79b, Bar80]:

( )ρ
π

π
( ) , exp

.
expI I p I I dI

C I

I

I

I d

I

I

I

It x t x x
t t

s

t t= = −






= −




−∞

∞
∫

8 1220
(2.14)

(see also Appendix A), where we have used (2.2) and (2.43) to relate the expression to the speckle size ds

produced by a circular scattering spot; an example for a square spot is given in [Bah80]. The average

number of level crossings per speckle size ds is depicted in Fig. 2.5, and reveals that nIo/2 is being crossed

almost once per speckle size (for pixel-integrated speckle it should, and does, contract about nIo [Bar88]).
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� N
(I

t)

� / 
d

s

Fig. 2.5: Expected number �N (I t)� per speckle size ds of crossings of intensity level I t as a function of normalised

threshold intensity I t /�I�. This curve follows simply from setting ds=1 in (2.14).

Being aware, however, that (2.14) accounts for both positive and negative crossings, we conclude that I(x)

goes beyond or below nIo/2 every other speckle size. Now we can answer the question over what distance

I remains above/below a certain It , by evaluating the expressions for the average above- and below-level

dwell distances [Bar80*],

( ) ( )d I
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122
1

ρ π ρ π
 , (2.15)

which are the total fractions of distance that the intensity spends beyond/below It, divided by the mean

density of upward/downward level crossings. Of these latter, each contributes of course one half to the

                                                

* With a misprint in Eq. (16), where �σ  and µ must be swapped.
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total nρI(I)o. Fig. 2.6 shows the two functions in units of ds.
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�
d+�(I t)/ ds

�
d–�(I t)/ ds

Fig. 2.6: Average above-level distance �d+� (solid line) and below-level distance �d–� (dashed line) in units of ds as

a function of normalised threshold intensity I t/�I�.
The graph for nd+o(It) aff irms the visual impression of a speckle pattern: moderately bright spots (I t ¡nIo)

have indeed a width of about the typical speckle size. This coincides nicely with the experimental findings

in [Mar91]. The very bright parts of the peaks are of course narrower. For I t =0, we have nd+o(0)'7: the

intensity in the speckle pattern is almost always greater than, and certainly never crosses, zero. On the

other hand, nd–o(It) shows that very dark structures are really narrow; but the typical extent of structures

where the intensity remains below nIo is ¡1.6 ds. For large It, we have to go very far along x to encounter

a brighter speckle (consider, e.g., the length of the below-threshold events for It =1.5nIo in Fig. 2.4).

The balanced point at which nd+o(It)=nd–o(It) occurs at It/nIo=ln 2, and the average extension of the bright

and dark structures is then ¡1.11 ds. On binarising the sample speckle image at the appropriate intensity

level and evaluating the length distributions of black and white line segments, I obtained nd+o(It) ¡1.14 ds

and nd+o(It) ¡1.18 ds , which is in reasonable agreement with the theoretical value.

The way from the mere average descriptions to the pdf's of level-crossing intervals is long, but has been

shown in [You96]; interestingly, it turns out that for scattering spots with step-function edges, the pdf's

oscill ate, but for Gaussian scattering spots the oscill ation is damped out. In short, if I has crossed It and

fails to do so again after one speckle size, it must wait until the next speckle appears on the way along x;

in between, the transition is indeed somewhat less probable. Several double and triple peaks and valleys

can be found in Fig. 2.2 to make this plausible.

Very recently, older work about the zero crossing rate of Ix [Oht82] has been verified and extended

[Kes98]. An account of this thorough study about level-crossing densities of Ar, Ai, I and ϕ, and all their

first and second derivatives, is definitely beyond the scope of this chapter; but it will be valuable for a still

deeper understanding of what changes in the field quantities one probably finds on a straight line through

the speckle pattern.
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We conclude this subsection with another interesting and comparatively easy interpretation of speckle

intensity maps, namely as smooth 2-D surfaces or landscapes. Hence, considerations about the laws of

"twinkling" of a sunlit sea surface [Lon60] are indeed applicable to the spatial intensity structure of a

speckle pattern. This allows one to establish for the relative numbers of speckle (zero and non-zero)

intensity minima, Nmin , maxima, Nmax , and saddle points, Nsad , respectively [Lon60]:

N N Nsadmin max+ = . (2.16)

More recently, this has been re-derived with the concept of singularities of the normalised vector field

∇I/p∇Ip, in which minima, maxima and saddle points appear as topological singularities [Fre95b], and the

evolution rule for speckle fields has been formulated that a new extremum must always appear, or vanish,

together with a saddle point. It has further been found that Nmin:Nmax=3:2, this is, we encounter more

minima than maxima in a speckle pattern [Wei82a,b]; the typical spatial arrangement is that of chains of

alternating minima and saddles in the dark valleys between the bright spots (cf. Fig. 2.2). For a circular

aperture, the statistical densities of the intensity features have been determined by computer simulation as

[Fre95b]
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(2.17)

As being the speckle area defined in (2.36), and ρ(Ιzero) denoting the density of zero-intensity minima, to

be further investigated in 2.2.5. Thus, the rule (2.16) is confirmed, and in total we have almost two of

these "criti cal points" of intensity per speckle area. The density of parameters necessary to describe all the

features in (2.17) is almost 6 times the sampling density required to properly resolve the speckle field; this

means that the features cannot really be statistically independent and hence must be more or less

correlated [Fre95b, Fre98a].

It is now interesting to learn at what intensity levels these features occur most frequently; in this respect

the values

I I

I I

I I

max

min

sad

≅

≅

≅

25

007

05

.

.

.

(2.18)

are given in [Fre96b]; the separate class of zero-intensity minima is here excluded from nImino. The most

frequent peak-intensity level (at the centres of the bright speckles) is ¡1.8nIo, which supports (2.13):

most of the bright spots stand out strongly and are necessarily associated with large intensity slopes. This

can also be seen in Fig. 2.4.

There are other structural correlations, non-obvious orders and quasi-lattices [Fre95b, Fre95c, Fre97b,

Fre98a] in speckle patterns, again too numerous to describe here; but there should now be no doubt that a
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significant influence of the varying speckle intensities can be expected when phase calculations are

carried out with neighbouring pixels as input data.

2.2.3.2 Phase gradients

The probabilit y density function of the phase gradient in x-direction is [Och83]

( )
p

C I

C I
x

x

( ) /ϕ
ϕ

=
+

0

0
2 3 2

2
, (2.19)

a bell -shaped function that approaches zero distinctly more slowly than a Gaussian function of similar

peak width; this result has been verified experimentally with the help of a Shack-Hartmann sensor in

[Voe91]. Evidently, it has nϕxo = 0; unfortunately, σϕx
 cannot be determined from (2.19) because a

divergent integral appears in the calculation of nϕx
2o. This is physically correct, since the phase gradient

indeed diverges at the phase singularities; nonetheless, we will need a way to circumvent this problem,

which is shown below.

The joint density function of the phase gradient and the intensity is given by
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(2.20)

and displayed graphically in Fig. 2.7.
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Fig. 2.7: Pseudo-3D plot of p(I, ϕx).
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Although p(I, ϕx) shows some coincidence of small I with small ϕx , we also find a significant

contribution from large I with small ϕx , and vice versa. Note that there is again a special behaviour for

I'0: the distribution of ϕx flattens out, which means that very high phase gradients can and do occur near

zero-intensity minima. At I=0 however, p(I, ϕx)|I=0 ≡ 0: where the wavefield vanishes, there is no phase

either. On switching from ϕx to pϕxp, we get

ϕx
C

I
=

2 0 , (2.21)

which amounts to ¡ 110° per speckle size for a uniformly bright, circular scattering spot. But as in the

case of intensity gradients, it seems worthwhile to investigate the interrelation of I and ϕx. However, as

stated above, r  I, ϕx  cannot be calculated. Therefore, in analogy with [Fre95a,c], we will make use of a

variable transformation and calculate r  I, φx , where φx is given by

φ
ϕ
ϕ

φ
π

x
x

x
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 ≤ ≤arctan , 0

2
. (2.22)

This confines the integration and allows the calculation of whatever statistical moment is desired. The

results will reproduce the behaviour of p(I, ϕx) quite well , since the mapping is quasi-linear in the region

of low phase gradients, and substantial compression takes place only for that (small ) fraction of the

speckle field where the phase gradient is very high. Converting p(ϕx) to p(φx) [Pap65, p. 126], one gets

( )p x xφ φ= cos . (2.23)

The statistical quantities required for r  I, φx  are
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2
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2
; (2.24)

for the corresponding quantities of I, we can of course refer to (2.7). With qJq= npϕxpo/cos 2φx , it follows

from (2.20) that
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from which we get nI�ϕxo= (3π-7)nIo/6, and finally,
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This significant anticorrelation between I and φx indeed indicates that high intensities tend to go with low

phase gradients ϕx, and vice versa, as also depicted in Fig. 2.8.
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The peak shows that the coincidence of low intensity and high phase gradient ϕx (where φx ¡π/2) is nearly

perfect. On the other hand, we also find a significant probabilit y of φx =  0 for low intensities. This

however need not hold for ∇ϕ , and a good deal of the contribution at φx = 0 comes from the selection of

the x component of ∇ϕ .
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Fig. 2.8: Pseudo-3D plot of p(I, φx).

Applied to interferometry, this result alleviates the disadvantage that the high value of npϕxpo seems to

imply. The highest phase gradients tend to occur in regions of the speckle pattern that are rather dark and

noise-burdened anyway, whilst in brighter regions it is fortunately more likely to encounter moderate

phase slopes.

To finish, let us check our results experimentally. From (2.12), we have npIxpo¡4.1 grey levels/pixel, and

from (2.21), npϕxpo¡4.2°/pixel. Approximating pIxp by the absolute intensity differences and pϕxp by the

absolute phase differences from pixel to pixel, our test image yields npIxpo¡ 3.9 grey levels/pixel and

npϕxpo¡4.2°/pixel. The spatial distribution of the gradients, appropriately converted to grey-scale images,

can be seen in Fig. 2.9; the pIxp map has been brightened up for display, and the largest pϕxp detectable

and shown is 180°/pixel.

The black spots in the brightest regions of pIxp are due to camera saturation by very bright speckles. This

partly explains why the experimental npIxpo is somewhat too low: pIxp is greatly underestimated where the

detected speckle intensity is clipped. Moreover, a minor impact of the non-perfect polarisation cannot be

excluded. The scale chosen for pϕxp does not at all account for the divergence near the singularities; but

due to the very small area fraction of these criti cal regions, the measured npϕxpo remains correct. From the
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positive correlation of I and Ix and the anticorrelation of I and ϕx, an anticorrelation of Ix and ϕx results

that is impressively ill ustrated by the figure: the worm-like structures of high pϕxp circumscribe the bright

speckles (being regions of high pIxp) almost exactly. The white boxes assist in finding examples. The

pinched maxima of pϕxp indicate phase singularities (see Fig. 2.17).

 

Fig. 2.9: Maps of �Ix � (left) and �ϕx � (right). White boxes allow comparison of details.

2.2.4 Gradients in two dimensions

The previous treatment, although particularly relevant for our subject of spatial phase measurement, does

not provide a complete insight into the structure of speckle intensity and phase. Therefore we consider

also the two-dimensional gradients,
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The pdf's in terms of p∇Ip, p∇ϕp are easily obtained from functions involving Ix , Iy , ϕx , ϕy by integrating

over θI and/or θϕ  on the circles given by I Ix y
2 2+  and/or ϕ ϕx y

2 2+ , which gives factors of 2πp∇Ip
and 2πp∇ϕp, respectively. This changes (2.8) to
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from which we can derive
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plotted in Fig. 2.10.
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Fig. 2.10: Pseudo-3D plot of p(I, �∇I �).

On comparison with Fig. 2.3, a qualitative difference between p(I, Ix ) and p(I, p∇Ip) is evident. While in

both functions no intensity gradients at all occur for zero intensity, there is a significant probabilit y of Ix=0

for I >0; this is because (2.11) selects the x component only. In contrast, the probabilit y for p∇Ip=0

vanishes for the whole intensity scale: p(I, p∇Ip)|�∇I �=0 ≡ 0. This reflects the fact that the – certainly existent

– intensity extrema and saddle points constitute a set of measure zero, as explained in [Kin77, p. 88]. The

same observation holds when we switch from p(pIxp) to p(p∇Ip); by integration of (2.29), we then get

[Gra94, formula 3.471.12]

( )p I
I

C I
K

I

C I
I C I∇ =

∇ ∇







 ∇ =

2 2 20
0

0
0with

π
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which has been derived in [Kow83] and [Fre95c] before. K0 here denotes the modified Bessel function of

second kind and zero order. In contrast to (2.9), and by the above argument, the probabilit y for vanishing

intensity gradient is zero: p(p∇Ip)|�∇I �=0 ≡ 0. For a uniformly bright, circular scattering spot, we get

np∇Ipo¡ 3.01nI o per speckle size. It is the relatively sharp outlines of the bright speckles that give rise to

so large a gradient; in addition, it changes its sign at least once over the distance of a speckle spot.

Therefore it is very diff icult to put a simple assumption about the course of the intensity into a phase
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calculation formula. However, it has been shown that the integration over the pixels' finite apertures can

alleviate the problem somewhat [Bar91].

Considering the two-dimensional phase gradients, we derive from (2.28)
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which is plotted in Fig. 2.11.
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Fig. 2.11: Pseudo-3D plot of p(I, �∇ϕ �).

In this figure, the stationary points of the phase (extrema and saddle points, for which p∇ϕp= 0) lie on the

I axis and the zero-intensity minima on the p∇ϕp axis. They are both existent but of measure zero, again

in qualitative difference to the one-dimensional case. The phase gradient alone obeys
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(2.32)

which results in np∇ϕpo ¡ 172° per speckle size. But like Fig. 2.8, Fig. 2.11 clearly reveals

anticorrelation between intensity and phase gradient, so that we can expect p∇ϕp to fall below np∇ϕpo in

the brighter regions of the field. This is demonstrated in [Shva95]: bright speckles tend to lie close to, but

not exactly over, the stationary points of phase; the phase is found to vary by typically 45-90° over the

half width of a speckle, with np∇ϕpoImax ¡ 49°/ds at the intensity maxima. Most of the stationary points of

phase are saddles; phase extrema contribute only ¡ 1/15. This distinct qualitative difference between

phase and intensity field will be briefly interpreted in 2.2.5.



24                                                 Statistical Properties of Speckle Patterns                                                     

Moreover, the study [Shva95] shows that the major part of the anticorrelation is due to higher intensities

and lower phase gradients. This is mainly due to the relative areas: while intensity minima coincide

almost perfectly with very high phase gradients, they contribute only a very small area fraction to the

speckle field.

As above, we conclude the considerations by confronting them with the experimental findings. Inserting

our C0 and nIo into (2.30) and (2.32), we now find np∇Ipo¡6.5 grey levels/pixel and np∇ϕpo¡6.6°/pixel.

From the sample image we get measurements of np∇Ipo¡6.1 grey levels/pixel and np∇ϕpo¡6.3°/pixel,

where the gradients are approximated by the square root of horizontal plus vertical squared pixel-to-pixel-

differences. This time, the slight systematic underestimations mentioned above affect both results, since

they are increased by the inclusion of two dimensions; but still t he agreement is good. The spatial

distribution of the 2-D gradients, converted in the same way as above for Fig. 2.9, is shown in Fig. 2.12;

this may be compared with the results of a computer simulation presented in [Fre96b].

 

Fig. 2.12: Maps of �∇I � (left) and �∇ϕ � (right). White boxes enclose same portions as in Fig. 2.9.

Not surprisingly, these maps round off the findings above and show that within the bright speckles, the

phase field is co-operative for SPS thanks to moderate gradients; on crossing the dark speckle

"boundaries" however, the phase may leap considerably, and mostly does; according to [Fre98b], the

phase difference from one intensity maximum to the next assumes values from �π/2 to �3π/2 with

almost constant probabilit y, and is almost never zero.

Eventually it may be worth noting that
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which is exactly what should result from a projection.
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Apart from statistical considerations, a very simple explanation of the phenomenon is the phasor

interpretation suggested in [Bur98a, Leh98] and shown in Fig. 2.13.

ϕ1(x1,y1)

ϕ2(x2,y2)

A 2(x2,y2)

A p(∆x, ∆y)

ArAr

AiAi

A 2(x2,y2)

A p(∆x, ∆y)

A 1(x1,y1)

ϕ2(x2,y2)

ϕ1(x1,y1)

A 1(x1,y1)

Fig. 2.13: Variation of a speckle phasor A1 due to a perturbation Ap for different amplitudes �A1(x1,y1) �. ϕ1(x1,y1)

and Ap(∆x, ∆y) are the same in both cases.

If a phasor A1(x1,y1) undergoes a change Ap (∆x, ∆y) while we move from (x1,y1) to (x2,y2) in the speckle

field, then the phase change will greatly depend on the length of A1(x1,y1). In the sketch to the left, the

phase ϕ changes considerably on the way from (x1,y1) to (x2,y2), since pA1(x1,y1)p is relatively small . The

drawing to the right demonstrates the higher stabilit y of brighter regions against changes: when pA1(x2,y2)p
is large, the same Ap (∆x, ∆y) leads to a distinctly smaller phase change. This is valid for all arguments of

Ap except �ϕ1. Unfortunately, this model is not suitable to understand the correlation of intensity and

intensity gradients. To conclude with, Fig. 2.14 gives an impression of the relation between intensities and

phases in the sample speckle field.

Fig. 2.14: Intensity (black/white) and phase (coloured isolines with 45° spacing) of a speckle field.
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It can clearly be seen that the phase changes relatively slowly in the brighter regions, while in the dark

valleys the isophase lines tend to get very dense. Many phase saddles are discernible by their X-shaped

isophase lines, and some few closed phase contours indicate the presence of phase extrema. Moreover, the

1-D phase gradient mostly changes littl e as we cross bright speckles, which we will use for developing

suitable phase calculation methods in Chapter 3.2.2.4. The most problematic features are the junctions of

the isophase lines that are associated with rapid changes in the direction of the 2-D phase gradient. These

points, forming a network connected by isophase lines, are the so-called phase singularities to which we

will dedicate the following subsection.

2.2.5 Zero-intensity minima

In the darkest regions of a speckle pattern, we find a class of very interesting features: the zero-intensity

minima, also known as phase singularities, discontinuities, screw dislocations, or vortices. They have first

received attention as peculiarities in sound fields [Nye74, Ber78], and later as obstacles for phase

conjugation of speckle fields [Bar81, Bar83, Fri98]; another example are the phase singularities that have

been found in the phase distribution of the global tides [Nye88]. Indeed, singularities occur in almost any

complex-structured two- or three-dimensional wave field. The field amplitude is exactly zero at these

particular points, or lines in space, and the consequences for the phase are remarkable. Indeed, all of the

terms given above refer to a property of the phase: it becomes undefined where there is no amplitude, and

on crossing the minimum, the phase jumps by π (as also known from simpler interference experiments).

This can be understood with the help of Fig. 2.15 that gives an overview of the wavefield's quantities. The

drawings are generally applicable to first-order singularities (see below), since Ar(x, y) and Ai(x, y) are

smooth functions and can always be approximated by tangential planes in a small region (dx,dy) of the

wave field.

Ar(x,y) = 0

Singularity

Ai(x,y) = 0

Ai(x,y) Ar(x,y)

xy

 

 x

 y

y

x

I(x,y)

Fig. 2.15: Left: pseudo-3D plot of Ar(x, y) and Ai(x, y) in the immediate vicinity of a phase singularity. For visual

clarity of the intersection, each tangential plane is plotted half as mesh grid and half as solid grey area.

Right: corresponding intensity (top) and phase, coded as grey values (bottom).
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As we can see from (2.1), Ar(x, y) and Ai(x, y) are statistically independent; hence they will i ndependently

fluctuate with a mean value of zero in the speckle field. The zero crossings of either function form closed

contours in the (x, y)-plane; and frequently these lines intersect. In Fig. 2.15, they do so at a right angle,

which is a special case. On moving along the Ar(x, y)=0 line in positive y-direction, the phase of the

wavefield remains constant until Ai(x, y) vanishes at the singularity and then flips sign, which results in a

phase jump of π. The new phase value also remains constant as we move away from the minimum. Since

Ar(x, y) and Ai(x, y) can be approximated by planes, the intensity has a quadratic minimum. It has been

shown in [Fre96b] that these "intensity wells" are very narrow: their typical diameter is only 1/7 that of

the speckles. The model singularity shown here is, by definition, positive and of order +1: during a

counterclockwise loop around it, the phase increases by +1�2π. This non-vanishing rotation of the phase

has led to the term "vortices". If the zero points of Ar(x, y) and Ai(x, y) are saddle points or extrema, a

dislocation of order N, i.e. with a phase progression of N�2π per revolution, can occur [Fre99a,b]; but

these are very unstable [Fre00] and of no practical importance in speckle patterns.

The correspondence of phase dislocations and vanishing field amplitude is indicated in Fig. 2.16. Since

the speckle field is not completely polarised, the dislocations do not always coincide with points of zero

speckle intensity, but they certainly appear at the zeros of interferometric modulation, as the

interferometric phase measurement extracts that state of polarisation from the speckle image which is co-

polarised with the reference wave. For this reason, Fig. 2.16 uses the map of modulation rather than the

speckle intensities as the underlying field. As to be seen by comparison with Fig. 2.2, it resembles the

total speckle intensity closely but not exactly. The signs of the dislocations are not indicated here; see Fig.

2.17 for this purpose.

Fig. 2.16: Distribution of phase dislocations (white dots) vs. interferometric modulation of Fig. 2.2, right side.

Phase dislocations of order �1 are topological features in the speckle field [Nye74]; they always appear

and vanish in pairs of opposite sign [Fre93]. In analogy to the intensity map, one can also define a

normalised vector field ∇ϕ /p∇ϕp to find phase dislocations as well as phase minima, maxima and saddle
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points, which appear as "phase topological singularities" in the vector field [Fre95d]. This leads to the rule

that a new pair of phase dislocations must simultaneously create two new phase saddles. Therefore, phase

saddles are at least as dense in speckle phase maps as phase singularities, leaving littl e space for phase

extrema.

Moreover, Fig. 2.14 demonstrates that most of the isophase lines are open contours that connect the

singularities; but phase extrema are of course found in closed isophase lines only. This is in qualitative

difference to intensity fields, where all i so-intensity lines are closed contours and extrema are very

frequent. To compare with (2.17), we list the statistical densities of criti cal points of the phase that have

been found by computer simulation in [Fre98a]:

ρ ϕ
ρ ϕ
ρ ϕ
ρ ϕ

( ) . /

( ) . /

( ) . /

( ) . /

disl s

s

s

s

≅
≅
≅
≅

0460

0021

0015

0492

A

A

A

A

min

max

sad

, (2.34)

from which we see that the phase field shows less structure, or spatial variation, than the intensity field.

The feature density is about half that of the intensity map; but still t he required parameter density is some

three times greater than the density of the required sampling points, which indicates that there are

significant correlations also between the criti cal points of the phase. However there is no physical reason

why phase minima should be more likely than maxima; with a larger ensemble, their densities should be

equal [Fre98a].

The case depicted in Fig. 2.15, i.e. right-angle intersections of the zero-crossing lines of Ar(x, y) and

Ai(x, y), corresponds to the special case of a so-called isotropic phase dislocation. This means that the

isophase lines radiate outward from such features with constant angular density, i.e. on a circular path

around the dislocation, the phase slope is constant. For this case, an interesting analogy arises: the phase

field generated by a distribution of isotropic singularities is similar to an electric field generated by a set

of point charges, and completely free of extrema, i.e. closed field lines. This is, however, not the generic

case: the zero-crossing lines of Ar(x, y) and Ai(x, y) frequently intersect at angles different from 90°, which

concentrates isophase lines within the acute angles that they enclose, and thins them out in the obtuse

angles; see [Fre93, Fre94a, Fre97a] and Fig. 2.17. In the limit , when the zero lines of Ar(x, y) and Ai(x, y)

coincide (this is, the "screw" dislocation becomes an "edge" dislocation, see below), we have constant

phase of the wave field on either side, and a phase jump of π on crossing them. To give an impression of

how the structure of Ar(x, y) and Ai(x, y) generates phase singularities, Fig. 2.17 presents the phases of our

sample field together with the zero lines of its real and imaginary parts (that, of course, depend on the

momentary interferometric phase; but it is easy to see that the lines' intersection points will remain

unaffected by whatever phase shift).
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Fig. 2.17: Left: phase distribution of sample speckle field; [–π,π) represented as grey shades from black to white.

Right: zero crossings of Ar(x, y), black lines, and of Ai(x, y), white lines. Red dots: positi ve, green dots:

negative singularities.

The figure shows that the zero-crossings of Ar(x, y) and Ai(x, y) intersect at all angles between 0 and 90°

[Fre94a], and also explains easily why dislocations always appear and vanish pairwise: it is impossible for

the closed zero contours of Ar(x, y) and Ai(x, y) to generate only one new intersection. This is also the

reason why they alternate in sign – also called topological charge – on paths along any zero-crossing

contour [Shva94, Fre94b, Fre95d]. When the zero-crossings of Ar(x, y) and Ai(x, y) touch, they do so

tangentially and generate a zero-amplitude line, or "edge" dislocation [Nye74, Bas95], of infinitesimal

length in the x-y plane, that instantly splits up into the two "screw" dislocations as the zero crossings of

Ar(x, y) and Ai(x, y) intersect, i.e. as we shift our x-y-plane in z direction and the wavefield evolves in

space. The trajectories of the singularities can be thought of as dark lines that pierce the x-y-plane and are

orientated mostly in z direction [Ber78]. Their shape in space has been referred to as "snake-like" [Bar83];

the process of pair creation or annihilation therefore corresponds to turning points of these trajectories

where the z component of their direction vector changes sign.

The abovementioned z-direction scan of the speckle field gives us the opportunity to track the loci of the

dislocations slice by slice to see whether a pair of dislocations that has appeared together will also vanish

together, and how one should imagine the zero-intensity trajectories in space. Fig. 2.18 presents the zero-

intensity lines in the very centre of the sample phase field; the colouring helps to distinguish them. If they

end, it means that they have moved out of the sample volume or that their tracking is discontinued for

clarity of the representation.
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Fig. 2.18: Shape of some selected zero-intensity trajectories in a sample volume of (2 mm)2�100 cm; left:

projection on the y–z plane; right: projection on the x–z plane. Positional data from 26 x–y sli ces with

increasing spacing: 2 cm at the bottom, 6 cm at the top, and spline interpolated in between.

We will consider the meaning of these plots first by following the largest of the yellow structures: at z=73

cm, a pair of dislocations is created. Initially, they quickly move away from each other until (z>80 cm)

they approach again; finally they react and vanish at z=94 cm. This is an example of a process in which

the same dislocations appear and disappear together. All such events found are coloured yellow; and as to

be seen, they are rather rare. The general case is the one we find when following the dark green line: it

turns over at z=116 cm, which means that the dislocation tracked thus far reacts with another one, from

the pair that appeared at z=106 cm. This in turn means that the latter pair does not vanish together: its

remaining dislocation propagates without further interaction until z=160 cm. Hence, every time a zero

carrier bends back and forth again, a new pair of dislocations appears, and the short-li ved dislocation of

that pair changes its partner on vanishing. Extreme examples of this are the orange and the red lines, with

a total of 5 pair reactions each. Of course, all the zero trajectories could be envisaged as separate

sequences of lines, with alternately positive and negative z-components in their direction vectors, that are

connected at their turning points with respect to z; but their spatial structure is pointed out more clearly

when we treat them as entities.

The trajectories without turning points correspond to singularities that persist at least throughout the

sample volume, i.e. 1 m of depth. Since the speckle length ls according to (2.45) is ¡19 cm for z=60 cm

and ¡135 cm for z=160 cm, this poverty of events does not contradict the assertion that the zero lines'

"longitudinal size of non-uniformity" is of the order of the speckle length [Bar83]. It is possible that some
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of the non-interacting lines belong together and react at lower or higher z (especially the lines in magenta

and green are very close at z=160 cm); but this cannot be safely concluded from the available data.

The white line in the figure shows that the direction vectors of the zero trajectories can sometimes have a

very small z-component, which means that its associated dislocations will move very fast in the x–y plane

as we change z. This raises the question whether an unambiguous assignment of zero-intensity lines to

certain phase dislocations as in Fig. 2.18 is possible at all; but since the zero contours of Ar(x, y) and

Ai(x, y) (cf. Fig. 2.17) evolve continuously with z, there is enough information about the singularities to

always know which is which. It can, however, not be excluded that some minor zero-intensity loops

between the recorded slices have gone unrecognised: the detection of new pairs of dislocations depends

on the (3-D) resolution of the measurement.

Concerning the interaction and coupling of dislocation pairs, there are cases of dislocations appearing and

vanishing together (the closed yellow loops within the measurement volume), but generally, the zero-

intensity trajectories will t urn over more than twice; and this results in swinging of relatively short-li ved

dislocations from and to different reaction partners. No statement can be made about the open zero-

intensity lines: some might be large closed loops, some might extend to infinity.

From the statistics derived so far, also the average dislocation density nρdislo in the speckle field may be

found [Ber78, Bar81]: setting Ar =Ai = 0 in (2.1), one can come to an expression that counts the

dislocations per area. We remark here that the derivation is based on the same formalism as that of (2.14);

the details are given in Appendix A. For a circular scatterer, we get [Bar83, Fre93, Fre94a]
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nρdislo is again the quantity that we have encountered as ρ(Ιzero) in (2.17), and as ρ(ϕdisl) in (2.34), and in

perfect agreement with the experimental values quoted there. In [Fre93] the ad hoc argument is given that

a speckle field contains equal amounts of bright and dark "grains" and that, therefore, nρdislo should equal

1/(2As) independent of the scatterer's shape. The slight deviations in (2.35), and also for other scatterer

shapes, are attributed to a somewhat inappropriate definition of the speckle area; this leads to the

suggestion of referring the speckle area to nρdislo as an unambiguous quantity.

The constancy of nρdislo also delivers an argument to support the abovementioned assumption about the

"longitudinal size of non-uniformity" of the zero-intensity trajectories. The speckle area depends on z2, as

does their length. Since nρdislo is constant, the number of dislocations per unit area should fall with a 1/z2

dependence; but this is also the speckle "frequency" in z direction. Hence, one can think of each bright

speckle as being accompanied by a zero line that "ends" (i.e. turns over) when the speckle "ends".
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The z-direction scan of the expanding wavefield enables us to verify (2.35) by determining the number of

dislocations, Ndisl , in every recorded slice of 5122 pixels: with
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we can use (2.36) to establish
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the speckle sizes thus obtained are plotted vs. z in Fig. 2.19.
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Fig. 2.19: Number of dislocations in sample area and corresponding speckle sizes for 60 cm < z < 160 cm.

The expected dependence is confirmed by the measurement; not surprisingly, the determination of ds from

Ndisl gets more and more precise as the latter rises. For this to function, the speckle field must of course be

well resolved by the camera. The fitted straight line almost passes through the origin even though no data

are available for z<60 cm. When comparing the ds thus obtained with those from an evaluation of the

speckle fields' autocorrelations, the values coincide within �5%. Since the number of speckles on the

sensor is relatively small , the autocorrelation method is applied to a small ensemble, which does not

match the spirit of the approach and explains the deviations. Apparently, the method of determining the

speckle size from the dislocation density works quite well when the speckles are large. Other

experimental results, confirming the linear dependence of ρdisl and D, are given in [Bar83].
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2.3 Second-order speckle statistics

In SPS, and in TPS with unresolved speckles, it occurs that the distances over which the spatial structure

of the speckle field changes are not much larger – or even very much smaller – than the pixel size. Then

one needs to know the spatial relation of speckle intensity and phase between two points P1=(x1, y1) and

P2=(x2, y2) in the speckle field, p(I1, I2, ϕ1, ϕ2), or simpli fications thereof. We will proceed from the most

general concept, the spatial autocorrelation of intensity and phase, to the somewhat more complicated

topic of the relation between intensity and phase.

2.3.1 Intensity autocorrelation

Probably the most popular and indeed very useful second-order quantity is the concept of the mean

speckle size in terms of intensity. We start with the autocorrelation of the complex amplitude,

R x y x y x y x yAA A A* ( , , , ) ( , ) ( , )*
1 1 2 2 1 1 2 2= , (2.39)

which is also referred to as mutual intensity of the speckle field [Goo75, p. 36]. For our purposes, it may

suff ice to remember that this function is essentially the Fourier transform of the intensity distribution

within the scattering spot or the aperture shape, depending on whether objective or subjective speckles are

concerned. For the latter case however, the treatment is correct only if the imaging aperture contains a

large number of speckles. Then the aperture may be thought of as another rough surface, whose shape

plays the same role for the formation of subjective speckles as does the scattering spot in the case of

objective speckles.

The mutual intensity is usually normalised to yield the complex coherence factor
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which is unity for x1=x2 and y1=y2 and decays as the points move away from each other; when it becomes

zero, the points are said to be one spatial correlation length or speckle size apart.

It can be shown [Goo75, pp. 36-38] that the intensity autocorrelation RI(x1, y1, x2, y2) is given by

( )R x y I x yI A( , ) ,∆ ∆ ∆ ∆= +
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2 2
1 µ

(2.41)

with ∆x = x2–x1 and ∆y = y2–y1. That is, the shape of the µA curve determines that of a typical speckle area,

or correlation cell , in the speckle field. If the scatterer or aperture is a uniformly bright circle, we get
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(2.42)

J1 denoting the first-kind Bessel function of f irst order. This can very easily be generalised to the elli ptical

apertures that are also used in the experimental work. For circular apertures, µA is the well -known Airy
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function, which demonstrates that the speckle shape is closely related to the aperturé s point spread

function. It assumes its first zero at

∆ ∆x y
z

D
ds

2 2 122+ ≅ =.
λ

,
(2.43)

which gives the mean speckle size. The shape of RI(∆x, ∆y) is given in Fig. 2.20. If we write the intensity

correlation as RI (x1, y1, x2, y2)=nI(x1,y1) I(x2,y2)o, we can use the independence of P1 and P2 at µA = 0 to

decompose it into nI(x1,y1) onI(x2,y2)o=nIo2, while for µA = 1 we have P1=P2 and obtain nI(x1,y1)

I(x1,y1)o=2nI o2 =nI 2o. The "bias correlation" reflects the fact that the intensity is never negative, in

contrast to the phase and its autocorrelation.
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Fig. 2.20: Speckle intensity autocorrelation function for a circular scattering spot with uniform brightness.

This definition is merely statistical and does not imply anything about the true distribution of shapes and

sizes of bright or dark regions. However, it has recently been found that the well -known and proven

notion of "speckle size" is correct also with respect to the individual size of the bright spots [Fre96b].

Even the intensity profiles of individual speckles have been found to follow the course of RI(∆x, ∆y) quite

well [Fre96b, Fre98a], which means that there is only a very small region of quasi-constant intensity

within a bright speckle; the greater the peak intensity, the greater will be the intensity gradient within the

speckle area.

The derivation of (2.41) is based on a two-dimensional treatment of the Kirchhoff-Fresnel diffraction

integral. It is possible to extend the calculation to find the three-dimensional autocorrelation [Leu90]. The

general result is rather diff icult an expression; however considering the z direction only, one finds for a

circular aperture [Leh98]
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where sinc(x)=sin(πx)/(πx). The first zero of this expression, indicating the length of a correlation cell , is at
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∆z
z

D
ls= 



 =8

2
λ ; (2.45)

see also [Li 92, Yos93]. The quadratic relationship of ls and z generates more and more elongated speckles

– the aspect ratio is proportional to z – that are "cigars" only near the scatterer or aperture, and "worms" in

most practical cases (cf. [Wei77]): for z/D=1.5, ls/ds is already ¡10.

2.3.2 Phase autocorrelation

It is clear that the phase structure of speckle patterns affects speckle interferometry as significantly as does

the intensity structure. Again, especially for SPS it is useful to find out how the phase of a speckle pattern

will fluctuate statistically, and over what distances we may expect to find some phase correlation.

Unfortunately, ϕ  is accessible modulo 2π only, which is diff icult to treat mathematically: if we map the

phases onto [–π,π), two points with ϕ1(x1,y1)= –π+ε and ϕ2(x2,y2)=π–ε  would yield ∆ϕ = ϕ2–ϕ1 = 2π–2ε,

while the actual difference is only 2ε.

Consequently, there are two ways to deal with ϕ. The first one regards ϕ as a continuous function without

–π*π jumps, which can lead to problems with path-dependence in complicated phase distributions with

dislocations, such as speckle phase fields. The other confines ϕ to [–π,π), which makes it a unique but

discontinuous (wrapped) function.

For continuous phases, the phase autocorrelation function has been calculated long ago [Mid60] as that of

a band-limited random signal, an example of which is speckle noise (as for the band limitation, see 3.3.1).

If the primary phase interval is set to [–π, π), the function reads

( ) ( ) ( )R
n

c A A A
A

n

n
ϕ µ µ µ

µ
, arcsin arcsin= − +

=

∞
∑π 2

2

2
1

1

2
, (2.46)

with µA , the complex degree of coherence, to be calculated from the scatterer's characteristics; the

subscript c stands for "continuous". A primary phase interval of [0, 2π) would correspond to a "bias

phase" of π and merely add a constant of π² to the function.

For discontinuous phases, the decrease in correlation has particular properties because of the –π*π

transitions of the phase taken as real 2π jumps; this function has been established only recently [Fre96a]

and reads

( ) ( )( ) ( )( ) ( )
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n
d A A A

A
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ϕ µ π µ µ
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
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2

1

2
2

2

2
1

, (2.47)

where the subscript d denotes the discontinuous interpretation. Both of the functions are evaluated for n=1

to 100, with µA according to (2.42), and shown in Fig. 2.21. The scaling of the ordinate reflects the fact
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that the phase variance in the speckle pattern is zero for |µA|= 1, and π2/3 for |µA|= 0, which corresponds to

a uniform distribution.
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Fig. 2.21: Speckle phase autocorrelation function for a circular scattering spot with uniform brightness;

solid line: Rϕ,c; broken line: Rϕ,d .

Since Rϕ depends on µA, as does RI, its correlation length is exactly the same as for the intensity. The

qualitative difference of the functions is due to the permissible ranges of phase differences between

neighbouring points, which are (–π, π) for Rϕ,c, and (–2π, 2π) for Rϕ,d. Hence, Rϕ,d decays very quickly

initially and even changes to anticorrelation after its first zero, which corresponds to an average phase

change greater than �π; for more details, see [Fre96a].

To clarify the interpretation of ϕ, we consider Fig. 2.22, giving an example of the two methods applied to

the familiar sample phase distribution, displayed in the middle of the top row. Of particular interest in this

context are the so-called "branch cuts" [Fri92], the transitions from black to white where ϕ crosses π.

These jumps are related to the discontinuous interpretation of ϕ ; it is hard to imagine a continuous

representation. The outer images display the local phase correlation for ∆x = 10 pixels; to the left,

continuous phases are assumed, and to the right, the discontinuity of ϕ shows up distinctly wherever the

direction vector of a branch cut has a non-zero y-component. In all correlation maps, white corresponds to

complete correlation (no phase difference between (x1 ,y) and (x2 ,y)), medium grey to zero correlation

(phase difference of �π), and black to complete anticorrelation (phase difference of ¡�2π).

Remembering that the field's phase jumps by π while we are crossing points or lines where it vanishes, the

identification of zero correlation with a phase offset of π seems quite reasonable.

It can be seen that Rϕ,c does not produce anticorrelations; as explained above, this is because phase

differences greater/smaller than �π do not occur in this interpretation. In the map of Rϕ,d, we do find

phase jumps of �2π near the branch cuts of the speckle phase, giving rise to phase anticorrelation.

However, the branch cuts are no physical reality, since they can be moved around in the image by adding
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global phase shifts, as demonstrated in the bottom row. The phase distribution shown in the centre is

exactly the same as in the top row, only a global phase shift of π has been added (or subtracted) modulo

2π, as can be seen by the circulation of the branch cut in the black circle(s). The remaining correlation is

unaltered when we assume continuous speckle phases – the images in the left column look exactly the

same –, whereas the results from the discontinuous interpretation are rather different from each other.

    

    

Fig. 2.22: Interpretations of phase fields leading to different phase correlations. Centre, speckle phase distribution;

black circles: sample dislocation. Left, Rϕ,c ; black circles, example of decorrelation "spot"; right, Rϕ,d.

Global phase shift of π between top and bottom row; see text.

Clearly, it is impossible for the phase decorrelation to depend on the global phase offset, which makes

evident that the discontinuous interpretation is not suitable for our purpose. Moreover, when phase

measurement errors in displacement images are evaluated, we will assume that they are in the range (-π,π)

(see Chapter 4.2). The decorrelation "spot" enclosed by the black circles in the left column of Fig. 2.22 is

an example of how phase singularities contribute some amount of complete phase decorrelation (cf. Fig.

2.15) even for small ∆x and when branch cuts are ignored.

2.3.3 Second-order probability densities

As above, it proves easier to start with the amplitudes. The joint probabilit y density of the complex

amplitudes A1=A1r+iA1i and A2=A2r+iA2i at the points P1 and P2 is given by [Goo75, p. 42]
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the derivation relies on A1r, A1i, A2r, A2i being all j ointly Gaussian variables, and σ is the same quantity as

in (2.1). Using (2.3) again, the conversion to I and ϕ yields [Goo75, Vry86, Leh98]
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with qJq=1/4 and µA¬pµApexp(iψ). The phase factor ψ of the complex degree of coherence is

deterministic and related to the phase distribution of the ill umination and the scatterer's macroscopic

geometry and symmetry; in general, it represents the non-speckled part of the wavefront. As we are

considering a system that is symmetrical about the optical axis, we can set ψ=0; to preserve generality

however, we will continue including ψ , as it might play a role in other geometries. When pµAp vanishes,

(2.49) can be decomposed into p(I1, ϕ1)�p(I2, ϕ2), reflecting the statistical independence of the functions.

As above, we will now derive some joint probabilit y densities from this general expression.

Since the derivation of the presented expressions relies on jointly Gaussian variables, the extension to

higher orders is in principle straightforward; the third-order pdf p(I1, I2, I3, ϕ 1, ϕ 2, ϕ 3) has been calculated

in [Rao91], also by starting with the complex amplitudes.

2.3.3.1 Intensity statistics

In a first step, we will put the phases aside by eliminating ϕ1 and ϕ2 and obtain [Goo75]
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, (2.50)

where I0 – not to be confused with our intensities – is the modified Bessel function of f irst kind and zero

order. The course of (2.50) is not too complicated, as Fig. 2.23 ill ustrates for I1 fixed to some arbitrary

value. This plot already provides a complete interpretation of (2.50), as it is symmetrical in I1 and I2.

The limiti ng case of pµΑp=1 is not displayed because it corresponds to (x1,y1)=(x2,y2) and yields

p(I1,I2)|�µΑ �=1= p(I1)�δ(I2,I1). For the other extreme, p(I1,I2)|�µΑ �=0 = p(I1)p(I2), with each of them as in (2.6).

Hence, the distribution of I2 is initially free and assumes the well -known exponential form; as pµAp
increases, it is gradually being forced to centre on I1.
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Fig. 2.23: Pseudo-3D plot of p(I1,I2).

To find out the influence of a fixed I1, we write down the pdf of I2 conditioned on I1, which is
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As to be seen, the coupling between I2 and I1 depends on pµΑp and I1. To understand the role of I1, we

visualise three cases with pµΑp=0.1, 0.6, and 0.95, respectively.
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Fig. 2.24: Pseudo-3D plots of p(I2|I1) for �I�=1 and 
�
µΑ

�
=0.1 (left), 0.6 (centre), and 0.95 (right).

While it is not surprising that I2 almost remains a negative exponential when pµΑp is small , we find an

interesting behaviour for intermediate values of pµΑp. When I1 is small , the distribution of I2 is only

slightly altered, which means that the dark portions of the speckle field are narrow structures: their

influence does not reach very far. Then, at large I1 , the maximal probabilit y of I2 reluctantly moves away

from zero, but remains quite low. This means that bright spots do cause their surroundings to get brighter,

but that the latter will nonetheless be considerably darker than the bright spots themselves, in agreement

with the positive correlation of the intensity and its gradient that we found in 2.2.3.1. The last example
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with pµΑp=0.95 supports this further: while p(I2|I1) has its maximum almost at I1 when I1 is low, this

maximum is shifted towards lower values for high I1; for instance, at I1=3, the most probable value of I2 is

¡2.7. This imbalance of properties of "dark" and "bright" structures is the reason why we can instantly

tell a speckle image from its inverted counterpart.

It is clear that I1 also exerts a certain influence on mean value and standard deviations of I2 as compared to

the "free" values given in (2.7). Also these calculations have been carried out [Don79], and we have

( )
( ) ( )

I I I I

I I I I

A A

I A A A

2 1
2 2

1

2
1

2 2 2 2 2
1

1

1 2 1
2

= − + ⋅

= − + − ⋅

µ µ

σ µ µ µ  ,
(2.52)

where we have written down the variance for convenience of notation. It is easy to see that we obtain the

"free" values again for pµΑp=0. With growing pµΑp, the coupling of nI2o to I1 gets stronger and reaches

unity when (x1,y1) and (x2,y2) coincide. For the variance, we find the strongest influence of I1 at

pµΑp¡0.71; of course the variance eventually drops to zero when pµΑp=1. The functions are shown in Fig.

2.25.
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Fig. 2.25: Pseudo-3D plots of �I2�|I1 (left) and σ I2|I1 (right), normalised by �I�.

For nI2o|I1, the above interpretation of (2.52) suff ices to understand the graph: the closer (x2,y2) is to

(x1,y1) (i.e. the larger pµΑp) , the more are the intensities likely to be equal. When looking at σ I2|I1

however, we see that the standard deviation gets larger than the free value σ I2 �I1 �µΑ �=0=nIo when I1 is

large and pµΑp takes on intermediate values. This again shows the tendency for rapid intensity fluctuations

especially in the brighter regions of the speckle pattern. As shown in [Bar87], this remains valid for

aperture-integrated speckle patterns as well .
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2.3.3.2 Phase statistics

To obtain p(ϕ1,ϕ2), we have to integrate (2.49) over I1 and I2, which is rather complicated, but has

fortunately been taken care of before [Mid60, Goo75]; the result is
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−
, (2.53)

where β=|µΑ|cos(ϕ1–ϕ2+ψ) and we deal with ψ as above. To look at the quantity of interest, namely the

phase at (x2,y2) in relation to that at (x1,y1), we can content ourselves with fixing ϕ1 to some arbitrary

value and varying ϕ2 from –π to π. For convenience, we introduce the relative phase variable �¬ϕ1-ϕ2+ψ

and consider p(�), which yields one plot for all ϕ1. Repeating the procedure with swapped angles ϕ1 and

ϕ2 would teach us nothing new, as β is symmetrical in ϕ1 and ϕ2 . The resulting probabilit y distribution of

� vs. pµΑp is shown in Fig. 2.26.
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Fig. 2.26: Pseudo-3D plot of p(�) for 0��µΑ �<1.

For high values of pµΑp, ϕ1 and ϕ2 are indeed close together; as above, the case pµΑp=1 corresponds to a δ

function because of ϕ2|�µΑ �=1≡ϕ1 , and is not plotted. As we recede from (x1,y1), pµΑp decreases and the

likely phase differences spread out, until we have a uniform distribution at pµΑp=0. This constant value at

pµΑp=0 has mistakenly been given as 1/(2π) [Mid60, Goo75]; but as we have fixed ϕ1 to some value, we

see only one of the two angular variables sweep its range in Fig. 2.26; therefore the value producing the

correct normalisation is 1/(4π2), which results immediately from (2.53) when β=0.

The conditional pdf for the phases is simply
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this is the function that we find in [Mid60, Goo75] and that looks qualitatively li ke in Fig. 2.26. When

β<0, the whole function is just shifted by π along the axis of ϕ2 because of –cos(ϕ)=cos(ϕ�π).
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For mean value and variance of ϕ2 conditioned on ϕ1, we have [Don79]
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the last line gives a useful approximation [Leh98]. The mean values instantly get plausible by the

symmetry in Fig. 2.26; we avoid pµΑp=0, because then the statement of a mean value will be meaningless.

The derivation of σ 2
ϕ2|ϕ1 is given in [Don79]; we omit the details here and just retain that the phase

offset, ϕ1 , plays no role at all . Therefore we make use of � again and plot σ� in Fig. 2.27.
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Fig. 2.27: Plot of σ � vs. �µΑ �.

For pµΑp=0, we obtain the "free" standard deviation of π/v3, corresponding to a uniform distribution of

ϕ2; for pµΑp=1, the infinite sum in (2.55) is π2/6 [Bro87], and therefore the standard deviation becomes

zero as expected. It is remarkable how quickly ϕ2 shakes off the influence of ϕ1: for pµΑp=0.8, we have

already σ ϕ2|ϕ1 ¡ π/(2v3). This is the reason why phase-measurement errors due to speckle decorrelation,

i.e. the decrease of pµΑp due to lateral displacement or tilt of the object, increase rapidly initially [Hun95,

Leh97b], while the fringes vanish only gradually as pµΑp'0. Many examples for this quasi-asymptotic

course can be found in Chapter 5. Although pµΑp refers to one and the same stationary speckle field in our

treatment thus far, (2.55) turns out to be a very universal description of phase errors due to fading speckle

correlation [Cre85a, Vry86, Own91a, Hun95, Leh97b]; in fact, once pµΑp can be derived from the

interferometer geometry, (2.55) applies likewise to image-plane decorrelation (lateral object

displacement) and aperture-plane decorrelation (object tilt); moreover, it is almost independent of the ratio
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of speckle size to pixel size. Hence, Fig. 2.27 gives the expected standard deviation of the error in many

ESPI phase measurements, where ϕ1(x,y) is the initial and ϕ2(x,y) the final speckle phase distribution.

2.3.3.3 Interaction of intensities and phases

As already pointed out in [Don79], (2.49) is not separable into a product of marginal pdf's, which means

that all of the involved quantities are mutually dependent. Hence we have dropped some information by

eliminating intensities or phases from (2.49). Also, in 2.2 we have found that high speckle intensities are

associated with low phase gradients, and vice versa. Therefore, we will now consider the interaction of

intensities and phases more generally. This has been done in [Don79] as well; I li st the results for

completeness here and also give a simple qualitative interpretation for �¡π that I think has not been

mentioned before.

Since we are again interested in phase differences between two points instead of absolute phases, our

relative phase variable � will be useful again. Then, we can investigate two general cases: (i), what

influence do I1 and � have on I2, and (ii ) what does � do when we constrain I1 and I2 ? The pdf of I2

conditioned on the other quantities is [Don79]
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where we have abbreviated
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In contrast to the calculations in [Don79], we use pµΑp everywhere; since � appears as an argument of a

cosine only, we can constrain 0���π and still explore -1�pµΑpcos��1; thus, we need not deal with the

ambiguity of µA�cos� as was done in [Don79]. Unfortunately, it is still confusing to go through the many

possible ways of plotting (2.56) with various fixed and running variables, so that we will resort to simpler

functions. Indeed, it turns out that the statistical quantities
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(2.58)

will provide suff icient insight. There are still t hree parameters to vary, namely |µA|, �, and I1; unlike

[Don79], we do not use the composite parameter I1�cos2�/nIo, but only I1, which will allow us a direct

interpretation and to see the effect of � more clearly. We normalise nIo to unity and investigate
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I1 ∈ {0.3, 1, 3}; the corresponding plots are shown in Fig. 2.28. The limit |µA|=1 is diff icult to treat, but of

course it implies I2≡I1 , σ I2|I1,�≡0 and �≡0. Therefore the maximum value of |µA| in the plots is 0.995.

These graphs show all combinations of |µA| and �, although some are almost impossible in the underlying

pdf (2.56).
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Fig. 2.28: Pseudo-3D plots of �I2�|I1,� (upper row) and σ I2|I1,� (lower row) for I1=0.3�I� (left), I1=�I� (centre),

I1=3.0�I� (right).

All the functions show a pronounced dependence on � that gets stronger as I1 increases; the curves for

�=0 correspond approximately to those in Fig. 2.25, while for ��π/2, both nI2o|I1,� and σ I2|I1,� approach

zero monotonically as we increase |µA|. It is easy to see that the monotonic decrease sets in at �=�π/2,

where δ=0 and

( )I I I II A2 1 1
2

2
1| , | ,ϑ σ ϑ µ= = − ; (2.59)

hence, for a phase difference of �π/2 between (x1,y1) and (x2,y2), I2 is not only li kely to be smaller than I1,

but will probably even be smaller than nIo. This agrees with what we have found before: given a large

phase difference between two points, we are the more certain to find a very low intensity at one of them

the closer they are together. In particular, for �¡π and |µA|¡1, we are near a phase singularity, which

interpretation is also helpful in understanding the asymmetry in the corresponding plots in [Don79]. Then

of course a high value of I1 is very rare, but not completely impossible.
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The second case we will consider is [Don79]
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as already shown in (2.53) and (2.54), one could eliminate ϕ1 simply by multiplying p(ϕ2pI1,I2,ϕ1) with

2π, yielding p(�pI1,I2). Like in 2.3.3.2, the symmetry in � gives immediately

ϕ ϕ ϕ β
ϕ π β

2 1 2 1 1

1

0

0

| , ,I I = >
= + <

. (2.61)

Therefore the variance again depends on |µA| only, and we get [Don79]
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where In(�) are the modified Bessel functions of f irst kind and nth order. It is now instructive to compare

this function with (2.55) for various speckle intensities. Since the intensities appear together in z, we can

set nIo=I1=1 and vary only I2 ; Fig. 2.29 covers the range of 0.1< I I1 2 <10. As before, we plot the

standard deviation rather than the variance.
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Fig. 2.29: Pseudo-3D plot of σ�|I1,I2 for a large range of speckle intensity ratios I2/I1.

For large values of I1I2, σ�|I1,I2 decreases rapidly as soon as |µA|>0, which means that in the very bright

speckles, the phase indeed shows good constancy. At I1I2=nIo, the standard deviation is still everywhere

below the "free" (i.e. unconditioned) value of Fig. 2.27. As I1I2 decreases, σ�|I1,I2 grows and eventually
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exceeds σ� everywhere. Hence, most of the unconditioned standard deviation is due to those ¡63%

(1-1/e) of the speckle field that are darker than nIo. As above, the application of (2.62) to interferometry

with partially decorrelated speckle fields is possible [Leh97b], which immediately shows that phase

measurements from bright speckles are more reliable than from darker regions of the field. Because of the

low speckle intensity, the interferometric signal will be weak and susceptible to electronic noise, to which

also a "decorrelation" parameter can be assigned [Hun97]. The remaining interference amplitude will be

further diminished by integration of the rapid spatial phase fluctuations over the pixel area. Finally, the

averaged phases will also strongly fluctuate from pixel to pixel, which makes the phase measurement by

SPS more diff icult. The best way to evade such problems would really be to retrieve all phase

measurements from bright speckles; one step in that direction will be shown in Chapter 6.6.
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3 Electronic or Digital Speckle Pattern Interferometry

The speckled wave scattered off an object bears a random intensity and phase structure that, in itself, will

not reveal information about the object’s macroscopic shape or deformation. By superposition with a

reference wave, it becomes phase sensitive and the intensity modulation of each speckle is deterministic.

It obeys the relationship

I x y O x y R x y O x y R x y x y x yO R( , ) ( , ) ( , ) ( , ) ( , ) cos( ( , ) ( , ))= + + −2 ϕ ϕ (3.1)

where I denotes the interferogram intensity, O that of the object wave and R that of the reference wave,

and ϕO and ϕR the respective phases; x and y are the co-ordinates of the image plane. While both O and ϕO

fluctuate strongly with x and y, the spatial variations of R and ϕR are generally negligible. For the sake of

readabilit y, we will henceforth omit the spatial dependence of all variables. If two speckle interferograms

are recorded, we have

I O R O R

I O R O R

i i i i i O i R i

f f f f f O f R f

= + + −

= + + −

2

2

cos( )

cos( )

, ,

, ,

ϕ ϕ

ϕ ϕ
, (3.2)

with subscript i for the initial and f for the final object state. On assuming that the intensities do not

change during the experiment – which is easy to assure for R but requires the absence of speckle

decorrelation for O –, we can reasonably rewrite this as

I O R OR

I O R OR

i O

f O

= + +

= + + +

2

2

cos( )

cos( )

ϕ

ϕ ϕ∆
, (3.3)

where we have set ϕR,i=0 without loss of generality, and omitted the "initial" subscript for the speckle

phase. The deterministic phase change ∆ϕ is caused by object displacements, but includes possible global

fluctuations of ϕR,f as well . From (3.3), the difference to classical interferometry is clear: for diffusely

reflecting objects, no reference surface is available, and we need to compare it with itself. This can be

done either by holography [Har94], where we have true interference of two object wavefronts, or by

acquisition and subtraction of digitised interferogram intensity data [Løk87, Dov00]. The latter is

commonly called digital or electronic speckle pattern interferometry (DSPI or ESPI), and the digital

difference images are sometimes referred to as secondary interferograms, which is to distinguish them

from direct, or primary, interferometric images.

Compared to holographic interferometry, the resolution of the pixel array-based digital method is poor,

but with appropriate magnification of the object surface, still suff icient for many purposes. Among the

advantages of an electronic system are versatilit y and very quick carrying out of experiments. Fig. 3.1

sketches the basic parts of an ESPI set-up.
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Fig. 3.1: Standard ESPI set-up.

The object is ill uminated by a coherent wavefront, typically an expanded laser beam; its surface is imaged

with an objective onto an electronic image converter (CCD or, more recently, also CMOS chip) where a

subjective speckle pattern is observed. The reference wave is re-combined with the scattered object light

by a beam splitter; it should be focused in the aperture plane so that its radius of curvature matches that of

the object wave, the origin of which may be thought to lie in the centre of the aperture. Otherwise

concentric interference fringes will be generated that decrease the contrast of the interference signal. The

interferograms are digitised, most conveniently, but not necessarily, with one-byte resolution, and stored

in the memory of the connected computer for whatever image processing is desired.

The aperture size is usually chosen to match the speckle size to the camera’s pixel dimensions [Joh89],

based on the ad hoc consideration that this ensures best spatial resolution and best fringe visibilit y. It has

been shown however that resolving the speckles is not strictly necessary [Wyk87, Yos95, Maa97] and that

even a speckle size of 1/8 pixel is suff icient to obtain a usable signal, which greatly improves light

eff iciency [Leh98]. On the other hand, adjusting too large a speckle size results in reduced spatial

resolution, faster speckle decorrelation and waste of light eff iciency because of the small aperture.

By appropriate choice of ill umination direction(s) and wavefront form(s), the assembly can be made

sensitive for displacements normal or parallel to the object’s surface, or mixtures thereof. The former is

called out-of-plane set-up, the latter is referred to as in-plane geometry. Examples and sketches of the

different types can be found in Chapter 5.

The applicabilit y of ESPI is mainly limited by speckle decorrelation, caused by large object displacements

or changes in the object´s microstructure, which can lead to severe signal degradation. The sensitivity of

the ESPI system to these effects depends on, e.g., the speckle size and the dimensions of the image field.

Also, for the secondary displacement fringes to be well resolved, their width should exceed
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some 4 speckle sizes. This value was given in [Tan68] for holography; in ESPI however, the detector's

pixel size plays a role as well .

3.1 Subtraction-mode ESPI

On subtraction of the interferograms obtained from the initial and final object state, we have
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with the second sine term representing the signal fringe profile and the first sine term the multiplicative

speckle noise on it. Thus, one obtains a – secondary – fringe profile from the subtraction of two

– primary – speckle interferograms. To give these fringes the familiar appearance of interferometric

fringes on, e.g., a monitor, the negative values in the difference image have to be converted into positive

ones. In DSPI, it is easy and customary to use the modulus of the difference,

I I ORf i O− = +
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2 2
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; (3.5)

averaging over ϕO gives a mean fringe intensity of
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(3.6)

in the so-called correlation fringes (note that the fringe envelope is not cosinusoidal and only serves to

visualise the object changes). If an initial speckle interferogram is stored and the difference between it and

the current one is viewed, one gets darkness where the optical phase is the same in both the images (i.e.

the optical path has changed by an integer multiple of the wavelength) and brightness where the difference

is maximum (i.e. the path has changed by an odd multiple of half the wavelength). Thus the digital

secondary interferograms are formed.

Another way to generate the output is to square the fringe signal, in which case the fringe profile is given by

( )I I ORf i O− = +



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



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2 2 216
2 2

sin sinϕ
ϕ ϕ∆ ∆

(3.7)

and, after averaging over all ϕO ,
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This method yields a cosine profile and should be more suitable to generate correlation fringe images as

an input for phase-shifting methods; but in the face of the drawbacks of the correlation fringe method

discussed below, the performance gain will be negligible.

The dark regions of the images are noise-free, while the quality of the bright fringes is degraded by

speckle noise: the visibilit y of the primary interferometric intensity modulation depends on the individual

speckle brightness and hence fluctuates from point to point. Moreover, there are points where, due to

unfavourable ϕO, the subsequent phase change does not effect a brightness change:

cos( ) cos( )ϕ ϕ ϕ ϕ
ϕ

O O O= + ⇔ = −∆
∆
2

, (3.9)

which just means that ϕO and ϕO +∆ϕ are symmetrical about a – primary, cf. (3.3) – intensity extremum;

and there are many more points coming close to this condition. While (3.9) is true for every

interferometric measurement, it is – besides the fluctuations of O(x,y) – the randomness of the ϕO that

prevents a spatially uniform detection of ∆ϕ. It is worth noting that in the averages over ϕO in (3.6) and

(3.8), this loss of signal leads to the factors 2/π and ½, respectively.

If, however, another pair of interferograms were available with phase offsets of, say, π/2 each, we would have
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and could average the two secondary interferograms to obtain brighter correlation fringes:
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The improvement of using (3.11) over (3.5) is demonstrated in Fig. 3.2, where on the left-hand side an

image according to (3.5) is shown, and on the right, a superposition according to (3.11); the increase in

brightness should be v2 and is in fact 1.38. In simple words, the disadvantageous points of one image are
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fill ed up by well -modulated data from its �π/2-complement. But of course, controlled phase shifts are not

automatically available in an ESPI system.

  

Fig. 3.2: Left: ESPI correlation fringes from subtraction of two primary speckle interferograms; right: average of

two correlation fringe images with phase offsets of π/2 in the underlying primary interferograms I i , I iπ/2

and I f , I fπ/2 (see text).

Although the optimisation of speckle size and fringe contrast has been the subject of numerous studies

[Tan68, Sle79, Wyk87], the overly – in the sense of (3.9) – speckled appearance of the correlation fringes

still limit s the accuracy of ESPI measurements to about 1/10 fringe. Moreover, the fringe profile is an

even function of ∆ϕ, which makes it impossible to determine the sign of the measured displacement

gradient. To get rid of this ambiguity, a-priori information has to be used: either a pre-set bias fringe

pattern with known phase gradient reveals the relative fringe orders when it changes, or the load is applied

in such a way that only one direction of deformation gradient is possible [Wya82, Mat88].

A far more elegant method to retrieve quantitative displacement data is to convert the cosine into a

tangent by means of several phase samples and then to extract the phase mod 2π by a four-quadrant

arctangent. This approach has become very popular under the name of phase sampling – although it relies

on intensity sampling –, or phase shifting. It eliminates completely the diff iculties described by (3.9),

which is an important reason for its superior performance.

3.2 Phase-shifting ESPI

The technique of phase sampling or quasi-heterodyning has long been known in information theory and

has first been used in classical interferometry to enhance accuracy [Car66, Bru74, Wya75]. After the

application of phase shifting to holographic interferometry [Har82, Cha85], it was the merit of [Nak85,

Cre85b, Ste85, Rob86] to have realised that also a digital speckle interferogram is an array of independent

"micro-interferometers" that work like classical ones – although some of them suffer from too faint an

object wave.

Hence, the phase information of a speckled wave front, although random per se, nevertheless responds

deterministically to phase changes due to displacement or deformation of the test object, and digital

subtraction of two speckle phase fields yields a difference phase field. The use of phase shifting has
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greatly extended the possibiliti es of ESPI and enhanced the attainable accuracy of phase measurements by

a factor of about 10. Whereas quantitative evaluation of correlation fringes requires sophisticated

automation algorithms (see Chapter 4.1) or laborious interactive procedures, the phase shifting method

automatically yields complete phase maps, so that today the correlation fringe methods have mostly been

superseded by phase-shifting ESPI.

To introduce temporal phase sampling, or stepping, we establish the expression

I x y t I x y M x y x y t x y tn n b I O n n n( , , ) ( , ) ( , ) ( ( , , ) ( , , ))= + ⋅ +cos ϕ α (3.12)

with

n: number of phase sample

In: measured intensity in the nth frame

Ib: bias intensity; corresponds to O+R

MI: intensity modulation; corresponds to 2�vOR

ϕO: speckle phase

αn: additional (known) shift of ϕR ; generally, αn=n�α and n ∈ {0,..,N-1}.

For now, we restrict ourselves to static phase shifts, since a distinction between temporal and spatial

phase ramping must be made that will be described in 3.3 and 3.4.4, respectively. Also, ϕR has been set to

zero as above. All quantities depend on x and y due to the underlying speckle field. The phase shift

αn(x,y,tn) may be, but in practice seldom is, spatially uniform; various numbers N of phase samples can be

used. Assuming O(x,y) and R(x,y) to remain temporally quasi-stable, we still have to account for possible

temporal fluctuations of ϕO and ϕR. For convenience we put them all i nto ϕO.

The set of equations given by (3.12) can easily be linearised; the principle is outlined in Appendix C. It

contains three unknowns, namely Ib, MI, and ϕO, and hence we need at least three linearly independent

measurements of the In (N�3), with pairwise different αn, to solve unambiguously for ϕO. This can be

done by generating an expression that gives tan(ϕO)=sin(ϕO)/cos(ϕO); i.e. one needs a numerator

proportional to the sine and a denominator proportional to the cosine of ϕO . To achieve this, the In are put

together as
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which is valid for any phase-sampling scheme. In all of such formulae, the coeff icients in numerator and

denominator add up to zero, which cancels the contribution from Ib. The simplest expression to evaluate

the recorded data relies on equally spaced αn that are uniformly distributed in the interval [0,2π); it is well
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known since decades [Bru74] and has recently been referred to as DFT (digital Fourier transform) formula

[Sur96]:
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With this choice of the an and bn , numerator/denominator represent the digital implementation of a

Fourier sine/cosine transform [Bra87, p.17], where α(x,y,t) has an angular frequency of 2π/(N samples)

and the sample interval is in time or space units; the Fourier aspect of phase sampling will be treated in

greater detail i n 3.2.2. The signs of numerator and denominator are used to generate a 0-2π arctan, in

contrast to its mathematical definition used in Chapter 2, where it ranges from –π/2 to π/2. This is more

convenient when converting the phases to grey levels.

For 3-step formulae, one can also choose n ∈{ -1, 0, 1}, thus assume phase shifts of { -α, 0, α} and write

down the generally valid expression [Cre88, Schwi90, Gre92]

ϕ π
α

α
α

O
I I

I I I

I I

I I I
mod2 =

− −
− −







 = 





−
− −







−

−

−

−
arctan

cos

sin
arctan tan

1

2 2 2
1 1

0 1 1

1 1

0 1 1
. (3.15)

Much work has been done to improve these simple approaches to very sophisticated sampling schemes,

frequently at the expense of increased N . These are often called algorithms, although their flow diagrams

are trivial; to distinguish them from another class of phase-retrieval methods that are truly algorithms

[Ger72, Fie82, Rav99], I will avoid the term "algorithm" henceforth. Today, there are not only tailored

formulae with excellent rejection of various errors [Schwi83, Har87, Lar92b, Sur93, Schwi93, dGro95,

Hib95, M�o95, Schmi95a, dGro97, Hib97, Küch97, Ser97b, Sto97, Zha99], but also, the properties of

phase-shifting formulae are by now so well understood [Fre90a, Lar92a, Rat95, Sur96, Phi97, Sur97b,

Sur98c, Dor99] that for many purposes phase-extraction schemes can be tailored to adapt to the particular

task. Good measurements reach an accuracy of about λ/100 [Schwi83, Har87].

But the basic approaches with N=3 to 5 have survived in ESPI because superb theoretical accuracy would

remain theoretical where speckle noise and decorrelation set the limits. Also, since ESPI is obviously not

concerned with precision surfaces, the requirements are often lower.

Moreover, a small N helps to determine phases very quickly: since the most time-consuming step in phase

calculation is the arctangent operation, it is advantageous to map all possible values of numerator and

denominator in two-dimensional look-up tables (LUTs).

The size of these LUTs depends on the digital resolution as well as on the respective number of samples

involved. In the case of (3.15) with 8-bit digitisation, the LUT would have 511�1021 entries, because the

numerator can range from –255 to 255 and the denominator from –510 to 510. These integers then serve

as matrix indices to retrieve the associated phase value, which is often represented by an 8-bit integer as
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well . This has been successfully applied in practice (cf. Chapter 6.7) and simpli fies the account of

[Nak95], where a 3-D phase LUT was used. But in general, the LUT approach works only if all the

coeff icients an, bn can be integrated in the LUT; hence the requirement is that the coeff icients, or at least

their ratios, be expressible by integers; an example is given in Appendix B.

For all these practical reasons, we will restrict ourselves to standard three- or four-sample formulae in this

work. From (3.14), we get the widespread four-step formula for α=90°,

ϕ πO
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−
−

arctan 3 1

0 2 (3.16)

and the three-step formula for α=120°,
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(3.17)

where a factor of ½ has been cancelled from the fraction. Note that this formula follows likewise from

(3.15) because, for α=120°, I -1±I2. If however α=90°, (3.15) delivers the three-step (non-DFT) formula

ϕ πO
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0 1 12
.

(3.18)

To simpli fy (3.18), it is usual to accept a phase offset – which is hardly relevant in classical, and less so in

speckle interferometry – and choose a representation in which the coeff icients are equal for all i ntensity

samples:

( )ϕ πO
I I

I I
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−
−

45 2 1

0 1
mod2 arctan

(3.19)

As mentioned above, the phases obtained from such calculations can be mapped onto a grey scale of, say,

256 steps. When ϕO crosses a 2π boundary, it jumps back to zero, and so do the associated grey levels;

this is why the images thus generated are known as sawtooth images. Since speckle interferometry is

about comparing phases, we will dedicate the following subsection to finding out the best way to do so.

3.2.1 Calculation of phase changes in ESPI

There are several ways to come from interferograms to ∆ϕ(x,y), the displacement phase map which is

represented in a sawtooth image; and since the accuracy in measuring ∆ϕ(x,y) is the pivotal issue in this

work, it is certainly worthwhile to investigate the different strategies in detail .

In what follows, we will refer to the first two approaches by the handy terms "phase of difference" and

"difference of phase"; this nomenclature follows [Moo94], one of the relatively few papers on ESPI

concerned with quantitative performance issues. For the third method, I propose the term "complex

division". All of the methods have been introduced together with phase-shifting ESPI [Nak85, Cre85b,

Ste85]. First of all , the treatment concerns temporal phase shifting, i.e. we shift the phase in time,



                                                                   3.2 Phase-shifting ESPI                                                               55

αn=α(tn), to obtain a temporal sequence of phase-shifted interferograms In(x, y, tn); but once we have

clarified the different methods, the transfer to spatial phase shifting is very simple.

3.2.1.1 Phase-of-differences method

The first approach to think of when processing secondary interferograms is to determine their phases as

familiar from primary interferometric fringes. Given a set of images In,i of the initial object state, one then

needs only one frame I0,f of the final state, so four or five images are suff icient to use the phase-shifting

methods of (3.16) or (3.17), respectively. As only one frame of the final object state is involved, we shall

call the In,i plus I0,f a "reduced" data set. The phase-shifted secondary correlation fringes In,c are formed

according to

( )
( )

I I I
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OR
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n c f n i
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∆

∆ ∆

∆ ∆ ,

(3.20)

where the first cosine describes the speckle noise in the correlation fringes and the second cosine is the

envelope, phase shifted by αn. This approach offers one significant advantage: if the object under test can

initially be observed at rest, the capturing of one interferogram suff ices later on to obtain phase-shifted

correlation fringes.

There is another important consequence of (3.20) that has, as far as I know, not been emphasised before:

the first cosine depends on 2ϕO. This is of course owing to the squaring operation – and would not look

very different if we were dealing with the modulus –, but it means that we cannot distinguish between

positive and negative speckle intensity changes anymore. Thus, half the information delivered by the

intensity changes is discarded, with important consequences for the measured ∆ϕ. The situation is

represented in Fig. 3.3: the black curves show the result of using squared correlation fringes as in (3.20)

for the standard four-sample phase calculation of (3.16).

To the left, a simulation result is shown: for each pre-set ∆ϕ , 64 different ϕO , uniformly distributed over

[0,2π), were inserted into (3.20) to form the corresponding sets of In,c , where α=90°. These 64 sets of In,c

were inserted as the In in (3.16) to yield 64 values for ∆ϕ , whose average appears as calculated ∆ϕ . The

average over all ϕO thus gives the expectation value of the calculated vs. the true displacement phase. On

the right, the measured ∆ϕ ¡ ∆ϕ(x), i.e. for vertical sawtooth fringes (cf. Fig. 3.4), averaged over 200

rows and represented as grey values, confirms that indeed the extraction of ∆ϕ is almost impossible after

the squaring or rectification process. The white curves refer to the difference-of-phases method and will

be discussed below in 3.2.1.2.
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Fig. 3.3: Left: calculated ∆ϕ , averaged over ϕO , vs. pre-set ∆ϕ , for the methods to be compared in this subsection.

Right: measured profiles of vertical sawtooth fringes, averaged over 200 rows.

Evidently, the phase-shifting method is not directly applicable to speckle correlation fringes. It will only

work acceptably if the individual speckle phases are suppressed, i.e. the secondary interferograms must be

smoothed to approximate the cosinusoidal envelope of (3.20) as closely as possible. This is usually done

by a low-pass filter and reduces the spatial resolution.

The left-hand part of Fig. 3.4 shows the fringe profile plotted in Fig. 3.3 on the right: surprisingly, the

image does yield direction information, although the averaged fringes do not. The reason is that for

π/4< ∆ϕ <3π/4, the average is actually made up of intermediate grey values; for the other ∆ϕ , black and

white occur more frequently. The standard deviation of the difference between the calculated ∆ϕ and the

best fit of a noise-free sawtooth image (cf. Chapter 4), σ∆ϕ , is 62.1°, and the pdf of the calculated ∆ϕ
shows four pronounced maxima, as depicted in the grey-level histogram. All the histograms in this

subsection have been generated from 5.0 fringes, so that the measured phases ought to be uniformly

distributed. On the right side of Fig. 3.4, the sawtooth image was calculated from correlation fringes

previously smoothed by a 9�9 averaging filter, which reduces σ∆ϕ to 7.7°. Although this is quite large a

filter, the speckle structure has not disappeared; and since the spectral power density of a speckle pattern

keeps increasing toward the spatial frequency of zero, it is not possible at all to remove the speckle noise

in the correlation fringes by low-pass filtering. Therefore, the measured phases are still not uniformly

distributed: this effect cannot be suppressed either.

 

Fig. 3.4: Results of calculating ∆ϕ from raw (left) and 9
�

9 low-pass filtered correlation fringes (right). Inserted

histograms show relative pixel counts of grey levels from 0 to 255.
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But remembering that we have initially been enforcing positive intensity values only to display them

conveniently on a screen, one might argue that there is no real need to do so. Therefore we have to settle

the question whether a kind of "signed" correlation fringes exists that circumvents the problems

associated with squaring or rectification. If we form fringes according to

( )I I I ORn s f n i O O n, , cos( ) cos( )= − = + − +2 ϕ ϕ ϕ α∆ , (3.21)

with the subscript s for "signed", all of the information is being preserved. Unfortunately, when we insert

these In,s into a phase-shifting formula like (3.13), we cannot measure ∆ϕ: because of a bn n∑ ∑= =0, the

contributions from the first cosine are cancelled, and what we then measure by phase shifting is just the

speckle phase. This has been verified experimentally and demonstrates that really some information is

lacking from our reduced set of images In,i and I0,f .

Nonetheless, some specialised methods exist that can determine both ∆ϕ and ϕO, correct for ϕO and thus

generate acceptable sawtooth images from unfiltered correlation fringes. In [Kuj89] a so-called "speckle

phase correlation method" is derived for α=120° that indeed uses I{ 0,1,2} ,i and I0,f 
* without filtering. The

same is done in [Moo94] for α=90° and I{ 0,1,2,3} ,i and I0,f . However, none of these methods can find the

correct speckle phase without help: the equations involve an arccosine and a square root and have four

solutions, which again reflects the loss of information brought about by the rectification. This problem is

solved by initially generating a smoothed phase map ∆ϕ filt in the usual way (Fig. 3.4, right side), which

serves as a reference: that solution for ϕO which brings ∆ϕ –ϕO closest to ∆ϕ filt is selected as the correct

speckle phase and subtracted. In this way, the phase measurement from raw correlation fringes can be

significantly improved, as shown in Fig. 3.5.

 

Fig. 3.5: Results of calculating ∆ϕ with the method of [Kuj89] (left) and [Moo94] (right); the underlying sets of

interferograms come from two different experiments with α=120° and 90°, respectively.

                                                

*With a misprint in one of the expressions, which should read c
I I I

I=
+ +

−1 2 3
43  in the nomenclature used.



58                                        Electronic or Digital Speckle Pattern Interferometry                                            

The left image in Fig. 3.5 was calculated according to [Kuj89] from a data set with α=120°, which

reduced σ∆ϕ = 62.6° as obtained from raw correlation fringes (image not shown) to σ∆ϕ = 24.0°. To the

right, the method of [Moo94] was applied to the previous data set with α=90° that led to the results in Fig.

3.4, and σ∆ϕ dropped to 27.2°. In both cases, the accuracy is more than doubled and most of the initial

spatial resolution is maintained. The price for this is increased computational effort: a reference phase

map must be generated first, whose lower resolution may influence the choices for ϕO somewhat, and one

out of four phase values must be selected for every pixel. Since generally no ideal reference image will be

available, the errors in it will also influence the choice of ϕO and propagate into ∆ϕ. Finally, the histogram

distortion can in neither case be removed.

Another method that uses I{ 0,1} ,i and I{ 0,1} ,f with α=90° has been proposed in [Own88]; while it is

obviously not suitable for highly dynamic phenomena, it does find ∆ϕ unambiguously. The result of this

calculation can be seen in Fig. 3.6. Both the phase map (σ∆ϕ = 53.2°) and the histogram of the phase

distribution show that this method is rather susceptible to noise; therefore it has been used in [Own88,

Own91b] with smoothing the sine and cosine terms before calculating ∆ϕ. The argument of calculation

speed that led to the development of this method is not important anymore; but interestingly, the very

same scheme has meanwhile been applied in temporal phase unwrapping, again for reasons of, inter alia,

speed [vBru98, vBru99].

Fig. 3.6: Result of calculating ∆ϕ with the method of [Own88].

As these considerations have shown, the use of ESPI correlation fringes for phase-shifting purposes is

problematic when we are considering raw, i.e. unfiltered, phase data. This is because one uses only one set

of phase-shifted data to determine ∆ϕ . Nevertheless, this approach may sometimes be a good way to

perform phase measurements when dynamic objects are studied.

3.2.1.2 Difference-of-phases method

Provided it is possible to record two sets of phase-shifted interferograms In,i and In,f  for both object states,

one can calculate two speckle phase maps by, e.g., (3.16):



                                                                   3.2 Phase-shifting ESPI                                                               59

ϕ π

ϕ π

O i
i i

i i

O f
f f

f f

x y
I x y I x y

I x y I x y

x y
I x y I x y

I x y I x y

,

,

( , ) arctan
( , ) ( , )

( , ) ( , )

( , ) arctan
( , ) ( , )

( , ) ( , )

mod2

mod2

=
−
−

=
−
−

3 1

0 2

3 1

0 2

, (3.22)

and then determine the phase change

( )∆ϕ π ϕ π ϕ π π( , ) ( , ) ( , ), ,x y x y x yO f O imod mod2 mod2 mod22 = − . (3.23)

Admittedly, this requires more information than the phase-of-difference approach – 8 images with (3.16),

and 6 with (3.17) –, but eliminates all the problems brought about by the ambiguity of intensity

differences. Also, the pixels are truly regarded as independent entities, which accounts appropriately for

the speckle nature of the wavefront to determine. In this case, the phase calculation reproduces the

expected fringe profile rather well , as the white curves in Fig. 3.3 demonstrate. The displayed sawtooth

edges are somewhat blurred by the averaging over the residual speckle noise; but the corresponding

measured phase map, shown in Fig. 3.7, is of excellent quality when we compare it with the other

unfiltered results obtained so far. In that case, σ∆ϕ = 18.2° without any low-pass filtering. Also, the pdf of

measured phases is now uniform, which shows that computational biases are negligible for this method.

Fig. 3.7: Result of calculating ∆ϕ with the difference-of-phases method.

This confrontation clearly indicates that it is necessary to genuinely measure the speckle phases twice to

get the best sawtooth image. While an approximate recovery of information from reduced data sets is

possible, the performance of this approach remains restricted. Therefore, the performance data given in

chapters 5 and 6 are based on sawtooth images from the difference-of-phases method without exception.

A practical merit of keeping ready the speckle phase distributions for every recorded object state is that

one need not compare all data to the initial state anymore. In other words, it becomes possible to track

phase differences incrementally even if the first and last state show decorrelated speckle patterns [Flo93].

We will come back to this issue in Chapter 6.7.
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3.2.1.3 Complex-division method

Both of the methods discussed thus far have in common that they require one phase calculation and one

subtraction, and differ in the order of these operations. There are however also methods to calculate ϕO in

only one computation step. They require two complete phase-shifted data sets and combine the steps of

phase calculation and difference formation in one formula. Examples of such calculations have been

given before [Ste85, Ste90, Fac93, Hun93a, Sal96]; however the somewhat laborious derivation of the

formulae can be generalised and greatly simpli fied when treated by the formalism of complex division

[Bur98b]. As mentioned above, the numerator in phase-shifting formulae should correspond to the sine

and the denominator to the cosine of the phase angle to be found, so that we can switch to complex

notation and write:
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Now ∆ϕ can be determined according to
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Eventually we combine these expressions to get
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which provides a generally valid instruction on how to compose the expressions of phase-shifting

formulae; of course, the same result follows from the trigonometric relationship for the difference of

arctangents [Cre94]. Now we can instantly establish one-step calculations; for instance, from (3.16),

∆ϕ πmod2
3 1 0 2 3 1 0 2

0 2 0 2 3 1 3 1
=

− − − − −
− − + − −

arctan
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and (3.17) changes to
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These formulae help to save processing time, since (i) no intermediate images are formed, and (ii ) only

one arctangent calculation per pixel is required. But due to the involved multiplications, this method can

be accelerated by LUTs only if enormous storage space or substantial data reduction in the LUT are

acceptable.

As the complex-division method is mathematically equivalent to the difference-of-phases approach, the

performance in terms of σ∆ϕ is exactly the same for both of them. It has however been demonstrated in

[Vik93] that phase differences can be determined from six intensity samples even with an unknown phase

shift.

3.2.2 Spectral transfer properties of few-sample phase shifting formulae

In our context of spatial phase shifting, the number of phase samples must be as small as possible, e.g.

three or four; at the same time, the phase extraction method should possess the best possible tolerance of

speckle intensity and phase gradients. The latter cause deviations of the phase shift from its nominal

value. A valuable tool to investigate the behaviour of phase-sampling formulae under linear phase-shift

miscalibrations (also called "detuning") is the so-called "Fourier description" of phase-shifting formulae.

It was begun in [Ohy86, Ohy88], developed to its full potential in [Fre90a] and is nowadays a common

tool to assess the performance of phase-sampling formulae [Lar92a, Hib95, M�o95, Schmi95a, Hib97,

Zha99, Mal00]. We will restrict the discussion to linear miscalibration sensitivity here, for which the

Fourier description is particularly suitable. Moreover, it will provide a means to quantify how the signal

sidebands in the frequency spectra of SPS interferograms (cf. Fig. 3.29) will be used and/or altered by the

phase calculation.

To understand the behaviour of some few-sample methods in the frequency domain, we will briefly review

the underlying principles. Some emphasis is put on the spatial version of phase extraction; but the phase-

shift parameter x, denoting one spatial co-ordinate, can be replaced by t as well . As (3.14) indicates, the

general task in phase determination is to generate signals that are proportional to sine and cosine of the phase

of an unknown signal, say, I(x), and then extract its phase ϕ by an arctangent operation. We start with the

continuous (analogue) description of the process, which will help to clarify the properties of the discrete

(digital) version. An extensive overview of the formalism, and also of the spectral characteristics of many

phase-shifting formulae besides the ones that we will examine here, can be found in [Mal98, pp. 113-245].

3.2.2.1 Analogue synchronous detection

When I(x) is modulated with a so-called carrier frequency νx , we can write

I x I x M x x xb I x( ) ( ) ( ) ( ( ) )= + ⋅ +cos ϕ πν2 (3.30)

and use the well -known method of "synchronous detection" to extract the phase ϕ(x) in (3.30). An early

application of this method to spatial fringe analysis has been given in [Ich72]; moreover, it is the principle

upon which lock-in ampli fiers are based. The first step of synchronous detection is to multiply the input
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signal I(x) with suitable "filter functions" of the frequency ν0x , where generally ν0x¡νx is assumed. It is

however essential to note that we will l ater be concerned with the effects of νx ≠ν0x . To measure the

phase, we define the filter functions as
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C x x
x

x
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= −
=

2

2
0

0
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πν ,

(3.31)

and the multiplications yield the signals
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(3.32)

Both of the equations contain contributions from the pure carrier frequency and from difference and sum

frequencies. Since νx¡ν0x, the difference frequencies are low; in the ideal case, νx–ν0x =0, and the low-

frequency contribution is determined by ϕ(x) alone. One can think of the fringes resulting from the

multiplication as a moiré effect [Wom84, Ara97, Kat97]. The second step of synchronous detection is to

remove, or "filter out", the high-frequency terms by integrating the product functions, which gives the so-

called "filter outputs". This integration, or filtering, is achieved by the cross-correlation functions

S x I x S x x dx

C x I x C x x dx
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= −
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if we calculate them for x'=0. The "filter outputs" therefore are

S I x S x dx x
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(3.34)

Using the central ordinate theorem [Bra87, p. 136] together with the convolution theorem [Bra87, p. 110],

we can replace I(x), S(x) and C(x) by their Fourier transforms* [Fre90a; Mal98, p.134] and rewrite (3.34) as

                                                

*To apply the convolution theorem, we must use S(x'–x) and C(x'–x) in (3.33), which changes the correlation into a convolution.

The sign change in (3.33) then simply leads to a complex conjugation in (3.35). This is possible since S(x) and C(x) are real

functions, which means that their Fourier transforms are Hermitian. This is, their real parts are even and remain unaffected by

the sign change, while their imaginary parts are odd and must be inverted after the integrations in (3.33), although their

contributions vanish anyway.
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where tilde denotes the Fourier transforms and the sign convention [Bro87]

~
( ): ( )exp( )f f x i x dxx xν π ν= +

−∞

∞
∫ 2 (3.36)

is adopted, i.e. the phase runs forward in the Fourier transform.

It is seen from (3.35) that the spectrum of I(x) is weighted, or filtered, by the spectra of S(x) and C(x),

which is why we have called them filter functions. We will t herefore refer to 
~

( )S xν  and 
~

( )C xν  as filter

spectra. Since I(x), S(x) and C(x) are real functions with Hermitian Fourier transforms, we can simpli fy

the integrals (3.35) to [Fre90a]
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This is, the filter outputs are indeed composed of all i nput spatial frequencies that may be present in I(x),

with weights determined by the moduli of the filter spectra, 
~

( )S xν  and 
~

( )C xν ; we will refer to these

latter also as filter responses. With our initial choice of S(x) and C(x), we have
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being proportional to the Fourier sine and cosine transforms [Bra87, p. 17] of I(x) at the frequency ν0x ,

and the spectral descriptions read:
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(3.39)

This models the ideal case that we can evaluate the signal over an infinite amount of space, which leads to

unity filter responses at the nominal frequency ν0x and perfect suppression of all other νx .
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Finally the third step of synchronous detection is the extraction of ϕ(x), using (3.34) and (3.39), by means of
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It was shown in [Fre90a] that a correct phase determination requires
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this is, the filter spectra must have equal magnitudes (also called "responses") and be 90° out of phase

(also called "in quadrature"), so that S'(0) represents the sine and C'(0) the cosine of ϕ(x). As a summary

of the involved operations, the whole procedure has been given the name of "quadrature multiplicative

moiré" [Wom84].

In (3.40), (3.41) need only hold for ν0x , since nothing is detected at other νx ; but when we confine the

integration to a finite interval (–X,X) instead of (-7,7), the filter responses will broaden around ν0x . This

need not be a disadvantage, because more signal energy – if present – may be utili sed in this way; and as

long as (3.41) remains valid, ϕ(x) can still be correctly determined also for νx ≠ν0x . The objective of phase

sampling is now to satisfy (3.41) with only a short sequence of digitised samples of I(x).

3.2.2.2 Digital synchronous detection

Let us now assume that we are working on a discrete pixel grid, where the pixels are assumed to be point

detectors with distance dp. Let M be the number of pixels in x direction and k their individual numbers.

Using the "filter property" of the δ function, the filter outputs are now – with an appropriate choice of the

origin of the co-ordinate system – given by

S I x S x x kd dx I kd S kd

C I x C x x kd dx I kd C kd
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δ

δ
(3.42)

i.e. the signal is being sampled by a sequence of δ functions only. For convenience we retain the

assumption of infinite spatial extent of the signal. To measure ϕ(x) at a given pixel k0 and thus introduce

the spatial resolution of the phase measurement, the sampling pulse sequence must be "windowed" by

selecting only a few intensity samples at (k0+n)dp, with n ∈ {0,..,N-1}, so that, in the simplest case of

using a rectangle function as a window,
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where, following [Bra87, p. 52], rect(x)=1 for 0�x<1, and zero elsewhere.

Considering the spectra 
~

( )S xν  and 
~

( )C xν  of the expressions under the integrals in (3.43), we see that the

sharp responses of (3.39) are still present but will undergo convolutions with the spectrum of the sampling

window. This spectrum is continuous for any finite window, so that S'(x) and C'(x) acquire a significant

sensitivity to signal frequencies νx ≠ν0x . Recalli ng that S(x) and C(x) have been designed for, or "tuned"

to, ν0x , we now have found the reason for the "de-tuning" sensitivity of short sequences of sampling

pulses.

Due to the uncertainty relation between the spatial and the spectral domain, the spectral "response peak"

of phase-shifting formulae will generally be the broader the smaller N gets, and vice versa. However, to

obtain a narrower sampling-window spectrum, it is possible to replace the rectangle window by triangle or

bell -shaped functions [dGro95, Schmi96, Sur98c]. An extreme example with N=101 and a bell -shaped

window function has been studied in [dGro97]; but its response peak is still broadened about the nominal

signal frequency. Besides, it is certainly not applicable to spatial fringe analysis because of the mere

number of samples involved; and as discussed below in 3.4.4, we would be ill -advised with too sharp a

filter response for spatial phase shifting on speckle fields. With practical choices of N=3 or 4, the

suppression of frequencies νx ≠ν0x indeed is poor, and it is important to observe the validity of (3.41) over

a larger range of νx.

With S(x) and C(x) according to (3.31), and ν0x=1/N, we arrive at the truncated digital equivalent of (3.33),
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(3.44)

where � denotes the correlation. Note here that (3.44) is just (3.14) rewritten for spatial phase sampling.

We call the S(n) and C(n) the sampling functions, bearing in mind that they are sequences of weighted δ
pulses. These sampling functions constitute a pair of digital filters; they act upon both amplitude and

phase of the input signal I(xk), depending on νx. As suggested in [Mer83, Vla94, Sur96], one can also

regard the two processing "channels" (sine and cosine part) as one complex digital correlation:
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=with modϕ π , (3.45)

where arg(•) is the polar angle of a complex number; this corresponds to a notation cn=bn+ian in (3.13)

and is the starting point for the description of phase-shifting formulae by complex polynomials [Sur96].

To ill ustrate the significance of the facts compiled thus far, we rewrite (3.16) as
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where P0x=4 dp is the period of the carrier fringes, and α=2π/P0x = 90°/dp. (This denotes the phase shift

per pixel, not the phase gradient in °/m.) The filter functions are
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and the corresponding spectra read
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(3.48)

with ν0x=1/P0x. In these expressions, the sine terms represent the amplitudes and the exponentials

represent the phases of the filter spectra, so that the behaviour of 
~

( )S xν  and 
~

( )C xν  can be read off

directly. Whenever we get a pure phase term, it is possible to plot the rest of the expressions as real

amplitudes, which we will denote by amp(�). For more complicated formulae, it is not always possible to

arrive at separable expressions; but once 
~

( )S xν  and 
~

( )C xν  are established, one can obtain at least their

moduli and arguments separately.

This now gives us a means to explore the transfer characteristics of phase-shifting formulae by plotting

their spectra. Extending the common practice of plotting only the amplitude spectra, we will consider the

phase spectra as well . In all our spectra plots that follow, the frequencies will be normalised by ν0x and the

range of frequencies will be from 0 to 2νN, where νN is the Nyqvist frequency 1/(2 dp), corresponding to

α=180°/dp . Consequently, when ν0x = 90°/dp , 2νN = 4ν0x ; and for ν0x = 120°/dp , 2νN = 3ν0x . The

ordinates of the amplitude plots are dimensionless and scale with the an and bn in the underlying sampling

functions; the phases are shown in radians.
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The spectral transfer properties of (3.48) are shown in Fig. 3.8: while the amplitudes of 
~

( )S xν  and
~

( )C xν  are seen to be the same throughout the frequency spectrum, the phases are in quadrature only at

νx/ν0x =1 and νx/ν0x =3, which corresponds to α=90° and 270°/dp (aliased as –90°/dp), respectively. Also,

S'(x) will represent sin(ϕO) in the former and sin(–ϕO) in the latter case: if we reverse the phase shift, the

calculated phase must change its sign too. It can also be seen from the phase spectrum that (3.16)

measures ϕO without offset: at ν0x , arg(
~

( ))C xν = °0  and arg(
~

( ))S xν = − °90 , as (3.41) requires.
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Fig. 3.8: Filter spectrum for 4-step-90° phase-sampling formula (3.16); left: amplitudes, right: phases.

The zero transitions of amp(
~

( ))S xν  and amp( ~( ))C xν  at νx =n�νN, n∈{0,1,2}, cause the phases to jump

by π; this corresponds to the "singular" cases of α=0°, 180°, 360°/dp, in which situations the differences of

phase-shifted intensity samples record only Ib , with no intensity modulation, and a phase measurement is

impossible. The filter outputs then must vanish because of the requirement that Ib be suppressed.

The spectral responses of simple sampling functions can sometimes be qualitatively understood without

Fourier analysis. For instance, a difference of two samples will be maximal in the average over all ϕO

when they are 180° out of phase. This behaviour is reflected in Fig. 3.8: since in (3.16) the nominal phase

difference of the intensity samples in S(n) and C(n) is 180°, their responses peak at the nominal frequency

ν0x . After this example, we now investigate the transfer properties of some phase-extraction methods that

recommend themselves for SPS because of their small number of samples.

3.2.2.3 Three-sample formulae

When we consider (3.18), we obtain
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(3.49)

this time the phase factor associated with ν0x is the same in both expressions, which means that the phases

always remain in quadrature; but in turn, the amplitudes depend on ν0x as shown in Fig. 3.9. The samples

for C(n) are now nominally 90° apart, but by the argument used above, the maximum average response
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for that arrangement occurs when they are 180° apart, i.e. at νx=2ν0x. Also, (3.18) measures ϕO+π/2

instead of ϕO (cf. Fig. 3.8). Therefore, in [Fre90a] we find S(n) and C(n) swapped, and the new S(n)

inverted, which cancels the offset. An example of how this works is given below in (3.53) and (3.54).
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Fig. 3.9: Filter spectrum for 3-step-90° phase-sampling formula (3.18); left: amplitudes, right: phases.

As to be seen from Fig. 3.9, reliable operation of (3.18), i.e. validity of (3.41), is assured only within small

deviations of νx from ν0x : while dS dx x x

~
( ) / |ν ν ν0

0= , a maximum of dC dx x
~

( ) /ν ν  occurs at ν0x . A low

influence of phase-shift errors would require both gradients to be equal or at least close to each other; then

the phase reconstruction would tolerate some miscalibration. The graphs shown in Fig. 3.9 are also

qualitatively valid for phase calculation with (3.17), and more generally with (3.15), since S(n) and C(n)

are just scaled to shift up or down that νx which fulfil s amp(
~

( ))S xν =amp( ~( ))C xν . This is indicated by

the curve labelled " amp(
~

( ))S xν ⋅ 3", which would suff ice to change (3.18) to (3.17). The phase spectra

are indeed the same in either case.

With 3 phase steps of 90°, it is more common to use the representation (3.19), which formula has the

transfer properties depicted in Fig. 3.10; in this case, the amplitudes are equal for all νx, while again
~

( )S xν  and 
~

( )C xν are in quadrature only at α=90° and –90°/sample; also, the inherent phase offset of -π/4

is clearly revealed by the graphs.
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Fig. 3.10: Filter spectrum for 3-step-90° phase-sampling formula (3.19); left: amplitudes, right: phases.

It is possible to balance amp(
~

( ))S xν  and amp(
~

( ))C xν  for α=120° as well , yet at the sacrifice of integer

coeff icients. From (3.14), one can easily derive
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with the transfer characteristics shown in Fig. 3.11, which are indeed very similar to those of Fig. 3.10.

Note the different normalisation of the frequency axis; here, 2νN = 3ν0x , and –(ϕO–15°) is detected at

2ν0x ±α=240°/dp (aliased to –120°/dp).
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Fig. 3.11: Filter spectrum for 3-step-120° phase-sampling formula (3.50); left: amplitudes, right: phases.

But also for cyclical permutations of the intensity samples, which is equivalent to changing the offset by

integer multiples of α [Schmi95b], the transfer functions of our formulae change considerably. This

brings up the question whether a formula really can benefit from such an operation: generally speaking,

improving the matching of amp(
~

( ))S ν  and amp(
~

( ))C ν  worsens the quadrature properties, and vice versa,

so that we are in need of a method to account for both aspects simultaneously.

An interpretation of 
~

( )S xν  and 
~

( )C xν  as complex phasors, also suggested in [Mal97], is very helpful to

reach conclusions about this point. Therefore we introduce the auxili ary function

( ) ( )bsc C S Cx x x x( ): arg
~

( )
~

( ) arg
~

( )ν ν ν ν= + − , (3.51)

where bsc stands for the bisector between 
~

( )S xν  and 
~

( )C xν . Of course, it is the bisector only when the

moduli of 
~

( )S xν  and 
~

( )C xν  are equal; its general range is -π/2�bsc(νx)�π/2. At νx=ν0, 
~

( )S xν  and

~
( )C xν  are in quadrature, and bsc(ν0x) = –45°, which is the value indicating correct phase calculation.

This is valid for all νx, since ( )arg
~

( )C xν  is being subtracted, so that the angle between the phasors always

has one side on the real axis. The advantage of bsc(νx) is that it responds to changes in both modulus and

phase of 
~

( )S xν  and 
~

( )C xν . The ideal situation is sketched in Fig. 3.12 on the left, being the graphical

representation of (3.41).
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Fig. 3.12: Graphical representation of bsc(ν). Left: ideal case, centre: 
~

( )
~

( )C Sx xν ν= 3 , right: quadrature lost;

see text.

In the centre of the drawing, 
~

( )C xν  is too large by a factor of v3 due to some error, which changes

bsc(νx) to –30°: the calculated phase will oscill ate around the true value with a p-v amplitude of ¡15°

(see Fig. 3.14). The same effect is produced when, e.g., ( )arg
~

( )S xν  deviates from its nominal value by

30°, as depicted in Fig. 3.12 on the right: although the phasors for 
~

( )S xν  and 
~

( )C xν  have the same

length, bsc(νx) = –30°. The – normally irrelevant – overall offsets of ϕO (see 3.2.2.4) that the two types of

errors produce are not the same, however. Also, it must be stressed that the purpose and capabilit y of

bsc(νx) is to analyse, not to design phase-shifting formulae.

A vector representation of f ilter spectra has already been used in [Mal97] to customise phase-shifting

formulae; however the influence of detuning had to be treated for amplitudes and phases separately. With

the help of bsc(νx), we can now valuate amplitude and phase spectra of our phase-shifting formulae

simultaneously, and it can be seen from Fig. 3.13 that this approach is indeed able to greatly clarify the

situation.
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Fig. 3.13: Left: bsc(νx) for phase-sampling formulae (3.16), (3.18) and (3.19); right: bsc(νx) for phase-sampling

formulae (3.17) and (3.50).

One finds that bsc(νx) produced by linear detuning is the same for the 90°-formulae (3.16), (3.18) and

(3.19)*, and for the 120°-formulae (3.17) and (3.50), respectively. The interpretation of the values for

                                                

* bsc(νx) also reveals some redundancy in [Fre90a]: the reported "case examples" 1 through 4 for 90°-phase-shifting formulae

are indeed identical (with respect to p-v detuning errors, cf. Fig. 3.14). Also, bsc(νx) solves the quadrature problems with cases

2, 3 and 5 that have been addressed on p. 547.
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νx¡0 is that 
~

( )S xν  and 
~

( )C xν  point in almost opposite directions, while they have nearly the same

argument at νx¡νN. As mentioned above, for νx=0 and νx=νN, no phase information at all can be retrieved.

The correct value of bsc(νx) appears at νx=ν0x for α=90° or 120°, respectively. It is interesting to note that

the p-v phase errors increase symmetrically for νx≠ν0x when α=90º, while for α=120°, they rise more

steeply for νx>ν0x than for νx<ν0x. Also, the slope of bsc(ν0x) is greater for α=120° than for α=90º, which

immediately explains the observation that 120°-formulae are somewhat less tolerant of phase-shift

deviations than 90°-formulae [Cre96].

On the whole, this treatment shows that, except for convenience of computer implementation, no

advantage or disadvantage is to be expected from different representations of phase-sampling schemes.

This has been found by quite a different approach in [Lóp00] and also agrees with the findings in [Sur00],

where the characteristic polynomial theory [Sur96] was applied to show that different representations of a

given formula can be identified with constant phase factors that do not alter the formula's properties.

However, this invariance need not hold for speckle interferometry, since different selections of samples

(here: pixels) to include in the calculation result in different utili sation of the spatial information in the

speckle interferogram. Therefore, we will check the validity of our findings experimentally in 3.4.5.

3.2.2.4 Four-sample formulae

As discussed, the choice of the an and bn is dictated by the necessity to get one sine and one cosine term

with no bias intensity, which is a significant restriction for only three intensity samples. Sophisticated

averaging or windowing approaches [Schmi95a, Zha99], or the characteristic polynomial theory [Sur96],

are not helpful here: the three-step formulae are minimalistic in that they do not contain any redundancy,

so they need a correct signal to deliver the correct phase.

Therefore we take into account one more sample, which will give us a certain freedom to customise our

formulae. The largest impact on accuracy is to be expected from the sensitivity to linear phase-shift

miscalibrations. Recalli ng our finding of Chapter 2.2.5 that phase extrema are very rare in speckle fields,

it follows that the speckle phase fluctuations over a few adjacent pixels will almost always contain a

linear contribution; hence it really makes sense to consider its effect. Possibiliti es to suppress the

influence of linear phase-shift deviations have been thoroughly investigated in phase-shifting research and

there are many formulae to cope with them. While there are even methods for exact compensation that use

three [Ran86, Ser95], four [Car66] or five [Lar96, Sto97] samples, they involve higher computational

load, and fail to work as well as predicted on speckle fields, so that we will i nstead consider again the

minimalistic approaches, for 90° and 120° of nominal phase shift.

A linear phase-shift miscalibration causes δϕO = ϕO,real -ϕO,calc to oscill ate with half the period of ϕO itself

[Schwi83, Che85, Lar92c], as depicted in Fig. 3.14 for phase calculation with (3.19) and α=95°. These

5°(±0.087 rad) of miscalibration are propagated as p-v error to ϕO,calc ; additionally, ϕO,calc  acquires an

overall offset, which is irrelevant unless absolute phases are desired. Under small miscalibration, δϕO has
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a quasi-sinusoidal dependence on ϕO ; however it has been shown [Lóp00] that this dependence

approaches a sawtooth profile when the detuning error is large.

0

0.07

0.14

0 1.57 3.14 4.71 6.28

ϕ O /rad

δ ϕ
O/rad

Fig. 3.14: Deviation δϕO of calculated phase from true phase ϕO  when α=95° instead of 90°. Arrows: alteration of

phase measurements due to δϕO (see 3.4.6).

There is a simple intuitive way to understand these phenomena: when the sample spacing is incorrect,

errors periodical in ϕO will arise in the sine and cosine terms of the phase-sampling formulae; their

relative phase lag introduces a double(2ν0x)- and a zero-frequency (offset) error [Lar92c] in their quotient,

which then propagates into the calculated phase.

The fact that δϕO ¡ �δ(ϕO+90°) allows for a very simple approach of error suppression. If the nominal

phase shift is set to α=90°/sample, we can use (3.19) and construct two consecutive phase measurements

with an offset of 90°,
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(3.52)

where we abbreviate ϕO–45° by ϕ'O, cf. (3.19). In these two sampling sequences, we have δϕ'O0 ¡ �δϕ'O1
,

which allows us to cancel the error by averaging the results. But for this to function, we must modify the

second formula to yield ϕ'O instead of ϕ'O+90°:

ϕ π
ϕ
ϕ

' arctan
sin '

cos '
:'O

O

O

I I

I I

N

D1
2 2 1

3 2

1

1
mod =

−
−

= = , (3.53)

where we have used

( )
( )

sin cos

cos sin

ϕ ϕ

ϕ ϕ

= − + °

= + °

90

90 .
(3.54)

Then, when constructing the phase average, it is better to average the Nn and Dn terms before executing

the arctangent operation, as opposed to averaging ϕ'O0 and ϕ'O1 after separate arctangent operations. This

can be justified theoretically and has been done in [Hun97]; to understand the basic idea, it is very helpful
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to think of adding weighted and unweighted phasors, respectively, as detailed in [Stroe96]. Therefore, the

N and D terms are averaged according to [Schwi83, Har87, Schwi93]

ϕ π' arctanO
N N

D D
mod2 0 1

0 1
=

+
+

, (3.55)

which results in

( )
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' arctan
sin '

cos '
arctanO

O

O

I I

I I I I
 mod 2

2

2

2 2 1

0 1 2 3
= =

−
− − +

; (3.56)

and this is the formula given in [Schwi93], subsequently referred to as 3+3 averaging formula. Its transfer

properties are shown in Fig. 3.15.
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Fig. 3.15: Filter spectrum for 3+3-step-90° phase-sampling formula (3.56); left: amplitudes, right: phases.

As in (3.19), the offset of the reconstructed phase is –45°; but the phases of 
~

( )S xν  and 
~

( )C xν

are in quadrature for all νx, and also the gradients of 
~

( )S xν  and 
~

( )C xν  are matched:

dS d dC dx x x xx x

~
( ) / |

~
( ) / |ν ν ν νν ν0 0

= . This assures stable performance for a larger range of deviations,

because 
~

( )S xν  and 
~

( )C xν  are nearly equal for a broader range of νx . In [Ser97b], an iterative search for

smallest miscalibration sensitivity showed that (3.56) is an almost optimal solution. The offset-free

version of the 3+3 formula, also given in [Schwi93], is

ϕ πO
I I I I

I I I I
 mod 2

3

3
0 1 2 3

0 1 2 3
=

− + − −
+ − +

arctan ; (3.57)

this formula shows equal amplitudes for 
~

( )S ν  and 
~

( )C ν , similar to (3.19), but much better quadrature

stabilit y than (3.19), as to be seen in Fig. 3.16.
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Fig. 3.16: Filter spectrum for 3+3-step-90° phase-sampling formula (3.57); left: amplitudes, right: phases.
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It is also possible to average two 4-step formulae [Schwi83, Har87], which yields a 4+1 formula, or to

extend the averaging approach to even more samples [Schmi95a, Zha99]. Particularly the 4+1 formula is

very frequently used in ESPI; but we ignore it here because it requires 5 samples already; we will briefly

discuss 5-sample formulae in Appendix D.

While formulae with α=90° are most effective against detuning due to the error frequency having twice

the signal frequency, it is also possible to design compensating formulae with α=120°. A recipe to do so

has been given in [Lar92b]; it is based on arranging the an and bn (anti)symmetrically over the sampling

sequence (which results in frequency-independent quadrature) and matching the gradients of 
~

( )S ν  and
~

( )C ν at ν0. (At this point, we note that also (3.56) fulfil s these criteria; in fact, all the formulae with stable

quadrature presented thus far have (anti)symmetrically arranged coeff icients. This so-called Hermitian

symmetry of the coeff icients is a necessary and suff icient condition for the frequency independence of the

quadrature, and it has been shown in [Sur98a, Hib98] how to symmetrise phase-shifting formulae.)

The error-compensating symmetrical 3+1-sample formula for α=120° reads [Lar99]

ϕ πO
I I I I

I I I I
 mod 2

3

3
0 1 2 3

0 1 2 3
=

+ − −
− + + −

arctan
( )

( )
; (3.58)

its spectral characteristics, shown in Fig. 3.17, demonstrate that (3.58) also has reduced sensitivity to

linear phase-shift miscalibration.
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Fig. 3.17: Filter spectrum for 3+1-step-120° phase-sampling formula (3.58); left: amplitudes, right: phases.

Since we have been dealing with different offsets of the reconstructed phase in (3.56) and (3.57), we will

again make use of bsc(νx) to find out more general properties of the methods. Fig. 3.18 presents the

corresponding plots for (3.56)-(3.58).
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Fig. 3.18: Left: bsc(ν) for phase-sampling formulae (3.56) and (3.57); right: bsc(ν) for formula (3.58).
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Again, we find errors increasing symmetrically on both sides of ν0x when α is nominally 90°; the key to

error suppression is the vanishing slope of bsc(ν0x). The same is true for α=120°; but as above in Fig.

3.13, we find a steep increase of errors for νx >ν0x , simply because ν0x is not centred between ν0x =0 and

ν0x =2νN and hence the bsc(νx) curve cannot be symmetrical.

Generally, the error compensation cancels the oscill ating error only; the zero-order error (phase offset)

persists, as can also be seen from the phase spectra of (3.56) and (3.58): while the difference of

arg(
~

( ))S xν  and arg(
~

( ))C xν  remains constant, the reconstructed phase will depend on the phase-shift

deviation, as gets obvious from the progression of arg(
~

( ))S xν  and arg(
~

( ))C xν  with νx . Hence, in ESPI

the correct absolute phase difference ∆ϕ is only obtained when the phase-shift error is the same in both

sets of samples. In TPS, this is generally not the case, but as long as the error is spatially uniform, the

determination of phase gradients will not suffer: a fringe offset in the sawtooth image is irrelevant. In

SPS, the offsets fluctuate locally with the speckle phase gradients; but since the speckle field is supposed

to remain correlated during the measurement, the errors cancel on subtraction of the speckle phase maps.

As mentioned above, these theoretical considerations do not account for the spatial coherence present or

not present within the sampling pixel window. For instance, a 3+3 formula need not automatically reduce

the measurement errors, because its error compensation might be superseded by low spatial correlation of

the sampling points. Therefore we will subject also the compensating formulae to an experimental check

in 3.4.5.

3.3 Temporal phase shifting

Many of the peculiarities of TPS have already been treated implicitl y in 3.2.1.1, so that we now address

only two more subjects: first, we consider the loss of modulation associated with phase ramping instead of

stepping, and second, we take a look at the power spectrum of a speckle interferogram and consider a very

simple method to determine the average speckle size.

While the phase-shifted interferograms are recorded sequentially in time, the different αn are adjusted by

means of a phase shifter such as a mirror on a piezoelectric crystal in the reference arm. While it is

possible to set the αn statically, i.e. no change takes place during the exposure of each frame, it is more

convenient and has become popular to shift the phase linearly during the recording sequence, so that each

measurement becomes an integral over a phase interval. This changes (3.12) to
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n b I O n

b I O n
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= + ⋅ ⋅ +
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∫
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α

cos( )

cos( )

' '

2sin( )2 ;

(3.59)

the additional factor is 0.9 when α=90°, and 0.83 for α=120°, so that the overall effect of the ramping

approach is a slight decrease in the modulation of the data; however, the measured ϕO remains the same
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whenever the integration interval is symmetrical. The static method is referred to as the step method and

the dynamically phase shifting approach is known as integrating-bucket or simply bucket method

[Wya75].

The equation system (3.12) or (3.59) is set up under the assumption that the unknowns do not change

from frame to frame, i.e. are temporally constant. While this is very likely to be correct for Ib and MI , it is

diff icult to assure for ϕO, which is why vibration-isolating optical tables, phase stabili sation faciliti es

and/or short exposure times are very common with this method. The interferograms In(x,y,tn) must be

recorded as quickly as possible to diminish influences by object changes or phase fluctuations in the

interferometer, and the possibiliti es to carry out TPS measurements of rapidly moving objects or under

external disturbances are limited. Fig. 3.19 presents sawtooth phase maps from experiments under various

conditions. While TPS delivers good phase measurements under temporally stable conditions, a vibrating

interferometer (here: table without air cushion) can cause wrong phase shifts and thus loss of direction

information. With locally different phase shifts, as caused by turbulent air in the beam paths, also the

qualitative correctness of the image may get lost.

  

Fig. 3.19: Sawtooth phase maps as results of deformation measurement with TPS under: stable experimental

conditions (left), vibrations (centre), and air turbulences (right).

Much work has been done to cope with the various error sources: phase-shift miscalibrations [Moo80,

Schwi83, Che85, Joe94, Sla95, Och98], vibrations [dGro96, Dec96, Dec98, Hun98], unequal and/or

uncalibrated phase steps [Gre84, Oka91, Far94, Ryu97, Wei99], nonsinusoidal intensity profile [Hib95],

and in a wider context, variable bias intensity [Ono96, Sur97b], or variable fringe visibilit y [Lar96]. There

have also been attempts to reduce the data acquisition time by 2+1-frame methods [Ker90, Col92, Fac93,

Ng 96] or high-speed devices [Cog99, Hun99]. Many of these efforts are concerned with the sensitivity of

TPS to time-dependent phase fluctuations, which shows that these are indeed a major obstacle.

3.3.1 Speckle "size" in interferograms

The experimental determination of the mean speckle size is usually done by calculating the

autocorrelation function of the speckle intensity field and determining the full or half width of its central

peak. As the speckles get smaller, this digital method grows imprecise because the peak is then only a few

pixels wide and requires fitting a curve to it to estimate its width with subpixel accuracy. When dealing

with speckle interferograms however, there is a simpler method: one can conveniently determine the

speckle size from the power spectrum of an interferogram, in which the speckle size is "doubled" by
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adding a reference wave [Enn75, Maa98]. To understand how this is meant, we first consider briefly the

power spectrum of a speckle pattern. The situation is depicted in Fig. 3.20.
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Fig. 3.20: Left: Imaging of a speckle pattern: L, lens; S, speckle field; AS, aperture stop; z, distance of AS from

CCD sensor. Right: power spectrum of speckle pattern in log display; νx=νy=0 is in the centre of the

image and the positi ve and negative νN at its borders.

The aperture stop AS has a transmission function TAS (here a circle of diameter D) with which the speckle

pattern S is multiplied on passing the aperture plane. For simplicity, we assume that z¡f, whereby we

have the far field of S�TAS in the image plane. The field on the CCD chip is therefore

FT( AS ASS T S T⋅ =)
~

*
~

, where FT stands for the Fourier transform, * for convolution, tilde denotes the

transformed variables, and we omit proportionality constants. The speckle intensity detected by the CCD

is given by 
~

*
~S TAS

2
, and using the Wiener-Khintchine theorem, we can write its Fourier transform as

( )FT ACFAS AS
~

*
~

( )S T S T
2

= ⋅  – ACF denoting the autocorrelation function –, which is simply a speckle

halo, as shown in Fig. 3.20 in logarithmic scaling. The size of this speckle halo in the frequency plane is

proportional to D and therefore inversely proportional to ds.

The maximal spatial frequency in the speckle pattern on the CCD is determined by the interference of the

outermost rays that pass the aperture, i.e.

ν
λmax,s =
D

f
, (3.60)

which is of course only valid if TAS really reaches zero at the edges of the aperture. This is the "band

limit " mentioned in Chapter 2.3.2. For circular apertures, the speckle size is, cf. (2.43),

d
f

Ds = 122.
λ

, (3.61)

which links to (3.60) to yield the simple formula

ds
max,s

=
122.

ν
, (3.62)
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so that e.g. a speckle halo just fitting in the DFT's frequency plane, with νmax,s=�νN =�1/(2 dp), is seen to

come from a speckle pattern with ds=2.44 dp . In Fig. 3.20, we have ds=3 dp .

If we assume that a reference wave R of amplitude R is added as a point source in the centre of AS, which

is drawn in Fig. 3.21, the field on the CCD chip will be FT( AS ASS T R S T R⋅ + = +δ ( , ))
~

*
~ ~

0 0 . The intensity

on the sensor is 
~

*
~ ~

S T RAS +
2
, and its Fourier spectrum is ( )FT AS

~
*

~ ~
S T R+

2
= ACF AS( )S T⋅ + R2 0 0δ ( , ) +

( ) * ( , )* *S T R⋅ AS δ 0 0  + ( ) * ( , )*S T R⋅ AS δ 0 0 . The first term is again the speckle halo, the second term is a

central peak due to the uniform reference wave; these are often called the self-interference terms. On

inspecting the mixed or cross-interference terms, we find that they reproduce the speckle field's

amplitudes, with an envelope that is the aperture function again. The convolution with the δ function of

the reference wave reproduces this distribution and multiplies it with R. The power spectrum of a speckle

interferogram therefore looks as in Fig. 3.21 on the right; again, the scale is logarithmic and ds=3 dp.
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Fig. 3.21: Left: Imaging geometry for ESPI: R, reference wave; other abbreviations as above in Fig. 3.20. Right:

power spectrum of speckle interferogram in log display; frequency plane as above.

The interference terms overlap in the centre and are point-symmetrical with respect to each other; hence

the shadow of the fibre guide, being an undesired but here instructive part of TAS, is visible in each of

them. The speckle halo is still t he same as in Fig. 3.21, but the extent of the spectra or "bands" of the

interference terms, ( ) * ( , )* *S T R⋅ AS δ 0 0  + ( ) * ( , )*S T R⋅ AS δ 0 0 , in the frequency plane is exactly half that

of the speckle halo. This is the "doubling of speckle size" mentioned above. It occurs only when R is large

enough to suppress the speckle halo; the influence of R will play an important role later on.

As Fig. 3.21 indicates, the maximal spatial frequencies of the interference bands are given by interference

of R with the outermost rays passing the aperture. With

ν
λmax,i =
D

f2
, (3.63)

where the subscript i stands for interference, we arrive at

ds
max,i

=
061.

ν
, (3.64)
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which allows for a very convenient determination of the speckle size from the power spectrum of the

interferogram. When the interference bands are centred on each other (i.e. the source point of R is placed

in the exact centre of AS), the edges of the frequency plane are reached when ds=1.22 dp, but using its

corners, we can accurately determine speckle sizes down to 0.86 dp.

The advantage of using interferogram power spectra gets clear when we consider Fig. 3.22: determining

the speckle size from this image is very easy, while it is problematic to apply the autocorrelation

technique for so small a speckle size.

Fig. 3.22: Power spectrum of interferogram with ds=1 dp; spatial frequency axes as in Fig. 3.20.

Finally, if the source point of R is not in the plane of AS, the δ function above will broaden; then, on

convolution with S�TAS , the sharp edges of the cross-interference spectra will smear out. This behaviour

provides us with a very accurate means to match the curvatures of the two wave fields.

3.4 Spatial phase shifting

An elegant way to get rid of the problems associated with inter-frame temporal parameter fluctuations is

to acquire the phase-shifted data simultaneously. Since the phase shift then has to take place in space

instead of time, this approach is quite generally called spatial phase shifting (SPS) [Schwi90, Tak90b,

Kuj93, Vla94]; the underlying principle has been known for a long time [Lei62]. With SPS, phase-

measuring methods gain access to unstable environments and transient events. For very rapid phenomena,

the use of pulsed ill umination represents an effective way to suppress even the intra-frame fluctuations

and freeze virtually anything. In principle, it gets possible to track the object phase at the frame rate of the

camera, with the additional benefit that any frame of the series can be appointed the new reference image.

The increased temporal resolution of this approach has, however, to be paid for in terms of spatial

resolution, since it is of course necessary to spatially separate the In. In analogy to TPS, we can distinguish

between phase stepping and phase ramping. The former is implemented by generating several images of

the same object and recording them simultaneously on several sensors, or different parts of the same

sensor. The necessary phase shift between the images can be generated by polarisation optics [Smy84,

Kuj93, vHaa94], diffraction gratings [Kwo84, Kuj88], CGHs [Bar99] or combinations of these [Kra98,

Kem99, Het00]. For the phase retrieval to work properly, the In must be aligned with subpixel accuracy
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and all have the same Ib and MI, which is diff icult to achieve [Kuj91a, Het00]. If parts of one and the same

sensor are used for the sub-images, resolution is lost; if several full -chip images are taken, they will have

to share the light energy available. High expense on the components, great adjustment effort and high

sensitivity to misalignment are to be expected when working with set-ups of this type.

The phase-ramping or bucket method of SPS works with one detector, on which a dense additional fringe

pattern is generated to function as a so-called spatial phase bias or, in the Fourier terminology, carrier

frequency. The – low-frequency – signal of interest distorts the carrier pattern and can be retrieved from it

by a number of methods [Wom84]. This approach has first been implemented with vertical carrier fringes

in [Ich72, Mer83] as analogue real-time processing of TV line signals. (Note here that only SPS lends

itself to this technique: TPS requires digital processing since separate TV frames are involved.) The first

studies were soon followed by digital implementations [Toy84, Toy86, Sho90, Fre90b,c, Küch90,

Küch91, Kuj91b], allowing for arbitrary directions of the carrier fringes. Also, it was demonstrated in

[Tak82] that the signal can conveniently be retrieved in the frequency plane by a Fourier-transform

method; we defer details to Chapter 6.5. Other methods to retrieve phase from images with a spatial

carrier are the phase-locked-loop method [Ser93] and the frequency demodulation technique [Ara96].

Later it was realised that this approach could be applied to speckle interferometry as well [Ste91, Wil91,

Gut93]. A standard ESPI set-up is very easily changed to an SPS system; it is suff icient to laterally

displace the focus, or source point, of the reference wave to introduce the fringe carrier. Fig. 3.23 shows

the modification, with a magnified portion of a speckle interferogram: the fine fringes on the speckles are

clearly discernible.
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Fig. 3.23: ESPI set-up slightly modified (cf. standard configuration in Fig. 3.1) for spatial phase shifting.

In the following subsections, we will go through some details pertaining especially to SPS to get an

overview of the quality criteria for interferograms with a spatial carrier.
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3.4.1 Geometrical description of spatial phase shift

The lateral offset ∆x of the reference wavé s origin generates a quasi-linear geometric path and hence

phase difference between the object wave O and the reference wave R over the sensor. Fig. 3.24 sketches

the principle.
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Fig. 3.24: Left: incidence of two spherical waves with origins displaced by ∆x; right: construction of

corresponding pathlength differences ∆r =
�
rO

�
–
�
rR

�
.

While a phase shift in the sensor's y-direction may be added by a displacement ∆y, this case is still one-

dimensional in the appropriate co-ordinate system. Hence it is suff icient to consider the phase difference

α(x), given by

α
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where x = 0 is defined to be the y axis in the middle between the waveś  source points. This is not

generally the central sensor column: since the centre of the aperture should lie on the optical axis over the

centre of the sensor, the object wavé s origin cannot be shifted from there. However, y = 0 does lie on the

central row of the sensor. The corresponding phase gradient in x-direction,
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is quasi-constant when ∆z is much larger than everything else, which is quite reasonable to assume when

using common imaging optics. Then ∆z will be on the cm scale, whilst the other quantities are on the mm

scale. It turns out that the y co-ordinate also has a weak influence on αx; hence the carrier fringes are not

exactly straight. In fact, they have hyperbolic shape, which also follows from the definition of a hyperbola

as the set of points for which prOp–prRp is constant. Fig. 3.25 depicts the situation for an average nominal

phase gradient of αx(x,y) =  120° per sensor column and the optical configuration of Fig. 5.1. The spatial

dimensions refer to sensor of the camera that was used throughout the work to follow, ADIMEC MX12P

with 1024�768 pixels of size (7.5 µm)2.
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Fig. 3.25: Spatial distribution of αx(x,y) on the CCD sensor area for z =10.2 cm and ∆x =2.9 mm.

Clearly, the continuous phase progression over the sensor leads to an integration over the pixels, so that

this is an integrating-bucket method. When the phase runs along columns or rows only, the recorded In are

described by (3.59), since also the camera pixels are rectangular integration windows, only in space

instead of time. The factors given in 3.3 for the decrease of MI remain valid in this case.

If, however, the carrier fringes are slanted with respect to the Cartesian sensor axes, the situation is

different: for instance, if ∆x=∆y, the slant is 45° and the function over which the phase progression is

"windowed" becomes a triangle; for values below 45°, it acquires trapezoidal shape. Fortunately, the

windows remain symmetrical in any case, from which it follows that the detected phase angles will

remain correct [Wom84]. To determine the loss of MI due to a "composite" phase ramp (i.e. for phase

shift in x and y direction), it is easiest to integrate over its components separately, which gives

I I Mn b I
x y

O n

x y

= + ⋅ ⋅ ⋅ +
2 2sin( ) sin( )2 2

α α

α α
ϕ αcos( ) ; (3.67)

not surprisingly, this reflects the theoretical 2D-MTF for square pixels. For αx=αy, and hence a triangular

envelope of the phase integration, the factor becomes 4 sin
2(αx /2)/αx

2 and is indeed the transfer function

of a triangle. We will be concerned with such a case in Chapter 6.3.

The choice of the carrier frequency is influenced by contradictory requirements: on the one hand, it should

be as high as possible to allow a broad range of signal frequencies to be measured. On the other hand,

aliasing of too high frequencies must be avoided. In general, αx must have the same sign in the whole

measuring field to keep the phase extraction unambiguous: a reversed, or aliased, phase shift leads to the

wrong sign of the calculated phase, cf. 3.2.2. In classical interferometry, this means that closed

interferometric fringes are not allowed, and the complete fringe pattern must be properly sampled; in

speckle interferometry, the requirements are different and we will discuss them in 3.4.4.

Since the In are arranged as adjacent pixels on the sensor, it is clear that the speckles must be enlarged to

obtain suff icient spatial correlation of speckle intensity and phase within the sampling pixel cluster, so

that the modulation detected by a phase-extraction formula comes more from the phase shift than from
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crossing speckle "boundaries". The ideal case is sketched in Fig. 3.26 for ds=3 dp. Depending on the

orientation and density of the carrier fringe pattern, various phase-extraction formulae can be applied.

I0 I1 I0 I1 I2I2

Fig. 3.26: Acquisition of three intensity samples I0 , I1 , I2  for SPS. Small squares: sensor pixels, irregular outlines:

speckles. Direction and spacing of the carrier fringes are indicated by the vertical black bars; left:

α=90°/dp, right: α=120°/dp.

The speckles, and also the sampling pixel cluster, should be as small as possible for the sake of spatial

resolution; on the other hand, a somewhat larger pixel cluster can lead to more reliable phase

measurements even when the speckle size is not increased. We will consider this point in detail i n Chapter

6.2.2.

In any case, the aperture must be smaller than in TPS; a first guess for the minimal speckle size would be

ds=3 dp, because in (3.12), we need n�3. So small an aperture entails some drawbacks: first, significantly

less object light is available; and second, ∆x can usually not be chosen freely, since for R to reach the

sensor, ∆x must not exceed D/2 (cf. Fig. 3.21). The latter problem can be solved with customised imaging

optics: a narrow slit beside the diaphragm hole, allowing the focus of R to pass, will broaden the possible

range of ∆x (cf. Fig. Fig. 5.1). Finally, when the test surface undergoes a tilt , the decorrelation of the

speckle field proceeds faster with narrow than with wide apertures: that portion of the speckle field which

is collected by the aperture is being panned "out of view" sooner when D is small .

Once these problems are overcome, it becomes possible to study dynamic phenomena; using

(double-)pulsed ill umination, even very rapid transients can be frozen [Ped93, Ped94, Sched97, Ped97c,

Pet98, Pet99]. Moreover, the decrease in spatial resolution is in practice more than offset by the low data

storage requirements, since mostly the sawtooth images are smoothed anyway during data processing.

3.4.2 Evaluation of SPS interferograms

The intensity samples for the phase calculation are picked from an interferogram in analogy to (3.12)

which we rewrite as a spatial version (restricting ourselves to α=α(x), i.e. the phase changes from column

to column of the image):

I x y t I x y M x y x y t x yn k n b k n I k n O k n n k n( , , ) ( , ) ( , ) ( ( , , ) ( , ))+ + + + += + ⋅ +cos ϕ α , (3.68)

this is, to find the phase at a pixel in column k of the image, some neighbouring pixels are needed to

provide the phase-shifted interference data. The equation system expressed by (3.68) then imposes the
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restriction that ϕO(xk,y)¡ϕO(xk+n,y) for all n, and the same applies to Ib(xk,y) and MI(xk,y); this is, spatial

fluctuations of these quantities should be as small as possible. The time dependence of ϕO can be

neglected unless ϕO fluctuates substantially within the integration time for the camera frames; αn has no

time dependence at all , because the phase shift is determined by the stable geometry depicted in Fig. 3.24.

The In are then processed as described in 3.2; however, when working spatially, it is reasonable to use

evaluation formulae with n ∈{–1, 0, 1} or n ∈{–1, 0, 1, 2} because, as Fig. 3.26 shows, the central pixel

of the cluster will be the one that has best spatial correlation with its neighbours and to which the resulting

ϕO should be assigned. From this it follows that 1<k<M or 1<k<M–1, i.e. no values for ϕO can be obtained

for the first and the last, or the last two, image columns; but considering the large numbers of pixels on

modern sensors (here: 1024 columns � 768 rows), this restriction is negligible.

The natural way to determine deformations from a pair of interferograms, I i(x,y) and If(x,y), is the

difference-of-phases method, since two frames, each one subjected to (3.68), suff ice to generate two

speckle phase maps. However, with three-sample methods one can also obtain correlation fringes from

SPS interferograms according to

I x y I x y I x yn c k l f k n l i k l, ( , ) ( , ) ( , )= −+ , (3.69)

where the subscript c denotes correlation fringes and n ∈ {–1, 0, 1}; this is, we shift If by one column to

the right and subtract I i, then subtract the unshifted images, and finally shift If one column to the left and

subtract I i [Ped93, Ped94]. But the lateral image shift of course causes lower speckle correlation between

If (xk�1,y) and I i(xk,y) than between If (xk,y) and I i(xk,y), resulting in non-constant fringe contrast within the

set of the In,c (xk,y), and consequently, unnecessary errors in the phase calculation. Hence it is easy to

understand why apparently this method has not been used with four-sample formulae and n ∈{–1, 0, 1, 2}:

an offset of two columns would lead to very faint correlation fringes in pIf (xk+2,y)–I i(xk,y)p, unless the

speckles are larger than 3 dp. Therefore, correlation fringes from SPS are even less suitable for the phase-

of-differences method than are those from TPS.

When SPS is tested under the same disturbances as the TPS measurements shown above in Fig. 3.19, the

difference-of-phases method leads to the example results presented in Fig. 3.27. While the experiment

under good conditions yields slightly higher noise than for TPS, vibrations do not alter the phase shift,

since it is determined geometrically here, and the quality of the measurement is preserved. Of course,

when the frequency and/or amplitude of the vibrations gets too high, the modulation in the speckle

interferogram may be washed out; but as mentioned, pulsed ill umination solves this problem. Under

turbulences, there is no simple way to avoid warping of the phase front; but the image from SPS is far

easier to interpret than that from TPS. As long as the sawtooth fringes remain resolvable, they should lead

to a usable result, and possibly reveal the nature of the turbulence in addition.
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Fig. 3.27: Sawtooth phase maps as results of deformation measurement with SPS under: stable experimental

conditions (left), vibrations (centre), and air turbulences (right).

3.4.3 Relation of speckle size and magnification

For usual imaging optics, f# = f/D is confined to a maximum of 22 or 32, which may prevent reaching the

desired ds in some cases. Considering

d M fs = +122 1. ( ) #λ (3.70)

where M is the magnification (image size : object size), we can immediately see that the maximum object

size that can be imaged gets smaller when ds is to be increased, and vice versa. Fig. 3.28 gives an

overview of the necessary f-numbers when a certain magnification is required. The plots are scaled for the

pixel size of 7.5 µm of the MX12P camera.

0.01

0.1

1

10

100
1 10 100f #

M

ds=   0.5 dp

ds =  1    dp

ds =  2    dp

ds =  3    dp

ds =10    dp

Fig. 3.28: Double-logarithmic plot of magnification M vs. f-number for various pre-set speckle sizes.

Let us consider a practical example: with a sensor of 1024�1024 pixels, we would need M=0.02 in order

to image (37.5 cm)2 on the chip; for ds=1 pixel, f#¡10; but for ds=3 dp, f#¡28, which may not be possible

with standard imaging optics. It also follows from (3.70) that the speckles tend to get very large when

M>1, even for low f# [Løk97, Aebi97]. This is the reason why SPS is applicable at no expense in

microscopic ESPI [ElJa99]: the speckles are large enough in any case.
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3.4.4 Spatial phase shifting on speckle fields

We have seen in Fig. 3.21 and Fig. 3.22 that the positive and negative interference bands overlap exactly

in the spatial frequency plane when the source point of the reference wave coincides with the centre of the

aperture. As the origin of the reference wave is laterally displaced, the overlap of the interference spectra

gets smaller; ideally they can be fully separated in the frequency plane, as shown in Fig. 3.29 for two

different settings of phase shift and speckle size. In the Fourier formalism, the carrier frequency manifests

itself as a constant phase factor, which shifts the interference spectra by �νc, with νc being the spatial

carrier frequency, and thus turns them into the so-called signal sidebands. We defer a more detailed

discussion to Chapter 6.5.

–νN  0 νx νN

−νN

0

νy

νN

 –νN 0 νx νN

−νN

0

νy

νN

Fig. 3.29: Power spectra (log scale) of speckle interferograms with carrier frequency; left: αx=120°/column

(νc,x=1/(3 dp)), ds=3.5 dp; right: αx=90°/column (νc,x=1/(4 dp)), ds=2.5 dp. To allow for suff icient ∆x to

obtain αx=120°/column, the fibre end is in a slit beside the aperture (cf. Fig. 5.1); to the right, ∆x
�D/2,

and the fibre guide obscures part of the aperture. The contrast of the images has been enhanced to make

the speckle halo visible.

The width of the side bands in an interferogram's power spectrum indicates the range of speckle phase

gradients that distort the carrier fringes. As already hinted in 2.2.3.2, these distortions are equivalent to

local miscalibrations of the phase shift, which makes great demands on the miscalibration tolerance of the

phase-reconstruction formula. Also, its spectral response should utili se as much of the signal as possible;

but as we have seen in 3.2.2, neither is easy to be had.

Complete separation of the interference bands is desirable because then all frequency components of the

signal will be unambiguous. If αx is to have the same sign throughout the interferogram, one has to

demand that the positive/negative signal frequencies occupy no more than the positive/negative half-

plane, (νx+,νy) and (νx–,νy), in the frequency spectrum. If these boundaries are crossed, the signal bands

will overlap around νx = 0, or with aliasing (see below) around νx =�νN , or both. We will consider

examples of such power spectra in Chapter 5.5.3.

However, it is possible to permit sidebands larger than in Fig. 3.29 on the right and still avoid their

mixing when we record information in the νy co-ordinates as well and thus truly utili se the 2-D nature of

the measurement. Depending on the speckle size and shape, there may then be various solutions to
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arrange the signal bands advantageously in the spatial frequency plane. An example of how to obtain very

large, "clean" (i.e. non-overlapping) sidebands will be given in Chapter 6.5.

The speckle size is determined from power spectra with a spatial phase shift by

ds
+ - c -

=
−

=
−

122 061. .

ν ν ν ν
, (3.71)

where pν+p is the largest and pν-p the smallest spatial frequency of a sideband and pνcp=(pν+p+pν-p)/2. This

of course needs to be modified when pν+p>pνNp: due to aliasing, �(νN+νa), where subscript a denotes the

aliased contributions above νN, will appear in the Fourier plane at 
(νN –νa). To find the minimum

permissible speckle size when pνcpis given and no aliasing is to occur, we find

ν νN ≤ +c
sd

061.
; (3.72)

considering the examples of Fig. 3.29, we have νc=1/(3 dp) for αx=120°/column; therefore,

0.61/ds�1/(6 dp), which gives the condition that ds�3.66 dp. Similarly, for νc=1/(2 dp), ds�2.44 dp.

For real sensors, the merely geometrical notion of νc is a more or less accurate approximation: the higher

spatial frequencies will usually be attenuated by the falli ng pixel MTF and the read-out electronics. This is

not visible in Fig. 3.29 due to the logarithmic display; examples may be found in Fig. 3.31 and Fig. 3.34.

This "low-pass" behaviour shifts the actual nνco, or the "centre of gravity" of the sidebands' detected

power, below their geometrical centre, νc,geom . This raises the question whether an advantage can be

gained by calibrating the phase shift on nνco, which minimises the actual phase-shift deviations. However

we retain the geometrical definition for three reasons: (i) With respect to the high spatial frequencies, it is

indispensable to operate the camera with its pixel clock activated. Unfortunately, this damps νx much

more strongly than νy (for the camera used, the pixels are read out in x direction at a rate of 20 MHz as

independent video lines, whose frequency is only 15.625 kHz), which would greatly complicate the

treatment of composite x-y-phase shifts if we used nνc,xo and nνc,yo for calibration. (ii ) Shifting a sideband

outward, until the measured nνc,xo reaches its nominal value, is a waste of signal energy, because more

and more of the sideband then comes to lie in the low-MTF regions of the frequency plane. (iii ) The

problem affects the methods for νc,x =1/(3 dp) more than those with νc,x =1/(4 dp); but we have seen from

Fig. 3.13 and Fig. 3.18 that phase-shifting errors are less severe for νx<1/(3 dp), so that one may even

obtain a slightly increased performance when nνc,xo<1/(3 dp).

Despite these considerations, an overlap of the sidebands at the edges or in the centre of the frequency

plane may be permissible and even advisable from the standpoint of light economy (remember that this is

associated with smaller speckles and larger apertures). This need not upset the phase calculation: as seen

before, any phase-extraction formula has its characteristic frequency response and will t herefore select

only a part of the interferogram's spatial frequency content anyway. One could therefore say that phase

maps from SPS are being smoothed intrinsically by convolution with the phase-calculation pixel cluster.

Hence, the spatial resolution of SPS is not governed by the speckle size alone.
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3.4.5 Spectral side-effects of spatial phase calculation

As mentioned above, the findings of 3.2.2 require some experimental inspection because they were

derived, so to speak, in the absence of speckle. In particular, the spatial phase calculation in SPS is

influenced by the spatial correlation of the pixels selected for processing, as demonstrated in Fig. 3.30 for

intensity sampling by (3.18) and (3.19), respectively.

I0 I2I1 I0 I1 I2

S'(xk) S'(xk)

C'(xk) C'(xk)

Fig. 3.30: Processing of intensity samples by (3.18) (left) and (3.19) (right), where the smaller outlines in white

and black indicate the smaller coherence areas required for S'(xk) and C'(xk) alone.

In (3.18), the first and last intensity sample are used for S'(xk) and all three samples for C'(xk); the terms

are balanced with respect to the central pixel, being the target pixel of both calculations. In (3.19), both

S'(xk) and C'(xk) are constructed from only two consecutive samples; hence they make lower demands on

the spatial coherence of the pixels. Of course, the complete sampling window is still t hree pixels wide,

and S'(xk) and C'(xk) are associated with slightly different portions of the speckle field, so that their spatial

correlation may suffer. The same line of argument applies to all other phase-shifting formulae, where

different an and/or bn are large, small , or vanish, in different representations of the formulae.

To find out the significance of this consideration, we study 
~

( , )S x yν ν  and ~( , )C x yν ν  experimentally.

First, we generate two separate arrays I(x,y)�Sx(n) and I(x,y)�Cx(n), this is, we use (3.68) to process 2-D

images with a 1-D phase shift. The results, when visualised as images, should yield two fringe patterns

that look very much like the speckle interferogram, but have a phase lag of 90° and hence deserve the

names of "sine" and "cosine" image. This processing method has been used in [Sin94] in the context of

phase demodulation.

The power spectra of the "sine" and "cosine" images, 
~

( , )
~

( )I Sx y xν ν ν⋅
2
 and 

~
( , )

~
( )I Cx y xν ν ν⋅

2
, can be

compared with that of the original interferogram, 
~

( , )I x yν ν
2
, to reveal the changes*. This yields

                                                

* Realising that the phase-shift is one-dimensional, it would suff ice to investigate the νx only; but since we will be concerned

with full 2-D information in Chapter 6.3, we include the νy here already, bearing in mind that they contribute littl e information

now.
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information about the actual manipulation of the interferogram's frequency content by the phase

calculation.

The phase lag between the "sine" and "cosine" fringe patterns may be estimated when we determine their

phases as if they were interferograms and then subtract these phase maps as if we wanted to measure a

deformation. The "double" phase determination of course leads to a circular argument, which we must

avoid by using the Fourier-transform method (cf. Chapter 6.5).

To valuate the spectral transfer characteristics of phase-shifting formulae, we could simply choose white

noise, e.g. a random distribution of grey values, as a dummy interferogram for input; but since our

objective here is an experimental check of the findings in 3.2.2, we use actual interferograms. Starting

with α=90°, we choose the interferogram with the spectrum of Fig. 3.29 (right side) as input, which

indeed accounts for the whole range of interest, νx=0 up to νx=νN . The power spectra that we compare are

scaled linearly this time to fit the expected deviations; the low-frequency part of the spectra then has to be

masked out. The first example is the phase calculation by (3.18), whose outputs are compiled in Fig. 3.31.

The images of the power spectra have been spatially smoothed to make differences more easily

discernible.

   

Fig. 3.31: From left to right: 
~

( , )I x yν ν
2

; 
~

( , )
~

( )I Sx y xν ν ν⋅
2

 of (3.18); 
~

( , )
~

( )I Cx y xν ν ν⋅
2

of (3.18); pixel

histogram of phase lag between I(x,y)�Sx(n) and I(x,y)�Cx(n) of (3.18); the range of the abscissa is 0–2π.

The spatial frequency axes of the power spectra are as in Fig. 3.29.

As discussed in 3.4.4, the measured power spectrum shows significant attenuation of high νx already in

the interferogram, which is now clearly visible on the linear scale. This appears to be quite common with

pixel-clocked CCD cameras, cf. the power spectra reproduced in [Sal96, Ped97a,b]; hence, when looking

at 
~

( , )
~

( )I Sx y xν ν ν⋅
2
 and 

~
( , )

~
( )I Cx y xν ν ν⋅

2
, we must bear in mind that even a maximal response at νN

will fail to produce a high output when the corresponding frequencies are already weak in the input data;

but differences of the two spectra will remain discernible. Comparing now the spectra of I(x,y) modified

by Sx(n) and Cx(n) with what Fig. 3.9 predicts, we see that indeed 
~

( , )
~

( )I Sx y xν ν ν⋅
2
 peaks at νx=νN/2,

while the maximum of 
~

( , )
~

( )I Cx y xν ν ν⋅
2
 is shifted towards νN. Hence, the values I(x,y)�Sx(n) and

I(x,y)�Cx(n) will not generally represent sin ϕO(x,y) and cos ϕO(x,y). This affects the quadrature properties
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predicted by Fig. 3.9, as the histogram of the phase lag demonstrates: the peak is centred at 89.6° but is

broadened considerably (σ ¡19°).

On the other hand, we can expect from Fig. 3.10 that (3.19) will filter the interferogram's frequencies

equally by 
~

( )S xν  and 
~

( )C xν , and indeed this is what we find in Fig. 3.32, with the same input

interferogram as above.

  

Fig. 3.32: From left to right: 
~

( , )
~

( )I Sx y xν ν ν⋅
2

 of (3.19); 
~

( , )
~

( )I Cx y xν ν ν⋅
2

of (3.19); pixel histogram of phase

lag between I(x,y)�Sx(n) and I(x,y)�Cx(n) of (3.19).

In contrast to what Fig. 3.10 suggests, the mean phase lag shows reasonable stabilit y: the peak is at 83.4°.

Thanks to the matching responses of Sx(n) and Cx(n), the peak is somewhat narrower than in Fig. 3.31

(σ¡17.3°). From these findings, we may expect that both formulae should be almost equally suitable to

evaluate SPS interferograms with ν0x=1/(4 dp).

To verify this, we consider the Fourier spectra 
~

( , )
~

( )I Sx y xν ν ν⋅  and 
~

( , )
~

( )I Cx y xν ν ν⋅ , from which we can

obtain bsc(νx,νy) experimentally by (cf. 3.2.1.3)

( ) ( )bsc I C I S I C

S

C

x y x y x x y x x y x

x

x

( , ) arg
~

( , )
~

( )
~

( , )
~

( ) arg
~

( , )
~

( )

arg
~

( )
~

( )
,

ν ν ν ν ν ν ν ν ν ν ν

ν
ν

= ⋅ + ⋅ − ⋅

= +








1

(3.73)

which is again –45° when (3.41) is valid. This gives us an idea of how well the "sine" and "cosine" images

correspond to their theoretical descriptions. Applying the above calculations to these images, we

eventually obtain a phasor map in the frequency plane that should range from –π/2 to π/2. As usual in

DFT, we can use the equivalence [–νN,0] ⇔[νN,2νN] to come from the image to our familiar plot of

bsc(νx). A first example of this is presented in Fig. 3.33; the power spectrum of the input interferogram is

again that of Fig. 3.29.

On the left, we find the distribution of bsc(νx ,νy) for (3.18); the one for (3.19) would be indistinguishable

from it in this size, which confirms that the performance of (3.18) and (3.19) is almost equal despite the

differences explained above. It is only at first glance surprising that the signal sidebands are almost

invisible in bsc(νx ,νy): the phase calculation of (3.73) does not distinguish between signal and noise
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frequencies. The difference is solely that those regions of the frequency plane where there is no signal,

and hence relatively littl e spectral power, are quite a bit more noisy.

2  3 4|0  1 2 νx/ν0x

νN

     νy

0

–νN

 -1.57

-0.785

0

0.785

1.57

0 1 2 3 4νx/ν0x

Fig. 3.33: Left: bsc(νx ,νy) for (3.18) as calculated from (3.73), with 0�black and 2π�white; note that νx=νy= 0 is

in the centre of the image. Right: bsc(νx) for (3.18) (black) and (3.19) (white); average of 50 rows from

the small black frame on the left.

To the right, the plot of bsc(νx) as output by (3.18) (black) and (3.19) (white) does indeed show that both

compare quite well with the corresponding graph in Fig. 3.13. The high noise around νx= 0 and νx= 2νN

reflects the suppression of Ib, i.e. the fact that 
~

( )
~

( )S C0 0 0= = . It is interesting to note that, in agreement

with the larger absolute filter output of (3.18), the susceptibilit y to noise is indeed somewhat lower than

for (3.19); but this affects a frequency range that produces large errors anyway, so that the difference in

performance will be very small . For this case of α=90°, we therefore conclude that the utili sation of

different sets of pixels for different representations of the 3-sample 90° formula does not invalidate the

theoretical considerations in 3.2.2.3.

For α=120°, we use an interferogram with a power spectrum as in Fig. 3.29 on the left; this time, the

signal sidebands cover a smaller part of the frequency plane. When this interferogram is processed with

(3.17), we can expect a qualitative behaviour resembling that in Fig. 3.31 because the sampling formulae

are both derived from (3.15). As to be seen from Fig. 3.34, this is indeed the case; again the high-

frequency preference of 
~

( )C xν is clearly visible. The distribution of the phase lag has a mean of 89.6° and

a standard deviation of 22.0°.

   

Fig. 3.34: From left to right: 
~

( , )I x yν ν
2

; 
~

( , )
~

( )I Sx y xν ν ν⋅
2

 of (3.17); 
~

( , )
~

( )I Cx y xν ν ν⋅
2

of (3.17); pixel

histogram of phase lag between I(x,y)�Sx(n) and I(x,y)�Cx(n) of (3.17).
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Investigating (3.50) with its equal spectral responses of Sx(n) and Cx(n), the output spectra from

processing the same interferogram as above are indeed equal, as to be compared in Fig. 3.35; but this time

the phase quadrature is disturbed (centre at 104.9°, and σ=26.4°).

  

Fig. 3.35: From left to right: 
~

( , )
~

( )I Sx y xν ν ν⋅
2

 of (3.50); 
~

( , )
~

( )I Cx y xν ν ν⋅
2

of (3.50); pixel histogram of phase

lag between I(x,y)�Sx(n) and I(x,y)�Cx(n) of (3.50).

From Fig. 3.13, we should expect equal performance from (3.17) and (3.50), but the quadrature deficiency

of (3.50) raises doubts in this respect. Therefore we use the help of bsc(νx) again; Fig. 3.36 gives a

comparison of the two methods.

2  3 4|0  1 2 νx/ν0x

νN
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–νN
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0 1 2 3νx/ν0x

Fig. 3.36: Left: bsc(νx ,νy) for (3.17); right: bsc(νx) for (3.17) (black) and (3.50) (white); average calculated from

same image region as in Fig. 3.33.

Again, we find good agreement with the theoretical curve of Fig. 3.13, except for the slightly higher noise

of (3.50) as we leave the signal sideband. However, this difference does not lead to a detectable

performance loss, since there is comparatively littl e power outside the sidebands, which in addition is

greatly attenuated by the filter functions.

Since (3.17) is a DFT formula, it was possible to check the performance of 120 different 120° formulae,

where the phase offsets of the sine and cosine weighting functions were varied in 3° steps, with

coeff icients according to (3.14); two out of these are (3.17) and (3.50). A pair of interferograms from an

object tilt was processed to a sawtooth image with the 120 different formulae, and each of them was

evaluated for σ∆ϕ ; the result was that indeed all the formulae gave performances equal to within 0.4%.

Therefore, when α=120°, it is best to choose the representation with the simplest coeff icients; and
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although such a test is not possible with the three-step 90° formulae, the findings thus far strongly indicate

a similar behaviour.

In the error-compensating formula (3.56), S(n) requires only two samples but C(n) uses four, whilst in

(3.57), both terms include four samples; but also for these methods, the performances are virtually

identical. Therefore we will not compare these in detail , but we do investigate the performance of (3.56)

against that of (3.58); these results are shown in Fig. 3.37.
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Fig. 3.37: Top row: bsc(νx ,νy) for (3.56) (left) and (3.58) (right); bottom row: bsc(νx) for (3.56) (left) and (3.58)

(right).

From the images as well as from the plots, we can see that (3.56) operates with greater stabilit y in the

whole spatial frequency range, including the signal regions. Also for the 3-sample formulae investigated

before, the tendency was recognisable that α=90° gives slightly safer phase determination than α=120°.

For the reasons mentioned above in 3.2.2.4, this difference is even more pronounced when we attempt to

correct phase-shifting errors. After our numerous considerations of spatial frequencies, the reasons for this

are clear: setting νc,geom to νN/2 assures best utili sation of the frequency plane and best suppression of

detuning errors.

Our scrutiny of the effect of different sampling pixel clusters yields the interesting result that the

representation of the used formula can be chosen at convenience. This facilit ates a simple general strategy

for placing the signal sidebands optimally: given the invariant course of bsc(νx), or bsc(νx ,νy) for

composite x- and y-phase shift, one can refer to that representation of the phase-extraction formula which

gives equal frequency responses of S(n) and C(n), and maximise the signal utili sation (in which the

system MTF will also play a role) while minimising the phase-shifting errors. Once this is done, one can



94                                        Electronic or Digital Speckle Pattern Interferometry                                            

go back to a simple representation of the formula, which, as we have seen, will not affect its performance.

For the case of ds=3 dp, it was indeed found that the best νc,geom for, say, (3.19) was α¡75°/sample, and

for, e.g., (3.17), the minimal error occurred around α¡100°/sample. But the difference in performance

was only 2-3%; and since also these values may change with the sensor and electronics used, we do not

further pursue this detail .

3.4.6 Distorted phase distributions due to miscalibrated phase shift

None of the formulae investigated, including the error-compensating ones, will perfectly suppress the

oscill ating phase errors sketched in Fig. 3.14. This has important consequences for the statistics of the

measured phases. In the presence of a systematic phase-shift deviation, the uniform distribution of the

speckle phases (cf. (2.6)) will be modified by the faulty measurements, as pointed out in [Kad91]. The

arrows in Fig. 3.14 indicate the direction to which the true ϕO values are biased by measuring ϕO+δϕO

under excessive phase shift: phase readings of 0<ϕO<π/2 are increased by δϕO , and those of π/2<ϕO<π are

decreased. The same thing happens between π and 2π, so that the measured values will be more or less

concentrated at ¡π/2 and ¡3π/2. Hence, the histograms of measured speckle phases will show

characteristic fluctuations. For phase shifts that are too small , δϕO changes its sign, whereby phase

measurements cumulate at ¡0 and ¡π. This is demonstrated by Fig. 3.38, where histograms of measured

speckle phases are compared for different phase shifts.

      

Fig. 3.38: Influence of real phase shift on measured speckle phase pdf when reconstructed by (3.19)

(αideal=90°/sample) with ds=3 dp. Left, 
�
αreal�<90°; centre, 

�
αreal�=90°, right, 

�
αreal�>90°. Abscissae range

from 0 to 2π; ordinates give relative frequencies.

This effect has been used in [Kad91, Bot97, Dob97] to calibrate the phase shift. In SPS however, this

calibration is different from the Fourier method because it optimises the centre of gravity of the sideband

instead of its geometrical centre. As explained above, this involves the sensor MTF and the transfer

spectrum of the phase-extraction formula. Therefore αgeom will rarely coincide with nαo; I judge the

calibration on αgeom to be more reliable, accurate and advisable from the standpoint of signal utili sation,

and in what follows, α will denote αgeom .

Moreover, Fig. 3.38 teaches us that even with the correct nαo, the deviations will not vanish. This is of

course owing to the speckle phase gradients that inevitably cause local detuning; the smaller the speckles,

the larger the deviations will get. This is partly due to increasing phase gradients on the camera pixels as

the speckles get smaller, and for smaller speckles, the Ik+n will not even lie within one statistical

coherence area anymore. Hence, we have an oscill ating measurement error regardless of the adjusted

phase shift. Since the phase offset k�α in a spatially phase-shifted interferogram varies by α from sample

to sample, also δϕO will vary cyclically. This effect has been given the name "high-frequency fringe
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error"; in classical interferometry, it causes a fine ripple in the measured phase map [Cre96]. In speckle

interferometry, where sawtooth images ∆ϕ(x,y) are generated by subtracting speckle phases ϕO,i(x,y) and

ϕO,f (x,y), δϕO alternately cancels and doubles, depending on ∆ϕ(x,y). Independent of the miscalibration's

sign, δ(ϕ
O
) =δ(ϕ

O
+π) ¡–δ(ϕ

O
+π/2) (cf. Fig. 3.14); therefore δϕO cancels when ∆ϕ(x,y) is 0 or π, and

doubles in between. This is in contrast to (3.55), where δϕO is averaged out by addition of two sampling

sequences offset by π/2; the ∆ϕ(x,y) maps however are formed by subtraction. The effect of this can be

seen in Fig. 3.39 for ds=3 dp: the phase-measurement error depends on the phase to be found. The error

images on the right are the absolute differences between the actual phase maps and their least-squares-

fitted noise-free counterparts (see Chapter 4.2). The inserted white error curves allow a quantitative

comparison of δϕO vs. ∆ϕ(x,y).
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Fig. 3.39: Fringe profiles (left) and corresponding δϕO (right) from a displacement measurement with

α=90°/column and various phase-extraction formulae: top, (3.19); bottom, (3.57). All i mages come from

the same region of interest and have 256�64 pixels; the error curves on the right are vertically averaged.

When the phase is calculated by (3.19) (upper row), a significant ripple is produced around ∆ϕ(x)=π/2 and

∆ϕ(x)=3π/2 that also leads to a higher average error. In the lower row, the error compensation of (3.57)

does not remove the ripple completely, but is good enough to suppress it to approximately the level of the

speckle noise: almost no high-frequency oscill ations can be seen in the sawtooth image. The remaining

profile of δϕO is still periodical but the frequency is halved to 1/(2π). The importance of phase-shift

deviations and their correction is clearly emphasised by Fig. 3.39.

Moreover, we observe that in both of the error graphs, δϕO is higher for ∆ϕ(x)=π than for ∆ϕ(x)=0. This

reminds of correlation fringes, which also have low noise for ∆ϕ=0, and also the reason is similar: a phase

difference of zero is always measured reliably because both interferograms simply look the same in this

case. It is then unimportant what formula is used: the error minima are almost identical in both δϕO

images. At ∆ϕ =π, the carrier fringe pattern is "inverted" from the first to the second interferogram, so that

phase-calculation errors with a period of 2π will change their sign and introduce the largest deviations

upon subtraction of the speckle phase maps.

It is now interesting to see what fringe profiles we can obtain with our 120° formulae. The error

suppression by (3.58) is theoretically somewhat inferior to (3.57); the ratio of remaining errors of the
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methods should be 4/3 [Lar99]. For Fig. 3.40, a pair of interferograms with ds=3 dp and α=120° was

processed with various corresponding formulae.

  

  

  
Fig. 3.40: Fringe profiles (left) and corresponding phase errors (right) from a displacement measurement with

α=120°/column and various phase-extraction methods: top, (3.17); middle, (3.58); bottom, Fourier

method. Scales are as in Fig. 3.39.

The error profile produced by (3.17) is very similar to that from (3.19) (Fig. 3.39, upper row) both

qualitatively and quantitatively. From the graphs presented here, it is hard to tell which is better, so that

we defer the answer to Chapters 5 and 5. As could be presumed, (3.58) leaves a faint ripple that is only

just discernible in Fig. 3.40; in this case, only the Fourier transform approach (cf. Chapter 6.5) is capable

of suppressing the oscill ations below the speckle noise.

There is yet another consequence of this phase-dependent error: in a similar way as above for

miscalibrated α, the measurements of ∆ϕ tend to concentrate at 0 and π: they "leak" most strongly from

∆ϕ =π/2 and 3π/2, which are therefore the least frequent values in the sawtooth image, but also from all

∆ϕ other than 0 or π. When detuning correction is present, the relative frequency of ∆ϕ=0 will i ncrease at

the expense of ∆ϕ =π, where the largest errors occur and which is consequently the rarest entry in the map

of ∆ϕ (x,y). The relative frequencies of ∆ϕ values in our full -size (1024�768 pixels) test sawtooth images,

not just the portions shown before, are summarised in Fig. 3.41.

 

  

Fig. 3.41: Pixel histograms of phase values in sawtooth images calculated by various phase-sampling formulae.

Upper row refers to Fig. 3.39; left: result from (3.19); right: results from (3.57). Lower row refers to Fig.

3.40; left, (3.17); centre, (3.58); right, Fourier method. The abscissae range from 0 to 2π; the ordinates

give relative frequencies.
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Since the displacement's phase gradient is constant in the test images and the histograms were generated

from an integer number of fringes (5.0), the true phase distribution is uniform as in Fig. 3.7; but

depending on the amount and type of δϕO, various distortions are present. For α=90°/sample, (3.57)

(upper row, right histogram) yields the most realistic phase statistics with only a small preference for

∆ϕ ¡0. In the centre of the lower row of Fig. 3.41, one can recognise the residual ripple in the phase map

from (3.58) by a small i ncrease of the distribution at ∆ϕ ¡π; generally speaking, the amount of detuning

sensitivity may be seen from the height of that peak. Finally, the Fourier method (lower row, right

histogram) suppresses this deviation as well and leads to almost uniform phase statistics.

While these effects exert a smaller influence on the measuring accuracy than the histograms may suggest,

they are characteristic of SPS. As seen above in Fig. 3.7, TPS yields perfectly uniform distributions when

the phase shift is well calibrated; but in SPS the speckle phase gradients always cause systematic

distortions. These even allow one to tell from the histogram of a sawtooth image whether it is from TPS

or SPS, and in the latter case, what type of phase-extraction formula was used.
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4 Quantification of displacement-measurement errors

Since a major part of this work deals with the "quality" of displacement phase maps, it is vital to have a

numerical figure of merit at hand that allows to compare measurements accurately enough. While the

human brain's image processing allows to tell a "bad" sawtooth image ∆ϕ(x,y) from a "good" one at just a

glance, it runs into problems when small quality differences have to be found or even quantified.

Therefore, we must find a reliable and standardised method to determine noise levels numerically.

The general problem when determining the noise in measured displacement phase maps ∆ϕmeas(x,y) is:

what does the noise-free reference phase map ∆ϕ ref(x,y) look like, and how can one obtain it? In practice,

unless excellently calibrated displacements are available, one has to fall back upon the actual

measurement. One common approach is to generate ∆ϕ ref(x,y) by spatially smoothing the noisy phase map

∆ϕmeas(x,y) as much as possible and to obtain an average displacement phase-measurement error

nδϕo=np∆ϕmeas(x,y)–∆ϕ ref(x,y)po or a so-called root-mean-square (r.m.s.) displacement phase-

measurement error σ∆ϕ= ( ( , ) ( , ))∆ ∆ϕ ϕmeas refx y x y− 2  from a comparison of the "raw" and the

smoothed data. Such approaches are widely used and give reasonable results, but the best way to reduce

the noise in a sawtooth image will most likely depend on the input image; this is, the smoothing filter's

parameters and/or the number of iterations remain a matter of user judgement. Since we intend to

compare TPS and SPS, and to find improved phase-extraction methods for SPS later on, we need

comparable performance data throughout a very wide range of fringe densities and noise levels, so that

smoothing images "by hand" does not seem to be universal and accurate enough. Therefore, to generalise

the process of f inding the best-matching ∆ϕ ref(x,y), I felt the need to develop an almost fully automatic

procedure.

4.1 Previous methods

We start with a brief survey of some existing noise reduction methods; while their objective has seldom

been an accurate quantification of experimental errors, their purpose is certainly to improve the reliabilit y

of experimental data, which happens by approximating ∆ϕ ref(x,y), the true phase map, as closely as

possible. Although we are aiming at a method to evaluate sawtooth images, we also include some

achievements of noise handling in secondary interferograms. We will , however, put some emphasis on the

processing of sawtooth images and point out specific diff iculties with various filtering schemes.

4.1.1 Processing of correlation fringes

There is a wealth of smoothing and filtering methods to generate clearer fringes from ESPI subtraction

images that can then be used for the phase-of-difference method, or possibly for direct evaluation. It is

important to realise that the design of f ilters for correlation fringes must take into account that the speckle

noise is multiplicative in secondary interferograms. This is not a generic property of the speckle effect
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[Tur82]; however when correlation fringes are formed as described in Chapter 3.1, this is valid, as can

instantly be seen from (3.4) and related expressions.

The general problem is to smooth the correlation fringes as much as possible while preserving details of

the image, which is a demanding task in image processing. A helpful tool to quantify speckle noise is the

so-called speckle index [Cri85], here defined for a 3�3 neighbourhood of pixel (k,l)as
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where -1�i, j�1 in an image of N 2 pixels, and the normalisation accounts for the exclusion of the image

edges. Depending on the specific application, a larger neighbourhood (pimaxp,pjmaxp>1) may be chosen. The

quantity s can be regarded as a measure of the noise-to-signal ratio and is useful to assess the performance

of specially designed filters.

When the reference data are known (typically in computer simulations), it is possible to employ a quantity

called image fidelity, defined as [Dáv94]
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(4.2)

and indicating the similarity of a real image to the ideal one; as in (4.1), the error is weighted by the bias

intensity to obtain a noise-to-signal figure.

Many types of specialised routines, partly involving considerable computational or experimental effort,

have been developed. These are, inter alia, low-pass filtering with contrast enhancement, polynomial

fitting [Var82], binarising and xor processing [Nak83], geometric filtering [Cri85], image segmentation,

fringe thinning with phase interpolation [Yat82, Ost87, Eich88], variance algorithm [Cre87], averaging

over different speckle pattern realisations, either in the image plane [Cre85c, Fre92] or in the Fourier-

transform plane [Hun92, Hun93b], scale-space filter [Dáv96], wavelet analysis [Kau96, Ber97] and direct

correlations [Schmi97].

The simple approach of discarding the high spatial frequencies of the speckles in the Fourier plane has

been shown to require considerable user interaction [Ker89], unless the fringe patterns are very simple, or

to blur image details, e.g. holes or edges [Dáv96]. This can be circumvented by recording the frequency

content of the speckle pattern separately and dividing it out from that of the correlation fringe image

[Bie89]. Equivalently, it can be subtracted on a logarithmic scale, which accounts for the multiplicative

nature of the noise.
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All of these methods have led to substantial improvement in the fringe evaluation while simultaneously

minimising interaction and arbitrariness; but the advent of phase-shifting in ESPI has greatly superseded

their application. However, phase shifting is still not fully available in double-pulse addition fringes

[Kau94, Pou95], so that the need continues to analyse correlation fringes. Today there are specialised

fringe-fitting procedures [Yu 98, Schmi98] that rely on a priori information such as the sign of

deformation and the power spectra of signal and noise, which leads to results that can easily compete with

the accuracy of standard phase shifting. Also, the use of Bayesian inference [Mar97, Schmi97, Lir99] has

proven helpful to restore low-noise data from correlation fringes. A promising class of fringe filters is

known as regularisation functionals [Ser97a, Mar97], which are essentially narrow bandpass filters that

adapt automatically to the local fringe frequency and thus evade the problems associated with fixed filter

sizes. While the listed methods are very powerful, their main drawback remains that they require the

operator's careful choice of f ilter parameters to obtain the "best" results.

4.1.2 Processing of sawtooth fringes

In Chapter 3.2.1, we have seen that the difference-of-phases method is more suitable for our purpose, so

that we need not prepare perfect correlation fringes for the phase calculation, nor even try to obtain phase

data from only one secondary interferogram. Unfortunately, the figures of merit (4.1) and (4.2),

normalised by the local speckle intensity, fail i n our intended application to phase maps because in

∆ϕmeas(x,y), the information about the underlying speckle intensities is discarded.* In what follows, we

will t herefore simply regard the phase noise as additive [Cap97] and investigate some standard filtering

procedures for phase maps.

Generally, low-pass filtering of sawtooth images is very eff icient to suppress the "salt-and-pepper" noise

spikes, and consequently, even a filter size of 3�3 pixels effects a significant reduction of the residual

noise. The issue of image blurring is very much the same as above, however the additional diff iculty

arises that the 0*2π phase jumps or, equivalently, the 0*255 grey-level jumps, need to be preserved as

faithfully as possible by the smoothing operation.

4.1.2.1 Smoothing the arctangent

The edge-preserving property of the median filter has made it the common choice for smoothing sawtooth

images for a long time. However, this type of f ilter does not perfectly retain the 0*255 jumps. If the ideal

grey value for a pixel is 0 or 255, the median filter will not be able to reproduce it because it will never

find values below 0 or above 255, which would be necessary if 0 or 255 were to be the median of a

                                                

* However, it has been shown that the reliabilit y of ∆ϕmeas(x,y) is proportional to MI,i(x,y) �MI,f (x,y) [Hun97, Leh98], where i

denotes the first and f the final object state; this has been used for optimised filtering [Hun97, Cog99] and could also serve as a

normalisation to obtain a signal-to-noise figure for phase maps. While this way of generating ∆ϕref(x,y) leads to good results, it

would of course not eliminate the noise.
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particular pixel array. Fig. 4.1 ill ustrates the effect of median filtering by data from a measurement of a

mere out-of-plane tilt that should give a linear phase profile.
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Fig. 4.1: Effect of image smoothing by a median window. A single image row is displayed for both raw and

filtered data, but the median filtering was done, as usual, in 2D.

While the spikes in the raw data could be removed with a 3�3 pixel filter, the distortions of the fringe

profile continued to distinctly calm down until the filter kernel size of 9�9 was reached. Even with so

large a filter window, there are significant deviations from the expected linear course of the phase. The

0*255 transitions where the phase is "wrapped" (white-black edges in the image) remain sharp, but the

fringe profile nearby gets rounded off . Hence the raw data set will i n fact be more accurate in those

regions despite the higher noise. With fringe densities as low as in the figure (some 5 fringes over 1024

pixels), it would be possible and desirable to use very large median windows; but due to the edge

falsification, this must be ruled out.

There have been successful attempts to eliminate the edge falsification by generating a second sawtooth

image ∆ϕmeas(x,y)+π, where the wrap edges are shifted a posteriori by half a fringe width. Then both

∆ϕmeas(x,y) and ∆ϕmeas(x,y)+π are filtered and only the wrap-free regions from both images reassembled,

where, of course, the phase shift by π must be undone in the second image [Vik90]; this is perfectly

permissible because the fringe offset in sawtooth images is arbitrary. It was found that the edge

degradation is very eff iciently suppressed by this technique.

The so-called classification filtering method described in [Own91c] exceeds the performance of the

median filter: it is edge-preserving, much faster than the median processing – that almost always involves

pixel sorting – and also yields the best noise tolerance of all filtering routines studied in [Own91c].

Another high-performance sawtooth-image filter is the partially recursive window described in [Pfi93]; it

proceeds line by line and stores the smoothed data back to their original addresses, so that the filter

window will operate on both smoothed and raw data in subsequent image lines. The performance of this

filter has been compared with other filters recently in [Aebi99].
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4.1.2.2 Smoothing sine and cosine

To cope with the problem of edges, it has also been adopted to work on, in the mathematical sense,

continuous data: the sawtooth image (signifying the optical phase) can be decomposed a posteriori into

the sine and the cosine part from which it was originally generated [Lüh93] (cf. 3.4.5); this step has

recently been given the name of "trigonometric transform" [Sea98]. This gives two edge-free fringe

profiles that can be filtered with considerably larger filter windows, without affecting the 0*2π
transitions that appear again when the phase is re-calculated. However, too large a filter will attenuate the

contrast of the sine/cosine patterns or eliminate them completely, depending on their spatial frequency;

therefore the proper choice of f ilter size requires some care as well . Fig. 4.2 shows the improvement

brought about by this strategy when the same filter size as above is used.
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Fig. 4.2: Effect of image smoothing by decomposing into sine and cosine part, low-pass filtering each of them and

re-calculating the phase. As above, single image lines are shown, and the filtering was done in 2D.

Obviously, the edges and their heights are preserved in this case; but the fringe shape still remains noisy.

It improves a littl e when a median filter is used for the sine and cosine images: unlike the low-pass filter

that is simply an average formation, the median filter really eliminates outliers. Yet it is clear that the

ideal fringe profile will still not be restored by this type of f iltering operation. Moreover, it is definitely

inappropriate for the case of deterministic large-scale distortions of the fringe profile, as Fig. 4.3 shows.

In this case, a severe phase-shift miscalibration resulted in a concentration of calculated phase values

around 0 and 180° (see Chapter 3.4.6), and the filtering does not even approximately restore the expected

fringe profile. While this is certainly an extreme example, it shows that filtering does not automatically

generate an ideal reference phase map ∆ϕref (x,y) where both random and deterministic errors ought to be

small or absent. Therefore, σ∆ϕ will be underestimated when calculated with the black curve in Fig. 4.3 as

a reference.
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Fig. 4.3: Deterministically distorted fringe profile due to wrong phase shift; filtering in 2D by the sine-cosine

method with 9
�

9-median windows.

From this, it gets clear that filtering sawtooth images to obtain reference data is always only an

approximation. This should perform well enough in most cases but seems inappropriate for us since there

are some extreme fringe densities and noise levels to be explored. And finally, the filter size cannot be

standardised, the best choice would change from image to image and still remain a matter of judgement.

4.1.2.3 Composite method

Recently it has been demonstrated that a very good filter can be implemented by using the sine-cosine

method with a small filter size together with a large number of iterations [Aebi99]; the peculiarity of this

algorithm is that the phase is always re-calculated between the iterations. Once again, the phasor

interpretation assists in understanding this qualitatively: by determining the phases and re-deriving sine

and cosine from them, the length of the phasors is re-set to unity in each iteration, which counteracts the

contrast attenuation mentioned above and preserves any phase detail i n the image that survives a single

run of the filter kernel. Hence, one can in principle use arbitrarily many iterations and therefore eliminate

the speckle noise almost completely. This seems to be a promising method to generate near-ideal

reference data from whatever input fringe pattern. But still t he restriction is that the filter size must be

optimised by the operator; and also, depending on the accuracy required, the number of iterations may

become very large. It was also observed that at the borders of the image and/or at phase discontinuities in

the image, the phase profile gets more and more distorted with increasing number of iterations.

4.1.2.4 Comparing unwrapped data

The problem of white-black edges in the image can also be circumvented by unwrapping the phase before

comparing raw and smoothed data. Clearly, the raw image must not be filtered before unwrapping, which

restricts the application of this method to rather good results with low to medium noise and moderate

fringe density. Even then, the result will not be a direct conversion of phase to displacement, since almost
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all unwrapping algorithms substitute "bad" pixels by some "better" estimate and hence tend to suppress

errors without the user's request.

The attractive feature of this method is that, if the – continuous – theoretical displacement function is

qualitatively known, one can generate completely noise-free reference data, e.g. a best-fit plane. The

parameters for the displacement function are adjusted to match the measured values best, which will be

done by an iterative fitting process. An example of this is presented in Fig. 4.4: the sawtooth image

∆ϕ(x,y) whose fringe profile has been shown in Fig. 4.1 and Fig. 4.2 was unwrapped – without prior

filtering –, and a best-fit plane was subtracted from the resulting height data ∆d(x,y). Hence, the residual

displacement deviations δd(x,y) – scaled back to grey levels to allow a comparison with the previous

figures – could be directly evaluated for their rms, σδd.
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Fig. 4.4: Deviation δd between unwrapped sawtooth image and best-fit plane (δd=0). "1/4 data": average of 4 lines

of input image; "1/8 data": average of 8 lines of input image; see text.

Comparing the deviations δd in Fig. 4.4 with the deviations of the white curves in Fig. 4.1-Fig. 4.3 from

the expected linear fringe profile, it is evident that a substantial unintentional smoothing has occurred: the

spikes have been removed. This is in part due to the abovementioned pixel replacement during the

conversion of ∆ϕ to ∆d by the unwrapping algorithm; but the more important contribution comes from the

data reduction that could not be switched off [Ett97]: on unwrapping with the highest choosable

resolution, an image with, e.g., 1024�768 pixels will be shrunk to 256�192 averaged height values,

which, as known, reduces the spatial resolution and the noise. On testing a two times lower output

resolution, one finds however that the values for σδd are almost the same for the corresponding image

lines out of a 256�192 entry field (denoted by "1/4 data" in Fig. 4.4) and out of a 128�96 entry field

(denoted by "1/8 data" in Fig. 4.4), respectively; this is, littl e further data smoothing takes place after the

unwrapping step. While the automatic noise suppression during unwrapping is certainly useful for

practical tasks, it runs counter to our intentions of quantitative error determination, and is therefore not

considered further.
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4.2 Noise quantification in this work

For a quantitative comparison of TPS and SPS, we will have to test different speckle sizes, fringe

densities, and experimental set-ups, which means that a universal method is needed to find the reference

data from which to calculate σd. From the preceding discussion, it appears desirable to avoid estimating

∆ϕ ref(x,y) from the experiment, which means that the theoretical displacement function should be known.

Furthermore, unwrapping should be avoided because it involves additional, and sometimes unknown,

image processing by the unwrapping algorithm.

A concept fulfilli ng these requirements is fitting a synthetic, noise-free sawtooth image to the completely

unprocessed original one. This of course requires that we know very well what type of fringe pattern the

experiment should generate. We choose a linear phase course in x- and/or y-direction as displacement

function, which gives straight and equidistant sawtooth fringes with arbitrary density and direction. This

approach is suff iciently general for our purpose: provided the field of sensitivity is quasi-uniform, it

adapts to out-of-plane tilts, and in-plane rotations.

Since the global phase is not controlled in most of the experiments, the positions of the white-black edges

can vary considerably for otherwise identical displacements; therefore the synthetic fringe pattern has to

be given the correct phase offset as well .

Together, we have three parameters to optimise in order to obtain the best-matching synthetic image: (i) the

number of fringes per image width (1024 pixels) in x-direction, Nx ; (ii ) the number of fringes per image

height (768 pixels) in y-direction, N'y ; and (iii ) the phase offset N0 at some arbitrary point. For the latter, a

practical choice is the upper left corner of the images that is interpreted as (0,0) by computer graphics.

In the plots that follow in Chapters 5 and 5, N'y is multiplied by 4/3 to yield Ny±"fringes per 1024 pixels",

so that the fringe densities, not the actual fringe numbers in the image, are equal when Nx=Ny. Since we

are evaluating phase maps, the signs of Nx and Ny must match the respective phase gradient in the image.

Every triple (Nx, Ny, N0) is a point in IR3 from which a noise-free sawtooth image can be generated. Since

we are interested in the rms of the displacement-measurement error, σd , first a least-squares fit must be

run to find that ∆ϕ ref(x,y) which minimises σ∆ϕ , and then σ∆ϕ must be converted to σd via the

interferometric sensitivity vector. The quantity actually used for the fit are the pixelś  grey values in the 8-

bit phase map representations.

In multidimensional parameter spaces, it is generally not easy to implement fitting algorithms; most of

them are extensions of one-dimensional strategies. They tend to be mathematically complicated and

require some care to make them reasonably fail -safe. Apparently, there is only one genuinely

multidimensional fitting strategy, namely the "downhill simplex method" that is described in detail i n

[Pre88]. It is easy to code and extend to more degrees of freedom, which is presumably why several

mathematics programs also include a "simplex" module. Although the simplex method is comparatively

slow, it has a high inherent robustness (indeed, it never failed to terminate correctly in thousands of runs

for this work).
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A simplex in IRn is a (hyper-)body set up by n+1 vertices; it is the simplest body one can create in the

respective dimensionality. In IR3, a simplex is a tetrahedron. Because this is the parameter space that we

are in with our type of sawtooth images, we consider this example to clarify how the strategy works.

Initially, the routine is passed a starting vertex, which is the user guess for (Nx, Ny, N0). From this, the

noise-free fringe system ∆ϕ ref(x,y) is calculated to compare it with ∆ϕ meas(x,y). The resulting σ∆ϕ is

assigned to the first vertex. Then, the three other vertices are established by simply varying each one of

the parameter co-ordinates a littl e; this 3-bein ensures that a volume is generated instead of a plane or a

line. Each of the vertices defines a slightly different ∆ϕ ref(x,y) and thus leads to its corresponding σ∆ϕ , so

that we have a set of four different σ∆ϕ . The vertex that has generated σ∆ϕ,max is the worst-fitting point,

and hence the one to move through the IR3 to find a location closer to the minimum for it. (There are many

local minima, but with an accuracy of ¼ fringe for the starting values, the absolute minimum is safely

found.) This is done by means of the geometrical operations sketched in Fig. 4.5.

⇒σ∆ϕ,min

⇒σ∆ϕ,max

a)

b)

c)

d)

Fig. 4.5: Downhill simplex data fitting strategy in 3 dimensions (see text). Figure taken from [Pre88].

During the fitting process, the simplex must remain non-degenerate, i.e. truly 3-dimensional, which is

guaranteed by the shown sequence of trials. Assumed the "worst" and "best" vertices are as in Fig. 4.5 at

the beginning – or any other stage – of the fitting process, the first trial is step a), a reflection of the worst

point through its opposite – here shaded – surface (generally, through the centre of gravity of all other

vertices). If the new σ∆ϕ is then found to have decreased, an expansion as in step b) will be tested. If σ∆ϕ

decreases further, this larger step toward the minimum is done. If no improvement comes about by step a),

step c) is executed: the tetrahedron just shrinks away from the worst point. If this does not reduce σ∆ϕ

either, the tetrahedron is simply contracted towards the best-fit point, as in step d): only the "best" vertex

is fixed, and all three other points are moved towards it, so that the resulting tetrahedron will be the

dashed outline. Then the process repeats with a new worst point, and if we are lucky, the former worst

point could be the new best one. In each iteration, the currently worst estimate of (Nx, Ny, N0) is subjected

to the trial sequence, whereby the tetrahedron creeps through the IR3 to enclose the minimum, and then to
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contract until the desired relative accuracy of the rms values is reached. As an example, Fig. 4.6 presents a

comparison of ideal and measured phase map at the final iteration of the fitting procedure. In this case, the

iterations terminated at (σ∆ϕ,max –σ∆ϕ,min)/σ∆ϕ,min = 10-5. The ideal data have been digitised for

visualisation only, but the fitting routine uses the C language's long double numerical format.

Fig. 4.6: Downhill simplex algorithm at work, just executing the last iteration. Upper half, best-fit ∆ϕ ref(x,y), laid

over ∆ϕmeas(x,y) still visible in lower half.

The disadvantage of the method is that every iteration involves the generation of 1024�768 synthetic

phase values and the comparison to their measured counterparts. This took ¡ 4 s on the Pentium-233

system used. Consequently, one determination of σ∆ϕ with 40 to 50 iterations took some 3 minutes, so that

most of the results of Chapters 5 and 5 come from batch-fit sequences that ran overnight. An advantage of

this expensive approach is that the output is an average over the whole image and therefore statistically

very reliable.

The method was tested by synthetic fringe patterns with various known amounts of random noise, and it

was verified that with the termination threshold given above, the pre-set Nx, Ny and N0 could be found

with an accuracy of 0.01 fringes even at very high σ∆ϕ . Re-starts of the routine always led to the same

results within this accuracy.

The least possible σ∆ϕ for non-constant phases is (by digitisation of measured data) 0.29 grey values or

0.41°; the largest detectable σ∆ϕ (trying to find a fringe system in random noise, e.g. a speckle phase map)

amounts to 73.9 grey values or 103.9° (see also [Own91c]). This is the rms of a uniform distribution

within the range [-128,128), corresponding to phases in the range [-180°,180°). The error is confined to

[-180°,180°) because phase errors larger than 180°, i.e. of �(180°+ε), 0<ε<180°, are wrapped back onto


(180°–ε) due to the cyclic nature of the phase. As an example, consider Fig. 4.1 and Fig. 4.2: the noise

spikes are highest near the black-white edges, but this of course does not mean that the noise also is. The

pronounced "salt-and-pepper" noise near the sawtooth edges is only a characteristic of the visual phase

representation. These merely visual problems with the representation of a non-unique phase have also

been discussed in Chapter 2.3.2.
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As mentioned before, the fitting method can be easily extended to greater dimensionality. If, for instance,

a correlation fringe pattern is to be evaluated, two degrees of freedom, namely Ib and MI, are added and

the algorithm can determine the fringe visibilit y in IR5. More complicated fringe structures could also be

treated. But every new variable increases the number of iteration steps as well as the time for a single

iteration, so that the issue of speed gains importance in such applications.

Since the resulting measurements of σ∆ϕ  will mostly appear converted to graphs of σd in the following

chapters, it may be helpful at this point to provide the reader with a pictorial representation of the various

amounts of noise. The image parts grouped in Fig. 4.7 are taken from an out-of-plane TPS measurement

series with decreasing object ill umination.

Fig. 4.7: Image segments from results of deformation measurements using TPS with varying, and rather weak,

object ill umination. σ∆ϕ as grey values: 13.3, 21.2, 28.0, 40.3, 51.9 and 63.1; as phase: 18.8°, 30.0°, 39.5°,

56.9°, 73.3° and 89.0°, in obvious order.

The last sawtooth image in the figure is hardly discernible as such and therefore raises the question

whether results li ke this are of any use at all . It turned out, however, that the filtering procedure described

in section 4.1.2.2 still im proved the image suff iciently to enable correct unwrapping; but as explained

above, the phase error could be determined without doing so. Other examples of sawtooth images severely

degraded by synthetic Gaussian noise have been presented in [Kad97].

From the preceding overview of methods, it is clear that the approach to noise quantification presented

here is new only in that it avoids unwrapping before the best-plane fit; however, it is the only strategy

known to me that can generate noise-free data with no user interaction – except for the input of starting

parameters – even from the worst of results, and is hence free of arbitrariness. While this may not always

be necessary, it is desirable from a methodological point of view.
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5 Comparison of noise in phase maps from TPS and SPS

Over the years, TPS has become a well -established technique that is confidently used in many

applications; SPS is far less frequently used in ESPI and seldom considered as an alternative despite its

ease of use and immunity to instabiliti es. And there are indeed reasons to doubt whether SPS can compete

with TPS in ESPI: the small aperture needed to generate speckles large enough for SPS leads to decreased

light eff iciency, reduced spatial resolution, and also accelerates aperture-plane speckle decorrelation.

Moreover, the spatial intensity and phase variations of the speckle field obstruct an accurate phase

calculation, all the more as the number of available phase samples is very limited.

But also in TPS, where almost any error-compensating phase extraction with any number of intensity

readings could be employed, it is customary to use Carré's [Car66] or Schwider's [Schwi83] formula. This

is because not even the most sophisticated of formulae will help against speckle decorrelation and pixels

with too low modulation MI. Therefore, the uncertainty estimates have not changed much over the years;

they range from λ/15 [Nak85] to λ/30 [Rob86, Ker88] or even λ/50 [Vik91, vHaa94], depending on

whether correlation fringes or speckle phase maps are evaluated, and in the latter case, also on the fringe

density.

As yet, there are no corresponding data available for SPS, so that the decision which method to use

remains a matter of presumptions. The present chapter is intended as an attempt to fill t his gap [Bur00a].

Although it must be borne in mind that the data presented here are, strictly speaking, only valid for the

interferometer and test object used, they do allow a comparison of TPS and SPS.

There are many parameters to be tested in such a study. The most essential ones are the phase shift and the

reference-to-object intensity ratio to use. Speckle size and shape can be expected to play a special role for

the fringe quality in SPS; and by varying the fringe densities, we will get an idea whether the reduced

spatial resolution of SPS matters in practice. Moreover, we will t est the performance of TPS and SPS

under very low ill umination levels to learn what restrictions the smaller aperture for SPS effects.

Although we will of course use imaging optics, we will determine the speckle size as if we were dealing

with objective speckles; this is owing to the slightly modified objective shown in Fig. 5.1. When we take

D as the diameter of the aperture and z as its distance to the camera chip, (2.43) remains perfectly valid,

although there is no "free" scattering after the lens anymore; but z is large enough for this simple

geometrical formula to function correctly, as was also confirmed by accurate measurements of the speckle

size as described in 3.3.1.

While the out-of-plane measurements can be carried out with the same interferometer geometry for both

methods, the symmetrical-ill umination in-plane layout for TPS [Lee70] cannot be reproduced for SPS.

Therefore we will t est two different approaches of in-plane displacement measurements with SPS to gain

a "three-dimensional" insight.
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In order to obtain comparable data, it is essential to carry out both TPS and SPS measurements under

experimental conditions as similar as possible. Therefore I built a speckle interferometer suitable for TPS

and SPS measurements; especially for the out-of-plane set-up, only a minor change is necessary to switch

from one method to the other. For the other configurations, changes of rather different extent are

necessary. While it was possible to maintain the imaging geometry for the mixed in-plane/out-of-plane

configurations and also for the pure in-plane TPS set-up, the pure in-plane SPS assembly has littl e in

common with the "standard" set-up.

5.1 The experimental set-up

The out-of-plane arrangement is shown in Fig. 5.1. The basic layout is similar throughout Chapters 5 and

5, and the front-end changes of the set-up for the other geometries are described later in the context of the

corresponding measurements.
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Fig. 5.1: Optical set-up used for TPS and SPS. Abbreviations: M, mirrors, BS, beam splitters, L, lenses, MO,

microscope objectives, PF, polarisation filter, PZT, piezo actuator, A, aperture stop; upper left: detailed

view of A as seen from the direction of the camera.

The light from a 50-mW HeNe laser (λ¡633 nm) is split by BS1. The object light is expanded by MO1

and collimated by a large lens of 250 mm focal length, L1. This serves to obtain an almost uniform field

of sensitivity [dVeu97]. The mirror M3 directs the light onto the object at an angle of ¡ 11.5° to the

surface normal, which gives a quasi-out-of-plane sensitivity. The light spot on the object has a diameter of

some 10 cm, of which only 28.5�21.5 mm² are imaged onto 1024�768 pixels of the CCD sensor by L2

(f=100 mm) with a magnification of M ¡ 0.26. For a perfectly uniform field of sensitivity, the object

would have to be imaged telecentrically; but thanks to the small field of view, the error introduced by the

conventional imaging geometry is negligible.

The object, a flat aluminium plate, can be tilted about all three spatial axes; however the x and y rotation

axes lie 4.5 cm behind the plate's surface, which gives rise to lateral speckle displacement during
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 out-of-plane tilts. The axis of in-plane rotation coincides with the optical axis. The aluminium plate is

coated with a white chalk spray that causes complete depolarisation. Thereby an incoherent background is

present in all of the measurements, which is a realistic scenario.

A second beamsplitter BS2 together with mirror M2 guides the reference light path close to the one of the

object. The mirror M2 can be displaced by means of the piezo-electric translator PZT (PI-170) and thus

adds the possibilit y to use TPS. The polarisation filter PF attenuates the reference light to the extent

required. By MO2 the reference wave is coupled into a single-mode fibre that is held in place by a bent

syringe needle. The reference wavefront that leaves the fibre end (cut with blunt scissors) is very smooth.

The aperture stops A are laser-cut aluminium plates of 0.2 mm thickness with circular or elli ptic holes of

various diameters to generate different speckle sizes. The distance ∆x of the fibre end relative to the centre

of the aperture stop determines the spatial phase shift αx(∆x). It is set to zero (∆x = 0) for the TPS

measurements and to the desired αx(∆x) for SPS, and calibrated by the Fourier method [Bot97]. Since the

necessary ∆x is frequently larger than the radius of the aperture, there are slits adjacent to the holes

through which the reference light can pass, which is also depicted in Fig. 5.1 as seen from the direction of

the camera. To obtain "clean" power spectra of the interferograms, the rest of the slit i s covered again

once the fibre end is correctly positioned, which becomes very important for the smaller apertures. The

aperture shape for elli ptical speckles is indicated by the broken line; thus the speckles will be elongated in

x direction.

For TPS, the slits are covered completely and the fibre end is brought to the centre of the aperture. The

syringe needle then obscures a part of the aperture, which becomes the more important the smaller the

aperture is. To remove the spatial phase shift, the Fourier method can assist as well: the interference

sidebands in the frequency plane are shifted into each other (see Chapter 3.3.1).

To shift the phase temporally, a control bit from the PC triggers a digital sawtooth waveform generator

(HP 33120A) that drives the PZT via an HV ampli fier (built i n-house). The voltage ramp is chosen so as

to generate a nominal phase shift of αt, matching αx(∆x) to obtain comparable data. While the temporal

phase shifting is in progress, a sequence of consecutive camera frames* is stored, of which the first and

the last one are subtracted. They have a nominal phase difference of 2π and should look exactly the same.

If their mean brightness difference exceeds a certain threshold, an external mechanical or thermal

disturbance is presumably present, the frames are discarded and the sequence is repeated. Otherwise the

phase shift of all recorded frames is assumed to be correct; additional tests**  confirmed αt to be accurate

                                                

* It turned out that the frame grabber was not capable of recording a full -format sequence of 10242 pixel frames (frame

frequency: 12.5 Hz) reliably, which is why only 1024�768 pixels were used.

**  These rely on executing a temporal phase-shift sequence without removing the spatial phase shift. The global phase offsets

between the recorded interferograms can then be determined by calculating their phase maps with SPS and subtracting them. In

principle, the same was done in 5.3; see also [Lai91, Küch94, Win95].
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within � 5% when this technique was used. The subtraction method is known as „dark frame“ calibration

method [Che85]. Note here that both SPS and TPS are implemented as integrating-bucket versions.

5.2 Preliminary investigations

To obtain the best performance for both of the methods, some experimental parameters have to be fixed.

These are the phase shift to work with and the optimal reference-to-object intensity ratio. The latter will

be treated in Chapter 6.1.1 in a wider context; for now, let us retain that the standard beam ratio B=R /nOo
is 10:1 in this chapter. Also, it is important to get to know the test object and to assess the reliabilit y of the

results. The preliminary steps are briefly described below.

5.2.1 Choice of phase shift

Since it is essential for light eff iciency to keep the speckles as small as possible, the number of phase

sampling points for SPS is restricted to the minimum, which is three (see Chapter 3.2). Therefore, we use

a three-phase formula also in TPS. For this number of samples, the two common values for the phase shift

to choose from are α=90° or α=120°. Theoretical results [Cre88, Sur97a] suggest that for TPS, 120°

should be the better choice. For SPS however, the findings of Chapter 3.2.2 indicate an advantage for

α=90°. The error quantification established in Chapter 4.2 now allows us to check these presumptions

experimentally. For this purpose, I recorded a series of out-of-plane tilts with various sawtooth fringe

densities for each of the phase shifts in question, by both TPS and SPS. The resulting σ∆ϕ in the sawtooth

fringes was converted into σd and plotted over the number of fringes in the sawtooth image. This graph is

Fig. 5.2.
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Fig. 5.2: Test of phase shifting angles for TPS and SPS: σd in wavelengths over fringe count Nx. For TPS, ds=dp,

and for SPS, ds=3dp.

The σd measurements show that a phase shift of 120° is clearly the better alternative for TPS: particularly

in the region of low fringe densities, the 120° method yields distinctly the lowest error. Apart from the
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generally higher noise level, the accuracy of the SPS measurements shows a less pronounced dependence

on the phase shift. Moreover, the 90° formula performs slightly better, in contrast to the theoretical

findings in [Bot97], but in agreement with the more speckle-specific investigations in Chapter 3.2.2. The

slight difference in performance does however not appear to discourage using 120° also for SPS in this

study, and we will do so to maintain comparabilit y, but will come back to α=90° in SPS in Chapter 6.1.2.

For higher fringe densities, TPS and SPS deliver similar performance; this is partly due to the

aforementioned fact that significant speckle displacement occurs for larger tilts, which contributes the

larger part to speckle decorrelation when the speckles are small .

5.2.2 Reproducibility of the σd values

While the fitting algorithm described in Chapter 4.2 yields a very reliable average of phase errors in one

sawtooth image, this tells us nothing about whether we will get the same error in a second experiment.

This deserves particular attention because the test object had not been specially made: it was a large

mirror mount onto which a rotation stage was fitted with the aluminium plate on it. The out-of-plane tilts

were generated by manual setting via the fine-thread screws of the mirror mount, and the in-plane

rotations by manual setting of the rotation stage via a reduction gear. While the latter yielded excellent

reproducibilit y of the measured displacement errors, the former showed some fluctuations, which had to

be investigated in more detail to learn how reliable the σd measurements are. Fig. 5.3 shows the results for

a set of SPS experiments. For each of the speckle sizes 1.5, 3, and 6 dp, the tilt sequence was repeated 10

times; the averages nσdo with their respective standard deviations σσd are given in the figure. This was

done for both vertical and horizontal sawtooth fringes.
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Fig. 5.3: Reproducibilit y of measurements of σd vs. Nx and Ny for out-of-plane tilt s. Left: tilt about y-axis, vertical

fringes; right: tilt about x-axis, horizontal fringes. Note that the ordinates begin at σd = 0.04 λ to expand

the error bars.

For a speckle size of 6 dp, the reproducibilit y is excellent. At low fringe densities, the spatial phase

measurement works well because of the low intensity and phase gradients in the speckles; but as the tilt

increases, aperture-plane decorrelation impairs the accuracy. For ds=6 dp , the σd curves are very similar
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for Nx and Ny. At lower speckle sizes, a higher bias noise is present (the curves start from higher values of

σdpNx,Ny=0 ), but in turn, nσdo increases more slowly with the fringe density. Apparently, a reduction of ds

effects an increase of σσd particularly for tilts about the x axis. Hence, there are most likely random in-

plane object shifts of some µm, and subsequent speckle pattern shifts on the sensor, when the object is

tilted so as to produce horizontal fringes.

Therefore we will consider vertical fringes in most of the out-of-plane investigations; although the

performance was also checked with horizontal fringes and found to essentially agree with Fig. 5.3, we

would learn littl e from displaying those curves as well .

Since the tilts were adjusted by hand, there was also some fluctuation in the fringe densities given on the

abscissae of the plots. The error amounts to � ¼ fringe for each "basic" displacement step of 5, 10, 20, 30

and 40 fringes; and for compositions of several of these (e.g. 100 fringes ± 10+20+30+40 fringes), the

deviation sometimes accumulated to � 1 fringe, which still seems negligible for plotting. Also, there was

slight interaction between the axes, i.e. the fringes were rarely exactly vertical or horizontal; this deviation

remained within � ¼ fringe per step as well and was not systematic. Although each curve for nσdo
consists of only 12 data points, i.e. 12 different fringe densities, the values are linked to "curves" for the

sake of a better overview. This applies likewise to the σd plots to follow, and will prove useful there.

Finally, in the TPS experiments, also the stabilit y of the interferometer plays a role for the accuracy of

measurements. As mentioned before, I applied rather stringent a criterion to accept a phase-shifted frame

sequence. Since the laboratory was in the 1st floor, with a rail road and a motorway nearby, it saved much

time to do these experiments with the least possible building vibration – whose maximal power was at

¡4.3 Hz –, i.e. between midnight and 4 a.m.

5.3 Zero-displacement-gradient measurements

Of the results of phase measurements that will be presented here, those with zero displacement gradient

are the most general ones, since they do not depend on the specific assembly’s parameters but should be

comparable for any set-up with only the speckle size as the relevant quantity. The way to obtain such

measurements is to leave the object untouched and to compare two nominally identical object states,

differing only by a controlled or random global phase offset ∆ϕ. Unfortunately, in SPS the measured σd

depends strongly on ∆ϕ , which is due to the ample intensity and phase gradients in the object speckle

field; this has been discussed in detail i n Chapter 3.4.4.

Therefore, the evaluation of zero-displacement measurement errors in SPS is quite an elaborate

procedure: one has to collect a set of phase maps with various ∆ϕ that suff ices to reconstruct the

underlying continuous curve of σd vs. ∆ϕ and then determine the mean of the errors. Since the

interferometer was fortunately too stable to produce phase drifts and fluctuations uniform in [0,2π), the

piezo-driven mirror assisted in generating the phase offsets. Of course, it has to move very slowly to

generate quasi-stable interferograms; I used an amplitude-modulated triangle waveform that was
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theoretically suitable to distribute the global phases uniformly over [0,2π) when the interferograms were

captured and stored at a fixed rate of 1/3 Hz. Fig. 5.4 shows results from this procedure for three different

speckle sizes and 120 measurements of σd for each of them.
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Fig. 5.4: Dependency of σd as determined by SPS on the phase offset ∆ϕ for various speckle sizes and Nx=Ny=0, cf.

the error fringe profiles given in Fig. 3.39 and Fig. 3.40.

As in Chapter 3.4.6, the qualitative appearance of the graphs in Fig. 5.4 suggests that the underlying

phenomenon could mainly be a linear miscalibration of the phase shift: when we subtract one phase map

from another, the errors thus produced theoretically cancel at phase differences of ∆ϕ =0 and π, and add

up in between these values. In particular, this explanation seems reasonable because the smaller the

speckles, the higher their phase gradients in units of dp and thus the larger σd. At ∆ϕ ¡ π, however, σd

does not reach the minimum at ϕ0 ¡ 0 again, which tells us that there are other error sources than wrong

phase shift alone; this has been interpreted in Chapter 3.4.6.

The dependence of σd on ∆ϕ is also found within displacement fringes (in which ∆ϕ progresses

deterministically from –π to π), so that the σd which we assign to sawtooth images is in itself an average

over all ∆ϕ. Examples of this behaviour are the white curves in Fig. 3.39 and Fig. 3.40.

As can be seen from Fig. 5.4, the distribution of the ∆ϕ  is still t oo irregular to permit a direct calculation

of the average; this effect does come from random phase fluctuations in the interferometer. Therefore it

was necessary to fit suitable functions (given in the figure as well ) to the data points and to determine the

mean values of these instead. The values finally obtained constitute the entries for Nx=Ny=0 appearing in

the following plots.

With TPS, none of the described detours is necessary; the phase error does not depend on the global phase

offset, provided the phase shift is calibrated exactly enough. Consequently, one measurement with

Nx=Ny=0 suff ices to determine the corresponding σd. Furthermore, σd is uniformly distributed in sawtooth

fringes from TPS, and there is no such thing as an error fringe profile in this case.
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5.4 Out-of-plane displacements

The sequence of tilts described in 5.2.2 was carried out for both phase-shifting methods; the results for

vertical fringes (varying Nx) are graphed in Fig. 5.5. The conversion factor from phase to displacement is

λ/713°, or equivalently, λ/(507 grey levels); this means that one wavelength of displacement gives rise to

almost two fringes in the sawtooth image. Hence, the maximal detectable σd,max in the sawtooth images

(cf. Chapter 4.2) corresponds to 104�λ/713¡74�λ/507¡0.146 λ for the out-of-plane geometry.
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Fig. 5.5: σd for ESPI displacement measurements with SPS (left) and TPS (right) as a function of speckle size for

out-of-plane displacements. The parameter for each curve is Nx, the number of vertical fringes per 1024

pixels, as indicated in the legend boxes.

In the interpretation of these plots, we will again have to bear in mind that we encounter both types of

speckle decorrelation here: (i), aperture-plane decorrelation, which progresses faster for small apertures

(large speckles) as we increase the tilt; (ii ), sensor-plane decorrelation or speckle pattern displacement

due to object tilt , which leads to an increasing pixel position mismatch between initial and final speckle

pattern and affects the fringe quality more strongly for small speckles. It is true that the fringe quality

could be partly restored by re-positioning the images to compensate the shift of the speckle pattern, as

suggested in [Leh98]; but as this would frequently involve non-integer pixel shifts, we do not further

pursue this approach. Despite this minor flaw in the set-up, we will be able to carry out the intended

comparison.

Not surprisingly, the zero-displacement measurements with SPS turn out best with very large speckles,

since this minimises the problems for the phase calculation. But the high sensitivity to aperture-plane

decorrelation leads to a fast deterioration of the fringe quality as the tilt i ncreases. Also, at Nx=100, one

fringe would consist of only one speckle at ds = 10 dp, and this is clearly below the limit of 4 speckles

given in [Tan68]. For ds = 5 dp, which corresponds to 2 speckles per fringe when Nx=100, we can already
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observe a distinctly reduced error. Further reduction of the speckle size does not greatly improve the

performance for this and other high Nx .

On the other end of the scale, at ds = 1.5 dp, σd from SPS consists chiefly of bias noise (i.e. σd is already at

¡0.08 λ for Nx=0) until decorrelation sets in. At moderate fringe densities, i.e. up to some 30 fringes over

the image width, we observe σd to increase steeply for a speckle size below some 2.5 dp, which shows that

the SPS method is not very tolerant of low spatial coherence of the data points. In general, the SPS

experiments confirm a speckle size of about 3 dp to be most suitable. Since the available amount of object

light grows as 1/ds², we will not stop here and try to further reduce ds without increasing σd in Chapter 6.4.

In the TPS experiments, a speckle size around 1 dp turns out to yield the best results for low fringe

densities; yet at larger tilts, we obtain better measurements with larger speckles. This is due to image-

plane speckle displacement: the same lateral speckle displacement introduces less noise when the speckles

are larger, although the pattern in itself decorrelates faster.

With large speckles, the TPS measurements are worse than those from SPS as soon as the object is

moved. For high fringe densities and ds =10 dp , some entries are missing from the curves because

decorrelation had advanced in such a way that no trace of fringes was left (of course, the fitting algorithm

did find a minimum in the coarse random phase map; but it always does). In this case, reducing the

speckle size brings about a larger improvement of performance.

For Nx ¼40, SPS performs better than TPS for any speckle size. This demonstrates a peculiarity of SPS:

because of the spatially extended phase-sampling window (see 3.4.4), some smoothing of the phase values

takes place as they are determined. The sampling window has an extent of 3 pixels in the x direction only,

which could introduce anisotropy; but the errors from the Ny measurements agree with Fig. 5.5 quite well ,

so that the one-dimensional phase sampling has no detectable effect.

The drastic increase of σd for the speckle size of 0.5 dp is somewhat surprising, since it has been proven in

[Leh98] that very good TPS measurements remain possible even with much smaller speckles. In our case

however, there are also slight random in-plane shifts of the object that accompany the tilts. They do not

show up in the left-hand graph of Fig. 5.3 because of the larger speckles used there; but at ds = 0.5 dp, the

accuracy suffers noticeably from this minor effect.

To get an impression of what the obtained sawtooth images look like, Fig. 5.6 provides some example

results; the corresponding σd values may be found from Fig. 5.5.
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Fig. 5.6: Some examples of maps of ∆ϕ(x,y) that have been evaluated for σd. Upper row, Nx=5; lower row, Nx =50;

left, SPS with ds=3 dp; right, TPS with ds=1.5 dp.

Summarising this subsection, one can state that TPS is significantly more accurate than SPS at low fringe

densities. For SPS, the best range of ds is 2.5 to 3.5 dp , with σd¡λ/15 for moderate fringe densities; for

TPS, we find ds¡dp to give a typical σd of ¡λ/20. Imperfections of the test object prevented an extension

of the TPS study towards smaller ds. It turns out that in the presence of speckle decorrelation, SPS

benefits from larger ds and spatial phase sampling, so that the advantage of TPS fades quickly with

increasing object displacement.

5.5 In-plane displacements

When carrying out in-plane displacement measurements using SPS and assessing its performance, the

reference is the ingenious symmetrical pure-in-plane TPS configuration [Lee70] with its excellent

sensitivity. A pure-in-plane SPS configuration using a double aperture has been established [Sir97a], and

we will i nvestigate its merits, but it also seems worthwhile to modify the set-up of Fig. 5.1 for more

oblique object ill umination and to gain in-plane sensitivity in this way, since this arrangement is by far

easier to handle.

Therefore we start the investigation of in-plane measurement accuracy with a set-up that has a mixed in-

plane/out-of-plane sensitivity (henceforth abbreviated by "mixed sensitivity") and again offers a
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possibilit y to compare TPS and SPS under the same experimental parameters. As soon as pure in-plane

sensitivity is demanded, the interferometer assemblies are rather different, also from each other; we will

discuss these in the second part of this subsection.

5.5.1 Mixed-sensitivity interferometer

As mentioned earlier, the set-up of Fig. 5.1 need only be slightly changed to acquire a non-negligible in-

plane sensitivity component, which is shown in Fig. 5.7.
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Fig. 5.7: Mixed-sensiti vity set-up for detection of in-plane object displacements by TPS or SPS.

To obtain in-plane displacement sensitivity, the object is ill uminated obliquely by means of the additional

mirror M4, whose centre is placed at co-ordinates (-xM4, 0, zM4). The geometry is chosen to give an angle

of incidence of ¡53° to the surface normal for the object ill umination. Thus the sensitivity vector Sx is

inclined by 26.6° to the normal, and the in-plane sensitivity is half the out-of-plane sensitivity. The latter

is not greatly reduced in comparison to the quasi-out-of-plane configuration, but of no concern here. The

collimated ill umination is particularly important for in-plane geometries, as was shown in [Kun97,

Alb99].

M3 has to be rotated to ill uminate M4, and since this lengthens the light path in the object arm, M2 is

appropriately displaced to bring the temporal coherence back to its maximum. This is rather important

because the laser is being operated without an etalon and its coherence length is therefore only ¡10 cm.

This configuration detects in-plane displacements along the x axis; for y-sensitivity, there is another

mirror M5 above the object (not shown here) with its centre at (0, xM4, zM4), so that the in-plane

components of Sx and Sy are of equal modulus and orthogonal on the x-y-plane. A rotation of the object

about the z axis then yields horizontal (with Sx) or vertical (with Sy) fringe patterns that fulfil the

conditions listed in Chapter 4.2. Thanks to the expensive bearing, the reproducibilit y of the measured σd

was excellent for this type of displacement, also with smaller ds.
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The conversion factor from phase to displacement is λ/288° or λ/(205 grey levels), which means that one

wavelength of in-plane displacement generates 0.8 sawtooth fringes. This has an important consequence:

even "good" sawtooth images with low phase σ∆ϕ error yield a large displacement error σd after the

conversion. Indeed, as Fig. 5.8 shows, the ordinate scale of previously 0.146 λ for the out-of-plane

measurements changes to σd,max¡0.36 λ.
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Fig. 5.8: σd for ESPI displacement measurements with SPS (left) and TPS (right) as a function of speckle size for

in-plane displacements. The parameter for each curve is Nx, the number of vertical fringes per 1024

pixels, as indicated in the legend box.

Since no object tilts are involved here, the image decorrelation is exclusively of type (ii ). Evidently, this

does not change the qualitative course of the plots: they strongly resemble those of Fig. 5.5. Again, a

speckle size between 2.5 and 4 dp is found to be a good choice for SPS and about 1 dp for TPS. The

evaluation of σd with TPS and SPS, respectively, for various Ny , led to similar performance as for Nx.

On comparing the σd obtained here with those from Chapter 5.4, it turns out that here the σd are about 2.5

times as large as in 5.4, particularly for the SPS measurements, where the factor is nearly exact. This is a

direct consequence of the reduced sensitivity (¡40% that of the out-of-plane configuration) and tells us

that the σ∆ϕ in the underlying sawtooth images are very similar in both cases. The displacement

information is encoded in the interferograms in the same way, but by different displacements, for the out-

of-plane and in-plane configurations. Hence it is not surprising that also the σ∆ϕ are on a comparable

level. This result confirms that we now have reasonable performance data for smooth-reference ESPI set-

ups with TPS and SPS at our disposal.
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5.5.2 Purely in-plane sensitive interferometer for TPS

In the previous subsection we have seen the disadvantageous effects of a low sensitivity on the σd of

displacement measurements. Besides, it is desirable from a practical point of view to measure the

Cartesian components of displacement separately because this simpli fies the evaluation greatly. The way

to carry out pure in-plane displacement measurements is known since a long time [Lee70] and has

become the common choice because of its ease of use and its high sensitivity that is hard to surpass

[Sir93, Joe95].

The basic interferometer is modified for symmetrical oblique object ill umination as sketched in Fig. 5.9.

Component numbers skipped, or not starting from one, indicate that the "original" components are still i n

place, which helps restoring the former set-up accurately. In particular, the fibre assembly is disabled, but

not removed.
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Fig. 5.9: Optical set-up used for pure in-plane TPS measurements. Abbreviations: M, mirrors, BS, beam splitter, L,

lenses, MO, microscope objectives, PZT, piezo actuator, A, aperture stop.

By BS1, the light is divided into two beams of almost equal power; the "reference" beam is directed into

MO4 via M2 and M5. Although there is no distinction of object and reference beam in speckle-reference

set-ups, we declare this beam the reference because it is the one to undergo the temporal phase shift by

means of the PZT that moves M2. Since M2 reflects the beam at 45°, the phase shift must be re-

calibrated. Theoretically, the voltage ramp used for normal incidence should be augmented by v2; due to

imperfections of the PZT, the true value was 1.33.

The "object" beam reaches M4 and then MO3, which is of the same type as MO4. Also the collimating

lenses L3 and L4 are of the same type (f =140 mm), and via several other mirrors each beam illuminates

the object at an angle of 45°. In this configuration, B is very close to unity to maximise MI .

The layout seems somewhat complicated, but is necessary to attain equal paths for both beams, and also

facilit ates leaving the imaging unit with L2 and A completely unchanged.
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The sensitivity vector lies in the object's plane in horizontal direction; in this case, only x-displacements

can be measured. The object rotation generates 1.4 horizontal sawtooth fringes per wavelength of in-plane

displacement. Consequently, the conversion factor from phase to displacement is λ/509° or λ/(362 grey

levels), which is approximately halfway between the out-of-plane and the in-plane sensitivity that we have

previously been dealing with. (It would however be easy to increase this value: if both incidence angles

were ¡53°, as in 5.5.1, we would get 1.6 sawtooth fringes per wavelength of displacement.) The

measured σd are shown in Fig. 5.10.
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Fig. 5.10: σd for ESPI displacement measurements with pure in-plane TPS as a function of speckle size for in-

plane displacements. The parameter for each curve is Ny, the number of horizontal fringes per 1024

pixels, as indicated in the legend box.

Again, the ordinate reflects the change in sensitivity: σd,max¡0.20 λ for this geometry. But since only 57%

of the displacement of 5.5.1 are necessary to generate the same number of fringes, there is less speckle

decorrelation present than in Fig. 5.8. This improves the performance significantly for higher fringe

densities, although the optimum of the speckle size still wanders towards two or more pixels for larger

rotations. Over the whole range of fringe densities, the accuracy is comparable to that obtained in the out-

of-plane TPS study. Apart from the comparison with SPS that we are to continue, this shows that speckle-

reference ESPI is not very much inferior to the smooth-reference configurations and that a 3-D TPS

system with Cartesian sensitivities would have well -balanced systematic σd in each of the directions.

5.5.3 Purely in-plane sensitive interferometer for SPS

A set-up that facilit ates exclusive in-plane displacement detection also with SPS has been described in

[Sir97a]. Because the sensitivity of this configuration is also adjustable, we are able to compare the merits

of SPS and TPS also with pure in-plane interferometers of equal sensitivity. Fig. 5.11 shows a schematic

of the interferometer.
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Fig. 5.11: Optical set-up used for pure in-plane SPS measurements. Abbreviations: M, mirrors, MP, mirror prism,

L, lenses, MO, microscope objective, DA, double aperture; lower left: detailed view of DA as seen from

the direction of the camera.

The laser beam is expanded, collimated and directed normally onto the object by M4, which is located so

as to be out of the viewing paths. By M5 and M6, some of the scattered light is directed towards the

aluminium coated prism MP. It is attached directly in front of the double aperture DA so that each "object

beam" finds its own aperture to reach the sensor. In this case, the imaging lens (f=140 mm) is located

immediately behind the apertures, but still we can use the (equal) diameters of the apertures D for the

determination of speckle sizes by means of (2.43). Like the set-up of 5.5.2, this in-plane configuration

generates horizontal fringes only.

By means of the distance ∆x between the centres of the apertures, each of diameter D, the two speckle

fields interfere at an angle on the sensor, which introduces the spatial phase shift. Due to the spatial extent

D of both the sources of "reference" and "object" light, the power spectrum of the interference sideband

that carries the signal is twice as broad for a given speckle size as it is for the interferogram of one speckle

field and a point source. In other words, there will be twice the phase shift miscalibrations and nearly

twice the number of phase singularities disturbing the interferogram. Moreover, B is fixed to unity, which

makes all the improvements for smooth-reference SPS (see Chapter 5) inapplicable. It is quite instructive

to compare the power spectra of interferograms from the set-up in Fig. 5.11 with those from a smooth-

reference configuration (see Chapter 3.4.4). Fig. 5.12 shows the spatial frequency content of speckle-

reference SPS interferograms for two different speckle sizes.

The double aperture generates signal sidebands that are of the same extent as the speckle halo itself, and at

least 50% of the spectral power is inevitably contained in the speckle halo, in contrast to smooth-reference

interferograms. Hence, if the signal frequencies are to be well separated from the speckle noise and to

remain below the Nyqvist limit, the speckle size must be twice that which was derived for a point-source

reference in Chapter 3.4.4.
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Fig. 5.12: Power spectra of interferograms from pure in-plane SPS set-up; left, ds= 3.6 dp ; right, ds= 6.0 dp . The

scaling is logarithmic and contrast-enhanced.

In contrast to the TPS set-up, where the in-plane sensitivity is obtained by symmetrical oblique

ill umination, the SPS in-plane method relies on oblique viewing of the object. Unfortunately, the imaging

geometry is now quite different from all the assemblies presented before, and also, the viewing under

�45° introduces a considerable perspective error. In principle, this could be corrected by use of prisms as

described in [Sir97b], but in order to valuate the configuration in its basic version, this was not done here.

Owing to the perspective and the altered imaging geometry, the field of view is 68.5�36.5 mm²; we will

have to take the greater image height into account when comparing fringe densities. (We continue

working with the familiar fringe counts because this keeps the quantity of "pixels per fringe" comparable.)

Moreover, the apparent height of the object (size in y-direction) changes with the x co-ordinate: it ranges

from 35 to 38 mm, so that the height statement is necessarily an average. Since the height changes have

opposite sign for the two viewing directions, there is also a position mismatch between the superposed

speckle images that is largest at the left and right edges of the field of view, and can vanish only on a

vertical li ne in its centre. This causes a slight sensitivity to displacement gradients, as in shearing ESPI,

but fortunately these do not affect displacements in x-direction. Furthermore, the quality of the mirror

prism bears some relevancy: a pyramidal shape error (i.e. the prism is a segment of a high three-sided

pyramid) will cause a rotation of the images against each other. Indeed, such an image rotation, of ¡2°,

was present, that added to the position mismatch caused by perspective.

The perspective error plays a role in so far as the fringes are not exactly localised on the object surface. In

white light-images of the object however, no significant defocusing was present over the width (size in x-

direction) of the image, which is due to the large depth of focus by the small apertures.

Since the aperture sizes D can be no larger than the separation of their centres, ∆x, we have
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where z¡f is the distance of the aperture to the camera sensor. Hence, if we adjust αx to 120°/column

again, the smallest speckle size we can get is ds¡3.7 dp. This can be seen in Fig. 5.13, where this entry is
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 the first one on the abscissa. Nevertheless, the plots are scaled as in Fig. 5.10 to make the visual

comparison easier. Because we have a symmetrical 45° set-up also here, the conversion factors and σd,max

are the same as in 5.5.2.
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Fig. 5.13: σd for ESPI displacement measurements with pure in-plane SPS as a function of speckle size for in-plane

displacements. The parameter for each curve is Ny, the number of horizontal fringes per 1024 pixels, as

indicated in the legend box.

The first thing to notice is the large difference between the σd for zero and nonzero displacements, which

shows that the imaging imperfections described above come into play as soon as the object is moved.

From then on, however, the σd depend only weakly on the fringe density. This weak dependency has three

reasons: (i) Due to the larger field of view, we need only 59% of the rotation used in 5.5.2 to generate

equal fringe counts, so that there is less decorrelation owing to speckle displacement alone; (ii ) the noise

level generally rises more slowly as it approaches σd,max , as careful inspection of the preceding plots

reveals. Hence, because we already start from a relatively poor fringe quality, there is less possibilit y for

the measurements to deteriorate. And (iii ), the long paths for the object beams and the oblique observation

lead to problems with light eff iciency, so that a certain noise floor is already due to the camera, especially

for the larger speckle sizes.

According to the figure, the best speckle size is around 6 dp; in this case, the spectral width of the signal

sideband, or the extent of apparent phase-shift miscalibrations, corresponds to the case of ds=3 dp and a

smooth reference. We have seen before that this was a reasonable choice, only now there is no way to

suppress the speckle character of the interferogram by a bright reference wave, so that the signal cannot be

made to stand out against the speckle noise. This leads to a displacement error that is much larger than in

the case of pure in-plane TPS.
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5.5.4 Direct comparison of the in-plane geometries

To summarise the findings from the in-plane experiments in a useful form, we shall re-consider them in a

direct confrontation; this is done in Fig. 5.14 with some selected Ny for each set-up. The TPS mixed-

sensitivity configuration does not appear here since the pure in-plane configuration outperforms it clearly;

the σd,max for the pure in-plane set-ups are still at ¡0.20λ, which is indicated by the dashed white grid line.
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Fig. 5.14: Confrontation of σd for the different in-plane measurements. SPS mixed-sensiti vity set-up: all black;

pure in-plane symmetrical set-up for TPS: all white, bold lines; and for SPS: black bold lines, white fill ed

symbols. The selected Ny are indicated in the legend box.

For Ny =0, the σd for both of the SPS methods are very similar. With increasing displacement, the pure in-

plane configuration gains an advantage thanks to its high sensitivity, but also because the field of view is

larger; the discussion given in 5.5.3 applies likewise here. But since the displacement data are output as

sawtooth images first, it is also important how co-operative a sawtooth image will be in unwrapping. To

understand this, Fig. 5.15 provides a visual demonstration of the best sawtooth images from each method

for Ny=10 (which corresponds to 7.5 fringes/768 pixels, cf. Chapter 4.2).

    

Fig. 5.15: Visual comparison of sawtooth images with Ny=10 from the various pure in-plane set-ups. Left: TPS

pure in-plane, ds=1.5 dp; centre: SPS mixed-sensiti vity, ds=3 dp; right: SPS pure in-plane, ds=6 dp.
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The images confirm that TPS delivers good phase maps (σ∆ϕ¡25.7°) with good sensitivity. The result

from the mixed-sensitivity SPS configuration has reasonable quality in terms of σ∆ϕ (¡43.0°); but on

converting to displacements, the σd value (cf. Fig. 5.14) suffers from the relatively low in-plane

sensitivity. For the pure in-plane measurement by SPS, the σd value is lower; but as to be seen, σ∆ϕ has

the highest value of all the examples (¡64.3°). While this example does not present images that are

diff icult to unwrap, it does show that the σd figure of merit alone can be misleading when the quality of

images is to be judged. In terms of σ∆ϕ , the mixed-sensitivity method is preferable for SPS: for Ny=0 its

σ∆ϕ is around one-half that of the pure in-plane SPS method, and it is still by some 14% better at Ny=100,

which may then allow to skip some filtering before unwrapping can take place.

Moreover, the mixed-sensitivity SPS set-up has a great advantage in light eff iciency over the pure in-

plane SPS configuration; and in Chapter 5, we will explore methods to improve measurements with a

smooth reference wave, so that the deficiency in σd is reduced. Finally, a 3-D SPS system with two pure

in-plane assemblies is diff icult to implement, while – at the sacrifice of orthogonal sensitivity vectors – it

would not be diff icult to use layouts with oblique ill umination.

On the whole, the results presented here show an advantage for TPS when in-plane displacement

measurements are concerned. For moderate fringe densities, σd ¡ λ/20 is realistic, while both of the SPS

approaches yield λ/6 to λ/7.

5.6 Impact of light efficiency

In the preceding subsections we have already mentioned the potential influence of the aperture size on the

measurement in terms of light economy. During the investigations presented thus far, it was easy to

collect suff icient object light: the laser was powerful and the image field was rather small . But it is not

unusual in practice to have very littl e object light available. In these cases, TPS should be in favour

because it will function with very small speckles, which in turn allows for large apertures to collect a

greater amount of the scattered light. It is even stated that under conditions diff icult in this respect, the

aperture should be opened up as wide as possible [Leh97a, Leh98]. There is no way to do so in SPS: for

phase shifting to make sense, a certain minimum speckle size in the direction of the phase shift, and hence

suff icient spatial coherence over the spatial sampling window, is necessary.

This subsection presents some measurements of σd under shortage of object light for TPS and SPS,

carried out with the out-of-plane configuration of Fig. 5.1. Aiming at getting an idea of the difference

between the methods, we simply consider ds=1 dp for TPS and ds=3 dp for SPS, although both values

could still be decreased. With this setting, the usable object wave intensity in SPS is smaller by almost an

order of magnitude than in TPS when circular apertures are used.

This can be partly circumvented by enlarging the speckles only in the direction of the spatial phase shift,

which is easy to achieve by using an elli ptical or rectangular imaging aperture [Pfi93, Ped93, Sal96]. The

idea is sketched in Fig. 5.16 for the example of αx =120°/column (of course, the relevant parameter is the
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number of samples and not αx ). The corresponding elli ptical aperture shape was indicated in Fig. 5.1; its

area, and hence the object intensity it transmits, is three times that of the circular aperture.

I0 I1 I2I2I0 I1

Fig. 5.16: Adjustment of speckle width suitable for SPS with optimal li ght economy. Black bars: orientation and

spacing of carrier fringes, small squares: sensor pixels, irregular fill ed shapes: mean speckle size and

orientation; grey values of the shading on the speckles indicate their relative brightness.

The situation depicted on the left is the result of using a circular aperture: 2/3 of the coherence area are

superfluous for the phase calculation and the speckle field appears rather dark. But one can reduce the

speckle size from dsx�dsy=3�3 dp
2 to dsx�dsy=3�1 dp

2 , where dsx is the speckle width and dsy the speckle

height, to produce a brighter speckle image. On the right, an elli ptical aperture generates speckles that are

just large enough to allow for phase calculation; the speckle intensity is greater by a factor of three,

indicated by the speckle outline in lighter grey. The question arises what improvement the change to

elli ptic speckles will bring about: the plus in object light gives better MI or, optionally, allows to reduce

the gain of the camera ampli fier; on the other hand, the non-circular average speckle shape causes the

measurement to become anisotropic with respect to displacement fringe orientations.

For TPS and SPS with circular and elli ptic aperture, the behaviour of σd was studied with the out-of-plane

set-up as in 5.1. To control the object ill umination, I used a series of neutral density filters (D ∈ [1.0, 5.0])

directly behind MO1. The basic laser power density of OI =1.1 mW/cm² on the object was thus attenuated

to values between 110 and 0.01 µW/cm². The absolute value of sensor ill umination could not be measured

accurately enough, but since we are still dealing with the comparison of TPS and SPS, the given power

scale will be suff icient for our purpose.

For each series, the chosen object intensities ranged from the first turning up of signal to the optimum

where further increase of the ill umination power did not improve the measurements anymore. At the

lowest light level the interference was only just detectable in the speckle interferograms,* whereas the

speckle pattern alone was completely immersed in electronic noise. The reference light was always

adjusted so as to obtain a high average brightness of the interferograms, which decreases the contrast MI/Ib

but maximises MI and thus reduces the noise somewhat. Even so, we have high noise and low MI due to

beam ratios exceeding 1000:1. This corresponds to R¡ 190 grey levels and nOo¡0.2 grey levels, which of

course cannot be reliably measured; therefore the optical densities of the filter set served to determine

                                                

* Also, the light scattered from the object was detectable only by dark-accommodated eyes.
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nOo, and from this, R/nOo=B, by extrapolation from measurable values. Fig. 5.17 shows the improvement

attainable by switching to elli ptical apertures.
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Fig. 5.17: σd for ESPI displacement measurements with SPS at low levels of OI. "Dark"�black: dsx
�

dsy =3
�

3 dp
2 ;

"bright"�white: dsx
�

dsy =3
�

1 dp
2. Fringe densities Nx (left) and Ny (right) as indicated in the legend

boxes.

At very low OI (left-hand regions of the plots), electronic and digitisation noise are indeed the most

significant error sources: the fringe density influences σd only weakly. With increasing OI however, the

familiar relationship of fringe density and error appears again. To the left, σd is plotted for various Nx as a

function of OI. The slope of the graphs is largest around B=1000 (marked by the arrows for either aperture

shape); the use of an elli ptical aperture reduces σd by as much as 15% in these regions of OI.

The σd measurements for various Ny are plotted on the right-hand side of Fig. 5.17. The black graphs for

the circular aperture look very much like those on the left, which confirms the expectation that the values

of σd vs. Nx and Ny are very similar when the circular aperture is used. The white curves reveal the

drawback of switching to an elli ptical aperture: σd rises more rapidly with Ny than with Nx , so that the

advantage initially gained vanishes for Ny >50. Again, this comes from the speckle pattern displacement

which results in a larger σd for smaller ds . Thus for object tilts resulting in horizontal fringes (associated

with vertical speckle displacements and small speckle height dsy), this error source is more important than

for tilts that generate vertical fringes, which are associated with horizontal speckle displacements and

large speckle width dsx .

While the quantitative impact of the aperture shape is of course specific of the interferometer, Fig. 5.17

does show that the anisotropy by an elli ptical aperture is not negligible. On the whole, the greater amount

of light is seen to be helpful; but of course, the improved SPS measurement must be set in relation to the

performance of TPS at low OI , of which Fig. 5.18 gives an overview.
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Fig. 5.18: σd for ESPI displacement measurements using SPS vs. TPS at low levels of OI. "Dark"�black: SPS with

dsx�dsy =3�1 dp
2 ; "bright"�white: TPS with dsx�dsy =1�1 dp

2. Fringe densities Nx (left) and Ny (right) as

indicated in the legend boxes.

The results from TPS are distinctly better, and OI can even be lowered to 0.01 µW/cm². The improvement

by using TPS amounts to ¡30% for low densities of both horizontal and vertical fringes over quite a large

range of OI. This confirms that TPS is less problematic under criti cal ill umination conditions, all the more

since ds can – and should – be further reduced in order to maximise the amount of light collected. The

occasional crossing of the curves for Ny is due to the greater σσd for tilt s about the x axis that was

described in 5.2.2.

Surprisingly littl e power is necessary to reach the plateau of nearly constant errors; it turns out that a

0.5-mW laser would have been powerful enough for the out-of-plane experiments. Also, this experiment

demonstrates impressively the advantage of the phase-shifting technique: even with 2-3 bits of signal

resolution, it is possible to obtain usable results [Dör82, Ker88, Vro91, Hac00]. It may also be worth

noting that both TPS and SPS reach their best performance at the same level of OI, which is ¡10 µW/cm²

in this case.

From the results in this subsection, it follows that the decision for or against elli ptic speckle is not a

general one: it depends on the expected result of the experiment, as well as on the amount of light actually

available. We will briefly return to this issue in Chapter 6.1.3.
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6 Improvements on SPS

The comparison of TPS and SPS has shown that TPS yields lower measurement errors especially in the

region of low fringe densities. Since it is generally more preferable to record several sawtooth images

with few fringes than one image with many fringes [Flo93, Her96], we shall therefore explore some ways

to reduce the σd associated with SPS in this chapter. First of all , the beam ratio in the interferograms is

shown to be of great importance; but there are also possibiliti es to reduce the measurement error by phase

calculation formulae tailored for SPS. And lastly, we employ the "single-frame" measurement capabilit y

of SPS to introduce some improvements.

6.1 Optimisation of experimental parameters

6.1.1 Beam ratio

Although the best intensity ratio of reference to object wave, B, has been thoroughly investigated [Sle86,

Leh95, Maa97] in order to maximise the interferometric modulation, it has also been stated that the least

permissible MI can be set quite low, e.g. at some 8 grey levels or even less [Dör82, Ker88, Vro91, Hac00].

Consequently, phase shifting in ESPI yields reasonable results for quite a large range of B. In what

concerns TPS, we can expect the errors to remain approximately constant as long as MI is beyond its

lower threshold. With growing intensity of the reference wave, the modulation drops and electronic noise

and digitisation errors gradually gain the upper hand over the signal.

For SPS however, the speckle character of the object wave constitutes an error source that depends on the

object intensity: the intensity readouts In (cf. (3.12)) from a set of adjacent pixels should have equal Ib and

MI if the phase calculation is to function correctly; but the brighter the speckles are, the greater become

their intensity gradients and the worse is the mismatch of the interferometric parameters on adjacent

pixels. It is clear that the absolute intensity errors drop when the beam ratio is increased; but this is of no

consequence for the measurement, because the modulation goes down as well . An improvement comes

about only by a decrease of the relative intensity errors, and it has been shown in a simple form in

[Bur99a] that this is indeed the consequence of a brighter reference wave.

To describe the phenomenon, we first need to know how statistical intensity fluctuations are propagated to

phase errors σϕο by the phase calculation. Assuming a standard deviation of σI for the intensity readings,

this relationship is described by Eq. (12) of [Bot97] in a general form for 3-bucket formulae. For

αx=120°/sample, it reads

σ
σ

ϕO

I

IM
= ⋅

2

8

3
, (6.1)

where σϕο is the standard deviation of the calculated phase averaged over all ϕO , and σI that of the

interferogram intensities. In a simple approximation, σI is composed mainly of the standard deviation of
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intensity on adjacent pixels (x,y) and (x�1,y), σ O0 ,O�1, and of that of the imaging system's electronic

noise, σe .
* Hence we rewrite (6.1) as

σ
σ σ

ϕO

O O e

O R
≅

+

⋅ ⋅
⋅±

2 2
0 1

2

8

3

,
. (6.2)

In a speckle field, σ O0,O�1 depends on the degree of spatial coherence [Goo75], µA(x0, x�1), of the points

(k,l) and (k�1,l). For a circular aperture and ds= 3dp, we find µA(x0, x�1) ¡ 0.81. Moreover, σ O0,O�1 is

conditioned on O0, which relationship is analytically known [Don79]. We can generalise (2.52) to read

( )σ µ µ µO O A A AO O
0 1

2 2 2 2 2 21 2 1, ( ) ( )
±

= − + − , (6.3)

and inserting (6.3) into (6.2), we can calculate σϕO, which is the same for both object states:

σϕO=σϕO,i=σϕO,f . For the phase difference ∆ϕ =ϕO,f–ϕO,i we therefore get σ∆ϕ = v2σϕO and from this the

corresponding quantity for the displacement, σd, as a function of the beam ratio B = R/〈O〉. These data can

be compared with the experimental results.

Fig. 6.1 shows the performance of various evaluation methods for sawtooth images with Nx=10, Ny=0,

ds=3 dp and αx=120°/column from an out-of-plane configuration with SPS; for TPS, ds was set to 1 dp.

Curves in Fig. 6.1 that are not addressed here will be discussed later on.

The theoretical curve of σd vs. B for SPS is the bold white line and matches the measured data reasonably

if we shift it vertically by adding a constant displacement deviation of σd0 = 0.05 λ. This is not an arbitrary

adjustment of data: since (6.2) does not account for spatial fluctuations of the phase ϕO between adjacent

pixels, the predicted values of σd will be too small . Of course, adding a constant σd0 relies on the simple

assumption that the influence of speckle phase gradients on σd does not depend on B.

From the figure we see that TPS works well from B¡1 on, and σd only starts to increase from B¼100 on,

where nOo is already weaker than the electronic noise. The quasi-constancy of σd vs. B in TPS has also

been reported in [Hun97] for a beam ratio between 0.1�B�10. For SPS, σd first decreases as the

reference wave gets stronger, and has its minimum around 30. With fading MI, the influence of electronic

noise grows and so does σd . This behaviour agrees reasonably with our theoretical prediction.

Hence, in SPS a proper choice of the beam ratio is far more important than it is in TPS. Fortunately the

best SPS results turn up in a region of high beam ratio, which alleviates the problem of poor light

eff iciency somewhat. Based on these results, for most of the investigations in Chapter 5 B was set to 10, at

which setting both SPS and TPS operate with near-optimum performance.

                                                

* With the imaging system used, a realistic value for σn was � 2.5 grey levels; this corresponds to a resolution of only 6-7 true

bits. With optimum intensity resolution, the usable beam ratios would have been even higher.
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Fig. 6.1: σd for various ESPI measurements of out-of-plane displacements by SPS and TPS as a function of B. All

measurements were done with Nx =10 and Ny=0.

Besides the variation of the beam ratio, there is another possibilit y of reducing σd : the individual speckle

intensities can be accounted for in a modified phase calculation formula. This approach is described in

detail i n 6.2.1, where also the curves for "SPS with (modified) intensity correction" in Fig. 6.1 will be

explained. For a discussion of the Fourier transform method (FTM), see 6.5.

6.1.2 Phase shift

In Chapter 3.2.2 we have considered the spectral transfer properties of phase-shifting formulae and

discussed some points that are relevant for their application to signals with a broad spectrum. In Chapter

5.2.1, we collected some preliminary evidence that αx =90°/sample should be the better choice. Since it is

now our aim to get the best possible performance from SPS, we investigate this issue in more detail by

experiment and carry out the same kind of comparison that we did for SPS and TPS. The results are

shown in Fig. 6.2, where the left part is the same plot as Fig. 5.5.
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Fig. 6.2: σd for ESPI displacement measurements by SPS with αx =120°/column (left) and αx =90°/column (right)

as a function of speckle size for out-of-plane displacements. The parameter for each curve is Nx, the

number of vertical fringes per 1024 pixels, as indicated in the legend boxes.

The figure shows clearly that αx =90°/column yields indeed better performance over the whole range of

fringe densities. The difference is small at low fringe densities, whereas it gets significant over Nx ¡ 30; it

is most pronounced at the optimum speckle size of 3 dp.

In the face of these findings, it seems more appropriate to set αx=90°/sample. As already hinted in 3.2.2.3,

it was found out that the phase calculation with the 90° formula (e.g. (3.19)) tolerates large

miscalibrations of αx; there is practically no loss in performance for deviations of αx of up to

�15°/sample. Moreover, the error-compensating 90° formulae are more suitable than those with α=120°

for the averaging procedures described in 3.2.2.4.

The phase determination with αx=120°/sample quickly loses accuracy when αx>120°/sample and functions

even slightly better when αx¡100°/sample. This can be attributed to the facts that (i) the sidebands of the

interferogram's power spectrum already contain aliased super-Nyqvist frequencies pνxp>pνNp at νx0 =1/(3 dp)

and ds=3 dp (cf. 3.4.4), and (ii ) also the horizontal MTF of the camera that I used drops considerably for

higher spatial frequencies. Hence, the signal power is utili sed more eff iciently by the 90° method, where the

sidebands are neatly centred in the (fx�,fy) half-planes, as depicted in Fig. 6.3.
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Fig. 6.3: Interferogram power spectra (log scale). Upper row, ds= 3 dp ; lower row, ds= 2 dp ; left, αx=90°/column;

right, αx=120°/column. Irregularities in the spectra are due to the fibre guide obscuring part of the

aperture. The contrast of the images has been enhanced to make the speckle halo visible.

It is also clear that a decrease of the speckle size, as shown in the lower row, will shift the advantage even

more towards αx=90°/sample because this minimises "crosstalk" of the sidebands around both ν=0 and

ν=νN , as discussed in Chapter 3.4.4. On the other hand, the sidebands have less overlap with the speckle

halo for larger phase shifts; but evidently, the issue of speckle size is more important.

6.1.3 Speckle aspect ratio

In Chapter 5.6, we saw what improvement a change to an elli ptical aperture can bring about when the

available ill umination power is criti cal. However it is by no means necessary to choose a 1:3-elli ptical

aperture. For instance, an aspect ratio of, say, 1:2 means less anisotropy, at the cost of light, while an

aspect ratio of, say, 1:4 improves the light gain but generates elongated speckles, and accordingly, a

distinct anisotropy of measurement. The change in performance need not be restricted to the spatial

direction in which the speckle size is reduced: the finer overall phase structure of the speckle pattern

could increase the noise in the whole measurement, which would diminish the advantage gained by the

larger aperture.

This subsection attempts to answer the question what speckle aspect ratios can be used and at what gain or

expense. Since the course of σd as a function of object ill umination is similar for TPS and SPS (cf. Fig.

5.18), we just retain here that the gain in accuracy may be related to the gain in light as before, only now
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we are concerned particularly with the geometrical side-effects due to the anisotropy of the measurement.

To find out their nature and extent, we carry out the experiments with suff icient object light in an out-of-

plane configuration.

The "overall " effect of decreasing the speckle height dsy, while keeping the width dsx constant, can be

studied by a series of tilt s about the y axis, giving rise to vertical sawtooth fringes. The speckle

decorrelation with increasing Nx is then governed by dsx and is therefore the same for all dsy. Fig. 6.4

presents some results from these series.
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Fig. 6.4: σd for ESPI displacement measurements by SPS with various speckle aspect ratios as a function of

speckle width dsx for out-of-plane displacements. The parameters for the curves are Nx and the respective

aspect ratio, as indicated in the legend box.

This figure should be interpreted as follows: given a certain speckle width dsx, the aspect ratio dsy/dsx

indicates the respective speckle height dsy indirectly; e.g. at a speckle width dsx of 3 dp and an aspect ratio

of 1:2, the corresponding speckle height dsy is 1.5 dp. Consequently, dsx � dsy in this study.

For zero displacement, σd is virtually independent of the speckle aspect ratio. For the other curves,

corresponding to Nx = 20, 50, and 100, there is indeed a very slight systematic dependence of σd on the

aspect ratio from dsx =4 dp downwards. This corresponds to dsy � 2 dp and shows that the finer phase

structure does reduce the accuracy; but compared to the performance gain that a wider aperture offers

under criti cal li ght conditions, the effect is negligible.
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Things are different when we consider a series of tilt s about the x axis; in this case we test the effect of the

varying speckle heights and investigate the measurement anisotropy. Fig. 6.5 shows the results for the

same fringe densities as above.
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Fig. 6.5: σd for ESPI displacement measurements by SPS with various speckle aspect ratios as a function of

speckle width dsx for out-of-plane displacements. The parameters for the curves are Ny and the respective

aspect ratio, as indicated in the legend box.

The order in this graph is best understood if the data are first read vertically: for small speckle widths, a

reduction of dsy , and therefore the aspect ratio, is accompanied by a larger σd . This effect increases with

the fringe density, for reasons already discussed in Chapter 5.4. However for larger dsx, smaller dsy tend to

yield lower σd than for an aspect ratio of 1:1 because the fringes are better resolved and decorrelate more

slowly, as also described in Chapter 5.4.

No general recommendations can be derived from this behaviour because the anisotropy effects are

specific of the used interferometer. The decision for or against elli ptical speckle depends on the expected

result of the experiment, as well as on the amount of light actually available, and there may also be cases

where an elli ptical aperture is very helpful in suppressing aperture-plane decorrelation.

For moderate fringe densities, it is always possible to gain twice the object light by using a 1:2 aperture

without sacrificing too much of the isotropy. In this work however, there is no shortage of object light;

and later on, we will also use a phase shift in x- and y-direction to make use of the 2-D extent of circular

speckles. Hence we will keep using circular apertures.
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6.2 Modified phase reconstruction formulae

Besides the optimisation of optical parameters, it is of course desirable to utili se some of today's

knowledge about phase-sampling methods to tailor phase calculation methods specially for SPS. As

mentioned before, the most stringent restriction for error suppression is the small number of sampling

points available in the speckles that we even wish to make as small as possible. In the following

paragraphs, we explore possibiliti es to construct few-sample formulae with reasonable rejection of errors

due to speckle intensity and phase gradients, and eventually we test the combination of these approaches

in out-of-plane ESPI deformation measurements.

6.2.1 Consideration of speckle intensity gradients

One possible way to reduce the phase errors induced by the fluctuations of the object wave's intensity has

already been shown in 6.1.1. As we have seen in Chapter 2.2.3.1, it would be very diff icult to account for

the Ix statistics of a speckle field in SPS: the assumptions that we could model by a modified three-sample

formula would be too crude in the case of speckle intensity.

There is however an exact method of compensating the errors due to intensity fluctuations; it relies on an

additional measurement of the speckle intensity alone before or during the displacement observation. In

the linear equation system constituted by (3.68), we usually assume O, and hence Ib and MI , to be constant

in all the equations. If however each equation gets its own On from a speckle intensity image stored

beforehand, it is still possible to solve for ϕO, as long as we use three phase steps of (-α, 0, α). Details of

this procedure are outlined in Appendix C; with Dn ¬ In–On , we arrive at [Bot97]

( )
( )ϕ π

α

αO

O D D O D D O D D

O D D O D D
mod 2

0 1 1 1 0 1 1 1 0

1 1 0 1 0 1

=
− + − + −

− − −
− − −

− −

arctan
( ) cos ( ) ( )

sin ( ) ( )
, (6.4)

which is for α = 90°:

ϕ πO

O D D

O D D O D D
mod 2 0 1 1

1 1 0 1 0 1

=
−

− − −
−

− −
arctan

( )

( ) ( ) (6.5)

and for α = 120°:

( )ϕ πO

O D D O D D O D D

O D D O D D
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2

3

0 1 1 1 0 1 1 1 0

1 1 0 1 0 1

=
− − − − −

− − −
− − −

− −

arctan
( ) ( ) ( )

( ) ( )
. (6.6)

Of course, these formulae collapse to their standard versions (3.18) and (3.17) when O–1=O0=O1.

A disadvantage of this method is the necessity to record speckle images before and, if decorrelation

occurs, also during the measurement. This will rule out highly dynamic phenomena and reduce the
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temporal resolution in other measurements. Moreover, (6.4) assumes R and O to be fully interferent,

which is not the case when depolarising objects are being tested. In this case, one must accept that the

treatment overestimates MI (which is related to the square roots), or re-polarise the waves appropriately.

A comparison of (3.19) and (6.6) with stable speckle patterns is given in Fig. 6.1, which shows σd from

phase calculations without (black squares) and with intensity correction (black squares fill ed white) as a

function of B. The data leading to the curves were the very same set of interferograms in both cases. For

the intensity correction, I used both the initial and final speckle patterns for the respective object states.

The figure shows that (6.6) is indeed able to keep σd almost constant for 1�B�10. When we compare the

best σd of either evaluation series, the improvement by the intensity correction amounts to ¡ 3%. This is

quite small a difference and it may seldom be worthwhile to record extra speckle images to make use of it.

Moreover, it will not help against the most likely problem in SPS, namely too low speckle intensity.

With increasing B, i.e. fading nOo, the performance of (6.6) quickly worsens. This is because speckle

intensity readings of zero are obviously not permissible in (6.4): the phase calculation will not function for

points of the speckle image that are digitised to zero. But as B is increased, as desirable from a practical

point of view, exactly this will occur more and more frequently. Then (6.4) breaks down on a fraction of

image pixels that grows larger as the speckle pattern gets darker.

In practice, one can circumvent this by simply replacing the zeros under the square roots by a non-zero

value (for simplicity, a factor of one); this introduces some arbitrariness in the calculation and is justified

only by the observation that this ad hoc remedy is better than none in this case, and that (6.5) and (6.6)

then become their standard versions (3.18) and (3.17) also for O–1=O0=O1=0. Therefore the advantage

gained by the modified calculation must vanish as the On approach each other. This is also shown in Fig.

6.1: the modified intensity-correcting formula overriding zero readouts for the On (black curve, white

squares) links smoothly to the curve without error correction; from B¡50 on, both curves are very nearly

the same. Therefore the σd from the intensity-correcting formula are not plotted anymore for B¼160, all

the more as using (6.4) would only lead to superfluous computational effort for higher B.

The data shown pertain to the depolarised speckle patterns which the test object generates directly; no

substantial improvement was found when the intensity correction was applied to speckle patterns

exclusively co-polarised with the reference light. This shows that the subtraction of the speckle

background, taking place in the Dn , is more important than the exact MI ; also, the background subtraction

is justified for any polarisation state.

To check the preliminary results of Fig. 6.1, I carried out several tilt series with αx = 90°/sample and

B ∈ {3, 10, 30, 100, 300}. As seen before, this quasi-geometric series of B values is suff icient to find the

best performance of either method. Fig. 6.6 presents an overview of the best results for ds=3 dp.
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Fig. 6.6: σd for ESPI displacement measurements by SPS with and without intensity correction as a function of B.

White, phase calculation according to (6.5); black, phase calculation by (3.19). Selected Nx as indicated in

the legend box.

We have seen before in Fig. 6.1 that the advantage of using the intensity correction will vanish at B¡30;

therefore we look at (6.5) for B ∈ {3, 10, 30} only. On the other hand, without intensity correction the

lowest σd occur around B¡30, which is why we select B ∈ {10, 30, 100} to investigate the phase

calculation with (3.19). Fig. 6.6 confirms that the phase calculation by (3.19) (corresponding σd : black

symbols) produces the lowest σd at B ¡ 30, while (6.5) (corresponding σd : white symbols) operates most

advantageously at B=3 and B=10 and slightly worse at B=30. As familiar by now, the differences of the

two calculation methods are most pronounced at low fringe densities: initially, a reduction of σd by some

5% can be attained by using the intensity correction; but as Nx rises and decorrelation sets in, the

difference vanishes almost completely. Hence, in most situations it will suff ice to set B ¡ 30 and to

record interferograms only.

6.2.2 Consideration of speckle phase gradients

When the speckles are as small as 3 dp, the phase structure of speckle patterns cannot be measured with

suff icient sampling resolution by the pixels - and less so with SPS -, so that there is no possibilit y to go

the same way as above with the intensities and use the speckle phases for error compensation. Yet

remembering the findings of Chapter 2.2.5, the speckle phases seem to be less harmful for interferometry

than the intensities anyway. Therefore we will use the simple assumption that not the speckle phase ϕO,

but its gradient ϕO,x be constant over the short sequence of pixels that we use for phase retrieval. This is

quite rough an approximation but it may be seen from Fig. 2.14 that it holds reasonably for the brighter

parts of the image that we are mainly interested in. Treating the phase gradients in this way is equivalent

to assuming local li near miscalibrations of the phase shift, as detailed in Chapter 3.2.2. We may then
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construct our two consecutive sets of samples needed to apply the error compensation of (3.56) from a

sequence of pixels as shown in Fig. 6.7.

I-1 I1I0 I2

Fig. 6.7: Arrangement of sampling points for a simple phase-shift error compensating formula (3.56) with
αx=90°/column, indicated by the black bars. The intensity readings I-1 to I2 are taken from consecutive
columns.

If ϕ'O0 (cf. (3.56)) is constructed from I–1 through I1 (indicated by the solid-line box) and ϕ'O1 from I0

through I2 (broken-line box) and these two phase measurements are averaged, the error in ϕ'O0 will be

almost cancelled by that in ϕ'O1 thanks to their relative offset of ¡90°. (If the phase offset of ϕ'O0 and ϕ'O1

were exactly 90°, there would be no need for error correction.) It is true that this method of averaging

requires four instead of three pixels and seemingly requires still l arger speckles; we will discuss this issue

shortly, in the context of the experimental findings. The improvement of phase calculation by (3.56) is

shown in Fig. 6.8 for B = 30 and ds=3 dp; both curves have been calculated from the same set of

interferograms.
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Fig. 6.8: σd for ESPI displacement measurements for B=30 and ds=3 dp by SPS, with and without phase-shift error

compensation, as a function of Nx. Triangles, phase calculation by (3.19); squares, phase calculation

according to (3.56).

The modified phase calculation reduces σd very eff iciently; and again the improvement is most relevant at

low fringe densities. The substantial decrease of σd comes somewhat unexpected in this situation, since
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Fig. 6.7 tells us that the complete sampling window is now definitely larger than the mean speckle size of

ds=3 dp. But in addition to the phase-error compensation, (3.56) also constitutes stronger spatial

averaging. Here, the sine and cosine functions are averaged before phase retrieval, which has been shown

to be a better choice than averaging phase maps after the arctangent operation [Hun97].

Although the 3+3 averaging formula still calculates the phase separately for each pixel, there is a loss of

spatial resolution associated with the larger sampling window. But since our "resolution cell " has already

been 3 pixels wide before, the relative change is not significant; and up to (at least) Nx=100, the phase

gradient of the object displacement is well resolved and shows less noise than with the standard phase

calculation.

6.2.3 Combined intensity and phase gradient compensation

Each of the error-suppression strategies proposed suffers from the drawback that its effectiveness to cope

with Ix or ϕO,x could be reduced by the fluctuations not accounted for, i.e. ϕO,x or Ix . Hence it is natural to

combine both of the approaches to obtain a formula that reduces the σd caused by the speckle structure of

both object intensity and phase. The simplest way to construct such a phase calculation is to establish an

averaging formula for terms as in (6.4). With α=90°/sample, we rewrite (6.5) for the two "boxes" of Fig.

6.7 [Bur98a]:

tan
( )

( ) ( )
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( ) ( )
:
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O D D

O D D O D D
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=

−

−
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, (6.7)

with pixel indices according to Fig. 6.7, and numbering of the Kn according to the order of indices of the

square roots at the beginning of each term. Now applying what we have learnt in Chapter 3.2.2.4, we can

easily compose these two intensity-corrected phase calculations according to (3.55) and arrive at

ϕ πO

K K K

K K K
mod arctan=

+ −
− + +

2 4 6

1 3 5

, (6.8)

which is an averaging formula correcting for both intensity and phase fluctuations. As already indicated in

Fig. 6.6, the intensity correction works best for B=3; the contribution to σd coming from speckle phase

gradients was assumed to be independent of B. Fig. 6.9 gives an overview of the best results from all

combinations of phase-calculation methods and B values tested in this subsection. The black curves are

repeated from Fig. 6.8 for comparison; for the intensity-correcting formulae, the underlying set of

interferograms is necessarily a different one, with B=3, but also ds=3 dp.
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Fig. 6.9: Overview of σd from ESPI displacement measurements as a function of Nx , obtained with various phase

calculation formulae from two series of interferograms: without intensity correction, B=30 (black

symbols); with intensity correction, B=3 (black symbols fill ed white); 3-sample formulae, triangles; 3+3-

averaging formulae, squares.

The summary presented in Fig. 6.9 allows some conclusions: (i) the use of a 3+3 averaging scheme alone

is definitely a better choice than an intensity-error compensating formula alone. (ii ) The combination of

both error-reduction methods leads to the lowest overall error; at ds=3 dp, σd remains below λ/20 up to

Nx=20. (iii ) Introducing the intensity-error correction effects indeed a slightly greater improvement in σd

when a phase-shift error elimination is already present, and vice versa. (In other words, the lower two

curves are farther apart than the upper two.) This confirms the initial presumption that motivated this

subsection: the two methods profit from each other if used together. However, as mentioned before, in

most practical cases it will suff ice to set B¡30 and to do without the small benefit of the intensity

correction, all the more since this speeds up the calculations considerably and even makes them accessible

to the use of look-up tables.

Finally, it may be worth noting that a 3+3 averaging formula according to [Bur98a]

ϕ π' mod arctanO

K K

K K K K
=

+
− + − +

2 5

1 3 4 6
(6.9)

is error-compensating only by averaging, but does not eliminate the cyclical errors shown in Fig. 3.39,

since it constitutes the average over ϕO and ϕO+90°. Hence, (6.9) will do littl e more for error reduction

than the intensity correction without averaging, which means that even the pure phase-shift error

compensation of (3.56) would perform better. This was in fact found in [Bur98a], where (6.9) was used

instead of (6.8), and emphasises the relevance of an optimal composition of the averaging formula.



146                                                              Improvements on SPS                                                                    

Finally, both (6.5) and (6.8) were checked for their spectral transfer properties by means of bsc(νx). With

the same input interferograms and averaging of the same portions of the bsc(νx ,νy) maps as in 3.4.5, this

gives the plots shown in Fig. 6.10.
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Fig. 6.10: Left: bsc(νx ) for (6.5); right: bsc(νx ) for (6.8).

By comparison with the graphs in Fig. 3.33 and Fig. 3.36, it can be seen that the noise has got higher; but

for (6.8), the region of low detuning errors is distinctly increased as compared to (6.5). However it was

found that the phase error δϕO(∆ϕ) (cf. Fig. 5.4) produced by (6.8) has small maxima at ∆ϕ=π/2 and 3π/2

(cf. Fig. 3.39), which indicates that δϕO due to phase-shift errors is suppressed less eff iciently when the

intensity correction is used.

6.3 Modified phase shifting geometry

If we use a circular aperture with a phase shift αx only, and if the measuring points are arranged as in Fig.

3.26, we discard the phase information that would be accessible via the vertical coherence length of the

speckles. But due to the general shortage of spatial coherence in our small -speckle patterns, we should use

it as exhaustively as possible. During the comparison of different phase retrieval approaches that will be

described in this subsection, the σd refer to just two sets of interferograms, namely a tilt series with B=3

when intensity correction is involved, and another with B=30 when it is not. In both cases, Nx ∈ [0, 100]

and dsx = 3 dp.

Provided a frame-transfer or line-transfer camera with progressive scan readout is available, all image

lines can be acquired simultaneously. Then it is possible to introduce an additional vertical phase shift αy

by simply shifting the origin of the reference wave to (∆x,∆y). This results in a slant of the carrier fringes

and allows to choose any desired direction for the set of pixels to use. Examples of composite phase

shifting have been given in [Küch91, Küch97] for classical and in [Wil91] for speckle interferometry.

When the speckle shape can be fully exploited for measurement, the measurement's accuracy should

improve, since the ideal situation of Fig. 3.26, where all the used pixels are inside the same bright speckle,

is unlikely to occur. More often, speckle "boundaries" are crossed, which results in an unreliable phase

measurement. To diminish the noise, it should help to include the possibly better data of the orthogonal

direction and to establish an averaged phase value.
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A phase shift of (αx, αy)=(90°, 90°) yields carrier fringes slanted by 45° and permits arranging the

evaluated pixels in various ways. This is shown in Fig. 6.11: the target pixel of the phase calculation is I3 ,

with some arbitrary phase of ϕO, and the surrounding pixels have nominal phase shifts of ϕO�90° as

indicated. Note that the pixel numbering can no longer indicate relative phase shifts (e.g., α1=α2); besides,

we will i dentify the intensities In simply by pixel numbers n where appropriate for simplicity of notation.

The geometry in Fig. 6.11 on the left suff ices to use (3.19) for phase retrieval in both x- and y-direction; I3

will be assigned the average of the calculations. To the right, some additional pixels with ϕO+180° give

the possibilit y to use 3+3 averaging formulae; both of the methods will be explained below.

I2

I1

I6

I4I3 4

ϕO−90°ϕO

ϕO+90°

I3I2

I1

I6

I4

I7

I5

I8

ϕO+180°

Fig. 6.11: Pixel clusters for phase calculation from oblique carrier fringes; orientation and spacing indicated by

black bars. For simplicity, pixels are numbered consecutively. Left-hand side: pixels usable for 3-point

formulae; right-hand side: pixels usable for 3+3-point formulae.

At this point it should be noted that the reduction in MI now needs to be determined by (3.67), since the

carrier frequency has an x- and a y-component. Therefore, for αx =αy =90°, we get (sin(π/4)/(π/4))2 = 0.81.

Consequently, another 10% of modulation is lost, which will l ower the optimum value of B somewhat.

Now, using (3.19), a double phase determination is possible for pixel 3, according to

tan ϕO
I I

I I

I I

I I
=

−
−

=
−
−

4 3

2 3

6 3

1 3
, (6.10)

which corresponds to the x- and y-direction, respectively. The phase is then determined from

( ) ( )
( ) ( )tanϕO

I I I I
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=
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2

2
; (6.11)

this is neither a new phase-shifting formula, nor an extended averaging scheme in the sense of [Schmi95].

Instead we get an average that, despite being spatial, does not reduce the resolution of the measurement. It

serves to decrease σd , although the phase measurements involved are not completely statistically

independent, since the central pixel 3 is used twice. Note also that the other two possibiliti es of

calculating the phase, with pixels {1, 3, 4} and {2, 3, 6}, would just double the numerator and

denominator in (6.11), which has no effect.
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To use the intensity correction, we re-define our auxili ary quantities, the Kn:
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and obtain

ϕ πO

K K

K K K K
mod arctan=

+
− + − +

2 5

1 3 4 6

, (6.13)

which method of averaging is correct for this purpose, since both expressions should yield the same

phase. (In this case, the inclusion of two more quotients from pixels {1, 3, 4} and {2, 3, 6} is not

equivalent to a doubling of the terms; but on doing so, the reduction of σd is minimal.) The spectral

transfer properties of (6.11) and (6.13) are now genuinely two–dimensional, so that we can rewrite (3.73) as
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(6.14)

and examine the course of bsc(νx,νy) experimentally by the now familiar 2-D representation. This is done

in Fig. 6.12. Both maps of bsc(νx ,νy) are calculated from the same input interferogram, only (6.13)

processes also the previously stored speckle pattern O(x,y). Since αx=αy=90°/sample, one can use

ds=2.5 dp  (cf. 3.4.4), whereby each signal band fill s approximately one quadrant of the spatial frequency

plane. The left-hand image in Fig. 6.12 visualises this arrangement.
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Fig. 6.12: Left: power spectrum of input interferogram (displayed in contrast-enhanced log scale); centre:

bsc(νx ,νy) for (6.11); right: bsc(νx ,νy) for (6.13). Black lines: frequency co-ordinates leading to correct

phase calculation, bsc(νx ,νy)=
�

45°; white outlines: areas of –10°�δϕ�10°.

In these images, the behaviour of bsc(νx ,νy) on the line given by νx =νy corresponds to the one-

dimensional cases we have considered before. The black lines indicate correct phase calculation
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(bsc(νx ,νy)=�45°), and of course, one point on these lines is νx =νy=ν0. But also for νx =ν0 and νy =0, and

vice versa, it is easy to see that the phase-extraction formulae will operate correctly, although only one-

dimensionally in either case. By the addition of phasors from both directions however, the interesting fact

results that bsc(νx ,νy) has the correct value all along the black lines in Fig. 6.12; this means that

compositions of two "wrong" frequencies can still yield the correct phase. These lines are almost circles

for (6.11); and also (6.13) delivers a similar shape, but only within the range of the signal frequency

bands. We will not go into details as to the theoretical interpretation of these "circles of quadrature"; but

one could argue that the signal bands should be re-positioned to obtain signal frequencies wherever there

are black lines, which would maximise the fraction of signal frequencies yielding correct phases.

Unfortunately, this is not true: one must bear in mind that phase-extraction formulae have weak response

for low spatial frequencies, and none for zero frequency (cf. Chapter 3.2.2), so that signal energy would

be wasted if the sidebands were shifted to touch at νx =νy =0. An experimental test confirmed that this

strategy leads to slightly worse measurements than with the nominally correct value of (νx , νy).

The white outlines show those areas for which bsc(νx ,νy) stays within �10° deviation of its nominal

value; as discussed above in Chapter 3.2.2.3, this means that the p-v phase errors δϕO are confined to 10°

within these regions. They are broadest in the vicinity of νx=νy=ν0 , which, in analogy to Fig. 2.13, shows

that the phase calculation is more stable when the phasors 
~

( , )S x yν ν  and 
~

( , )C x yν ν are long, i.e. when

both νx and νy contribute to the phase determination.

The measured performance of (6.11) and (6.13) is summarised in Fig. 6.13, where the averaging of

horizontal and vertical phase calculations is abbreviated by "90°/90°". The graphs for the usual 3-sample

90° formula are repeated from Fig. 6.9 to simpli fy the comparison. The interferograms for the "90°/90°"

error evaluations have ds=3 dp as well .
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Fig. 6.13: Overview of σd from ESPI displacement measurements as a function of Nx , obtained with merely

horizontal (triangles) and averaged horizontal/vertical phase determination (squares) from four series of

interferograms (two of them already used for Fig. 6.9), all with ds=3 dp but various phase shifts and B values.
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The improvement in σd by averaging phase measurements can be clearly seen; but a comparison with the

3+3 averaging formulae of Fig. 6.9 reveals that their performance is not being reached. Therefore our next

step will be to apply these as well i n the averaging process, which can be done by extending the sampling

pixel cluster as already shown on the right side of Fig. 6.11.

To use 3+3 averaging formulae horizontally and vertically, we have the four different possibiliti es to use

pixels {2, 3, 4, 5}, {1, 3, 6, 8}, being the familiar horizontal and vertical calculations, and{1, 3, 4, 7},

{2, 3, 6, 7}. The latter combinations will still work in the presence of a constant speckle phase gradient

ϕO,x , or ϕO,y ; but since the pixels involved are not on a straight line, they would additionally impose ϕO,x =

ϕO,y , which cannot reasonably be inferred from Fig. 2.14. On the other hand, pixel 7 is spatially closer to

pixel 3, which is again our target point for all the calculations, and hence has greater spatial coherence

with respect to pixel 3 than pixels 5 or 8. Therefore we use
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=
− −
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arctan . (6.16)

There is also the possibilit y to inscribe four more pixel sequences in the shape of an L (plus appropriate

reflections and rotations) into the pixel cluster of Fig. 6.11; but again, this would merely double the terms

in (6.16) and we do not take them into account.

Since the definitions for the corresponding intensity-correction formulae are rather lengthy, I do not go

into detail here; the principle is already indicated in (6.12) and (6.13) where only the pixel indices have to

be inserted appropriately. It may suff ice to note that again only the pixel sets {2, 3, 4, 5}, {1, 3, 6, 8},

{1, 3, 4, 7}, and {2, 3, 6, 7} need be used. Also in this case, it will be interesting to examine the two-

dimensional frequency characteristics of these approaches experimentally with the help of bsc(νx ,νy).

These are shown in Fig. 6.14, with the same input interferogram (and speckle pattern, ds=2.5 dp) as for

Fig. 6.12 above.

In the plot for (6.16), the same circle structure of bsc(νx ,νy)=�45° shows up as above; but thanks to the

correction of improper νx and/or νy, another line of correct phase determination appears at higher spatial

frequencies. This enlarges the region where pδϕp�10° to cover almost the complete sidebands, which is

of course incidental for this particular speckle size. While the shape of bsc(νx ,νy)=�45° looks

qualitatively different for the intensity–correcting formula, the stabili sation effect on the phase extraction

is almost the same.
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Fig. 6.14: bsc(νx ,νy) for (6.16) (left) and its intensity-correcting version (right). Black lines: frequency co-ordinates

leading to correct phase calculation, bsc(νx ,νy)=�45°; white outlines: areas of -10°�δϕ�10°.

A summary of the results from (6.16) and from its intensity-correcting version is given in Fig. 6.15; note

that the ordinate is scaled to a maximum of σd=0.1λ to make differences visible. The graphs for the

horizontal 3+3–sample averaging 90° formula are repeated from Fig. 6.9.
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Fig. 6.15: Overview of σd from ESPI displacement measurements as a function of Nx , obtained with horizontal

(triangles) and averaged horizontal/vertical phase determination (squares) by a 3+3-sample averaging

formula; without intensity correction, B=30 (black symbols); with intensity correction, B=3 (black

symbols fill ed white). Input interferograms were the same four series as for Fig. 6.13.

In this case, the improvement obtained by switching from (αx,0) to (αx,αy), with pertinent phase-

evaluation formulae, is rather small; but its remarkable property is that it lasts up to (at least) Nx=100.

This is in contrast to the other improvement strategies we have discussed so far (where the σd tended to

become more or less the same for higher Nx); it indicates that the speckle correlation remaining after

displacements that give high fringe densities is indeed more eff iciently utili sed by the 2-D phase retrieval.
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On the whole, it proves rewarding to use the full speckle extent for phase calculation, provided there is

suff icient object light to afford a circular aperture. For practical reasons, one would wish to decrease ds as

far as possible; but in SPS, this has effects that we have encountered in Chapter 5 before: for ds�3 dp, σd

increases, regardless of the respective fringe density.

6.4 Reduction of speckle size

It seems worthwhile to see whether the methods to reduce σd developed so far can assist in obtaining

"good" measurements from smaller speckles as well . Therefore we test two more speckle sizes, namely

2.5 and 2 pixels. The best phase calculation found in 6.3 was the average over four 3+3-sample phase

determinations for each pixel, where the intensity correction contributed only a small improvement.

Therefore we apply both (6.16) and its intensity-correcting extension to carry out these additional

measurements. The results are shown in Fig. 6.16, where the last two curves for ds=3 dp are repeated from

Fig. 6.15 for comparison.
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Fig. 6.16: σd from ESPI displacement measurements as a function of Nx , as calculated by (6.16) (black symbols)

and its intensity-correcting extension (white fill ed symbols), with various ds as li sted in the legend box.

The results from ds=3 and 2.5 dp are very close together (except for ds= 2.5 dp, B=30 and low Nx), they

even cross each other sometimes, which means that the corresponding σd match within the determination

uncertainty as explained in 5.2.2. This allows the conclusion that we may reduce the speckle size to 2.5 dp

at virtually no harm for the measurement's accuracy. Considering the curves for ds=2 dp, the beginning

increase of σd vs. ds is clearly noticeable, especially at lower Nx . Hence we can conclude that an optimal

adjustment of ds should be between 2.5 and 2 dp for SPS, which is anyhow suff icient to collect between

1.5 and 2 times more light than with the "standard" choice of 3 dp.

One could think up even smaller evaluation clusters to deal with small speckles and possibly enhance the

spatial resolution. Re-considering the arrangements of Fig. 6.11, it would be possible to use pixels

{1, 2, 3, 4, 6, 7} only, which still allows for two 3+3-sample calculations, or even {3, 4, 6, 7}, where it is

possible to average over two sets of 3 samples, {3, 4, 7} and {3, 6, 7}. But in both cases we have no



                                           6.5 Fourier transform method of phase determination                                     153

straight lines of pixels anymore, which leads to drawbacks already mentioned; and in the latter case, the

averaging hardly makes sense due to very poor statistical independence of the pixel sets. Accordingly,

these approaches do not deliver any improvement in the whole range of Nx values over the results already

shown. Therefore it is also doubtful whether the formally expected increase in spatial resolution would

actually turn up: very fine fringes might just disappear in higher noise.

To continue our quest for maximal accuracy in sawtooth images from spatially phase shifted

interferograms, we will now put aside the phase-shifting methods in favour of the more general concept of

the spatial frequency plane.

6.5 Fourier transform method of phase determination

In the discussion of 3.2.2, we saw that the spectral transfer functions of phase-sampling formulae are

designed to function correctly at their nominal frequency only. While considerable improvements are

possible by simple means, all phase-shifting formulae tend the more to falsify the signal the broader the

sidebands are. So, instead of looking for a phase-evaluation window that delivers low noise while being as

small as possible, one could switch to the other end of the scale and use instead a very large window: the

whole image. Since the signal is encoded in a spectral sideband, it is quite natural – and convenient – to

retrieve its phase from frequency space by a Fourier transform method (henceforth abbreviated by FT or

FTM). It has been applied also to interferograms without a signal carrier [Kre86]; but that approach

requires a-priori knowledge or one temporal phase shift to eliminate the sign ambiguity.

Although it would require sophisticated hard- and software even today to maintain the real-time capabilit y

of an ESPI system with carrier frequency and FT phase calculation, we do investigate the effect of it as a

possible means of a posteriori data processing that still can run entirely automatically. It is intuitively

clear that this approach should offer a distinct advantage over phase sampling: while phase sampling

always works with local information from a very short sequence of samples, the FTM, as a global method,

has access to all the image information simultaneously.

The way to retrieve phase information modulated on a carrier frequency by means of Fourier transforms

has been described in [Tak82, Rod87]. The FTM lends itself to, inter alia, profilometry [Tak83], moiré

[Mor94a], holographic [Qua96] and speckle interferometry [Sal96]. Here, we will of course consider the

method with emphasis on speckle interferometry and also generalise the original 1-D treatment to two

frequency dimensions, as first suggested in [Bon86].

There are numerous analyses as to the attainable accuracy [Mac83, Gre88, Kuj91c, Jo�92], with the main

results that the interferogram should be multiplied by an appropriate window function, or extrapolated, to

minimise edge truncation effects; but as shown in [Koz99], they can also be eliminated exactly. We will

not deal with such refined methods because (i) our digital resolution is rather large (1024�1024 pixels),

so that the edge effects play a relatively small role, and (ii ) the benefit for speckle images would hardly be

significant.
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In classical interferometry, it is necessary to determine and remove the carrier frequency for wavefront

reconstruction [Nug85, dNic98, Li 98, Fer98]; in ESPI, this is fortunately done automatically by the image

subtraction of the initial from the final speckle phase map.

Let po(x,y)pexp(iϕO(x,y))=o(x,y) be the complex amplitude of the speckle field; then the speckle intensity

is O(x,y) = o(x,y)�o* (x,y)= po(x,y)p2, which we assume to be unity. Adding a reference wave r (x,y), the

amplitude of the interferogram is i(x,y)=o(x,y)+r (x,y). By r (x,y)= vB� �r �exp(i(2πν0x x+2πν0y y)),

�r �being the complex amplitude's unit, we adjust the beam intensity ratio to B, which is a real, positive

and spatially constant factor, and the spatial carrier frequencies to ν0x andν0y . The intensities in the

interferogram are then

( )( )I x y x y x y x y x y

O x y B

x y B i x y x y B i x yx y x y
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(6.17)

which terms represent the speckle intensity, the reference intensity, and the complex representation of the

cosinusoidal interference term, respectively. The spectrum of this intensity distribution will be
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(6.18)

where * denotes convolution. This spectrum is a superposition of the speckle halo 
~
O , the central peak

mostly due to the uniform reference ill umination, proportional to B, and two sidebands in which o(x,y),

and therefore ϕO, is encoded. Remembering the so-called sifting property of the δ-function [Bra87, p. 74],

we can account for the convolution by rewriting (6.18) as

( )
( ) ( ) ( ) ( )
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, �
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~~ , �
~~ ,*

I

O B B B

x y

x y x y x x y y x x y y
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(6.19)

As already explained in Chapter 3.3.1, the shape of the sidebands in the frequency plane is that of the

aperture, only now they are shifted by (νx ,νy); see also [Vla94, p. 272]. The situation is depicted in Fig.

6.17 where the measured spectral power density 
~

( , )I x yν ν
2
of a speckle interferogram with ds=3 dp,

αx=90°/column and αy=90°/row is shown in a logarithmic scale; nevertheless, the reference-wave peak

has been clipped to bring the details out more clearly.
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Fig. 6.17: Pseudo-3D plot of the spectral power density P Ix y x y( , )
~

( , )ν ν ν ν=
2
 in a speckle interferogram with a

spatial carrier frequency. Since the spectrum comes from the DFT of a quadratic image with N�N pixels,

the Nyqvist frequencies �νN correspond to N/2 carrier fringes on the sensor.

All contributions from (6.18) are clearly discernible in the plot. Now we enclose one of the sidebands by a

suitable frequency filter whose size follows directly from the speckle size; its diameter in the frequency

plane should be half of that of the speckle halo (cf. 3.3.1). The rest of the spectrum is discarded; the

selected sideband is shifted to the centre of the frequency plane by subtraction of the carrier frequencies,

and then transformed back to the spatial domain:*

( )FT-1 B B x y B x y i x yx y O�
~ ~( , ) � ( , ) � ( , ) exp( ( , ))r o r o r oν ν ϕ= = ; (6.20)

finally, we obtain the speckle phases ϕO by
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whereby the fluctuations of MI, here appearing as B x y� ( , )r o , are cancelled.

By shifting back the sidebands, one obtains the true speckle phases ϕO . However, when two speckle

phase maps ϕO,i and ϕO,f , belonging to two object states, are subtracted from each other, the carrier

frequency will automatically be removed. Therefore, the signal shift in the frequency plane is not

                                                

* The filtering operations destroy the point symmetry about νx=νy=0 that 
~

( , )I x yν ν  possesses as the FT of a real signal [Bra87,

p.14]; therefore the inverse transform will be genuinely complex.
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generally necessary in speckle interferometry (nevertheless, it may sometimes be useful to inspect the

speckle phases per se).

In classical interferometry, the variations of the background intensity may reasonably be assumed to be so

low-frequent that the spectrum of the variations of Ib is easily separated from the signal in frequency

space. In speckle interferometry however, the high frequencies in O(x,y) cause a significant deficiency of

the FTM: as is clearly seen from Fig. 6.17, 
~

( , )O x yν ν  is not separated from the sidebands. The speckle

halo overlaps the sidebands at any practicable speckle size, so that a considerable noise background adds

to most of the signal's frequency content. This disturbs the phase reconstruction in a similar way as in the

phase-shifting investigations.

But as familiar as the problems are the ways to cope with them. From (6.19), it is clear that increasing B

will again help to suppress the speckle noise, provided r (x,y) has a narrow spectrum and can be eliminated

in the frequency plane. This can be fulfill ed in an excellent way if a fibre is used to ill uminate the sensor:

then r (x,y) will be a very broad Gaussian profile, and its spectrum a very narrow Gaussian that will not

overlap with the signal sidebands. It turns out that the performance of the FTM depends on B much in the

same way as for the phase-sampling methods. To quantify this, Fig. 6.1 also contains a plot of σd as

calculated by (6.19) -(6.21) (black, circle symbols) from the same interferograms as used for the SPS

tests.

Furthermore, we note that the quantity 
~

( , )O x yν ν in (6.19) is directly accessible because of

( ) ( )~
( , ) ( , ) ( , ) ( , )*O O x y x y x yx yν ν = =FT FT o o , (6.22)

so that we should be able to eliminate the speckle background from the phase calculation if we first record

the speckle pattern alone, calculate its spectrum and subtract it from (6.18). This correction for speckle

intensity is similar to that in 6.2.1, and the remaining phase errors are then mainly from electronic noise

and pixels with insuff icient MI. The same would be possible for the reference wave if its spectrum would

overlap the signal spectra. This approach resembles the background subtraction suggested in [Liu97] for

classical interferometry.

Using the linearity of the Fourier transform, we could even subtract the speckle pattern in the space

domain (6.17)  before switching to the frequency domain; but the benefit is easier to see in the frequency

representation. Fig. 6.18 provides an example of how the speckle noise is removed in the Fourier plane

when ds=2 dp. The aliased frequencies over νN remain usable for the FTM by pasting them back to where

they got cut off [Bon86]. The reference wave need not be accounted for, since its spectrum is indeed

easily separated from the sidebands.



                                           6.5 Fourier transform method of phase determination                                     157

    

Fig. 6.18: Interferogram power spectra for ds=2 dp and B=3 without (left) and with (right) speckle subtraction. The

speckle halo is larger than the frequency plane; the attenuation of high horizontal frequencies is mostly

due to the pixel clock (cf. 3.4.5). Spatial frequency scales are as in, e.g., Fig. 6.12 on the left.

This approach eliminates the problem of growing overlap of speckle halo and signal band with decreasing

speckle size, so that a very large part of the frequency plane can now conveniently be utili sed. Also, the

"crosstalk" of the sidebands addressed in 6.1.2 (cf. Fig. 6.3) is avoided. The setting of νx=νy= ½ νN,

chosen for convenience of phase sampling (cf. 6.3), also appears to be the optimum choice in frequency

space: it has been used in [Küch91] for a high-performance interferometer, and a computer simulation in

[Che91] showed it to yield the error minimum.

The vacant regions of the frequency spectrum can even be used to record further information [McLa86,

Hor90, Sim93, Pir95, Ped97a, Ped97b, Tak97a, Tak97b, Sched99], e.g. about a second deformation

direction; this approach has become popular under the name of spatial frequency multiplexing. Including

time as a parameter enables spatio-temporal frequency multiplexing with one [Tak90a] or two [Tak92,

Mor94b] spatial dimensions.

The improvement of speckle subtraction over the non-correcting FTM for varying B is also shown in Fig.

6.1 for ds=3 dp (black, white circle symbols). The behaviour of the correction is the same as for the phase-

shifting method: the effect vanishes for B¼30.

When the same interferograms as in Chapter 6.4 are processed by the FTM, again at B=30 without and

B=3 with the intensity correction, one comes to the results plotted in Fig. 6.19. To use a 1024�1024 pixel

FFT, the standard input images consisting of 1024�768 pixels were padded with zeros in the last 256

rows. In a comparison of genuine 10242 pixel images processed entirely and partly, the difference in the

σd values remained within �1%.
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Fig. 6.19: σd from ESPI displacement measurements as a function of Nx, as calculated by (6.19)-(6.21) (black) and

its intensity-correcting extension according to (6.22) (white fill ed symbols), with various ds and B as

listed in the legend box.

By the intensity correction, a pronounced improvement is attained for ds=2 dp. This could be expected

since the overlap of speckle halo and sidebands is largest at the smallest ds, and hence a subtraction of the

speckle noise should have the largest effect. Again, there is not much difference between the curves for

ds=2.5 or 3 dp, and the improvement by the intensity correction is similar to that in Fig. 6.16. Generally,

the curves shown here are rather similar to those of Fig. 6.16, but a careful comparison reveals a

qualitative difference. The FTM yields lower σd for Nx<20, while from Nx=20 on, the multiple-averaging

formulae lead to better results. The curves for the FTM begin with a steeper slope and then flatten out

towards higher fringe densities; those from the phase-sampling formulae are essentially straight. This

shows that the FTM can be very accurate but is more sensitive to speckle decorrelation than the SPS

calculation: the spatial extent of the sampling pixel cluster slightly tends to smooth the calculated phase

maps. At very small decorrelation however, the information in the interferograms is more eff iciently used

by the FTM. Both sets of curves would of course approach the noise limit of σd,max ¡0.146λ (see Chapter

5) asymptotically if we further increased the fringe density.

On the whole, the development of phase evaluation methods specially for interferograms with spatial

phase shift – or carrier frequency, whichever interpretation one prefers – proves rewarding and contributes

an important part to the applicabilit y of the spatial fringe analysis technique in ESPI. The expected noise

due to intensity and phase gradients in the speckle pattern can be eff iciently suppressed, and also the

matter of spatial resolution does not seem to constitute a serious drawback for SPS at practicable fringe

densities.
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6.6 Use of depolarisation to eliminate invalid pixels

A main error source in ESPI and, to a lesser extent, in holographic interferometry, are pixels where

MI(x,y) falls below the electronic noise or even vanishes due to low or zero speckle intensity. This occurs

quite frequently (cf. Chapter 2.2.5) and leads to a relevant fraction of uncertain or invalid outputs of

∆ϕ(x,y) in displacement measurements. This phenomenon, with the associated discontinuities of the

speckle phase, is the origin of the "salt and pepper" noise in ESPI phase maps, and its effect on phase

unwrapping has been investigated recently [Hun95].

On the other hand, it is known that the speckle intensity pdf described by (2.6) changes significantly when

an incoherent sum of two uncorrelated speckle patterns is considered [Goo75, p.21, Enn75, p.211]. In that

case, the maximum of the intensity pdf is shifted away from O(x,y)=0, so that the probabilit y of f inding

"dark" pixels will decrease. Such a case is encountered in the interferometric investigation of rough

objects that give rise to multiple scattering and thus introduce depolarisation, i.e. generate two mutually

incoherent speckle fields. In this subsection it will be shown how these can be exploited to improve ESPI

measurements [Bro98].

In this context, we call an object depolarising if the state of polarisation (SOP) of the light scattered back

from it differs from the SOP of the incident light. In many samples, for instance natural stone, this is a

consequence of volume scattering due to the transparency of the material under investigation. Hence, we

obtain a scattered wave field with fluctuations of intensity, phase, and polarisation.

If the scattered light is split i nto two orthogonal li nearly polarised states (vertical, v, and horizontal, h),

two speckle patterns Sv (x,y) and Sh (x,y) are generated with a normalised correlation coeff icient c. As

described in [Fre90d], the value of c is chiefly governed by a surface–specific constant, called the

depolarisation coeff icient ρ. This quantity is defined by the ratio of cross- to co-polarised scattered

speckle intensity: 0�ρ = nSvo/nSho� 1, where h is the SOP of the incident light and v the orthogonal one.

Then, we can use

( )
c =

−

+

1

1

2

2

ρ
ρ

(6.23)

as a very good approximation to determine the correlation of the orthogonally polarised speckle patterns.

This theoretical prediction was confirmed by measurements of depolarising natural stones [Ada97]. Such

surfaces are for example involved in ESPI-based measurements of deformations and surface changes of

historical monuments, which application was developed in the last few years [Gül96].

Even moderate amounts of depolarisation cause a significant decay of c: for ρ >0.5, we find c<0.2, so that

in practice there is a good chance to obtain a pair of almost uncorrelated speckle patterns. When a

depolarising object is investigated by speckle interferometry, the low correlation between Sv (x,y) and

Sh (x,y) may be utili sed to decrease σd in displacement measurements: the points of phase singularities or

low object wave intensity in the speckle fields, where the phase ϕO,v (x,y) or ϕO,h (x,y) is undefined or
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uncertain, frequently occur at locations that are different in the v and h fields. This gets clear when we

express the probabilit y of f inding a "bad" pixel (denoted by subscript b) at (x,y) in either speckle pattern

by Pvb (x,y) and Phb (x,y) and that of f inding a bad pixel in both speckle patterns by Pbb (x,y). Then we have

P x y P x y P x ybb vb hb( , ) ( , ) ( , )≅ , (6.24)

which is exact when c=0. Provided both Pvb (x,y) and Phb (x,y) are distinctly smaller than unity, this means

that it is possible to replace most of the bad pixels from one speckle pattern by valid pixels from the other

one. There are of course always several points (even for c = 0) where bad pixels in both speckle fields

coincide. But in any case, the number of bad points in the phase map can be minimised by suitable

merging of ϕO,v (x,y) and ϕO,h (x,y).

The merging process is carried out by analysing MI (x,y) in the interferograms between the reference wave

(ideally linearly polarised at 45°) and the vertically or horizontally polarised object wave [Cre88],

M x y I I I I I

M x y I I I I I

I vi vi vi vi vi vi

I hi hi hi hi hi hi

,

,

( , ) ( ) ( )

( , ) ( ) ( )

= − + − −

= − + − −

3 2

3 2

1 3
2

2 1 3
2

1 3
2

2 1 3
2

,
(6.25)

where α=120°/sample and the index i refers to the initial object state, for reasons to become clear shortly.

It should be emphasised that these MI are derived from the "sine" and "cosine" terms of (3.17), which

must then be used for the subsequent phase determination; if other α, or phase-calculation formulae, are

used, the respective "sine" and "cosine" terms have to be inserted under the square root. Due to the low

correlation between the v and h speckle patterns, the two maps of MI,vi (x,y) and MI,hi (x,y) will also be

different, and the higher of the two values ought to indicate the prospect of a more accurate phase

measurement. Admittedly, (6.25) is not as reliable in SPS as in TPS [Su 94] due to the underlying speckle

structure that may yield bogus modulation when the pixel triplet crosses speckle "boundaries"; but as far

as a comparison of MI,vi (x,y) and MI,hi (x,y) is concerned, this approach still works rather well , as we shall

see.

The interferograms are recorded by a CCD camera behind a polariser in the vertical or horizontal position;

setting the plane of polarisation of the reference wave to ideally 45° assures Pvb (x,y)¡Phb (x,y). For each

point (x,y) in both interferograms we determine MI,vi(x,y) and MI,hi(x,y) and the phase distributions

ϕO,vi (x,y) and ϕO,hi (x,y). Then, starting with ϕO,vi (x,y), we replace all phase values in this map by those

from ϕO,hi (x,y) at all the locations where MI,vi(x,y)  < MI,hi(x,y). Thus, a pixel is considered "bad" in the

sense of (6.24) when a better measurement is available. The locations of replaced pixels are stored in a

binary mask Bi (x,y).

Repeating this modulation analysis for the final object state would lead to a slightly different map Bf (x,y)

due to speckle decorrelation by the object deformation and statistical temporal fluctuations like camera

noise. Therefore, Bi (x,y) is used for the final object state too. That is, the phase values in the map

ϕO,vf (x,y) are replaced by those of the map ϕO,hf (x,y) at the same locations where the replacement is done
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for the initial object state. By this approach, two merged (index m) phase maps ϕO,mi (x,y) and ϕO,mf (x,y)

are generated, whose correlation is maintained with respect to the pixel replacement.

Since the phase offsets N0v and N0h (cf. Chapter 4.2) should be the same for both sawtooth images to

merge, they should be kept constant during the recording of the two interferogram pairs Ivi , Ihi and Ivf , Ihf.

In principle, it is possible to correct a phase offset a posteriori and make both fringe systems fit together

by subtracting a constant phase from one of the sawtooth images; but the error fringe profiles (cf. Fig.

3.39) are related to the actual physical phase offset, so that such a "makeshift" will produce artefacts and

lead to unsatisfactory results. Therefore, a phase stabili sation system to compensate phase fluctuations by,

e.g., vibrations or temperature drifts is incorporated in the interferometer as shown in Fig. 6.20.
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Fig. 6.20: ESPI out-of-plane set-up with SPS and active phase stabili sation. Dashed lines: beams for the

stabili sation system. Abbreviations: see text.

The light of a HeNe laser (25 mW @ 632.8 nm) is coupled with a microscope objective L1 into a standard

single mode fibre (Corning Flexcor 633). A fibre coupler FC (Gould) splits the light into an object wave

O and a reference wave R with a coupling ratio of 9:1. Both output fibres contain a polarisation controller

POC [Lef80] to adjust the SOP at the fibre ends; we use linear 45° polarisation for O and not 45° but 48°

for R, which difference will be justified below. Although a standard single mode fibre is used, both SOPs

remain almost constant under the given laboratory conditions for a long time. This was verified by long-

term measurements with a real-time Stokes polarimeter [Dir97]: for a time period of about four hours, the

azimuthal SOP angle changes by less than 2°, and the angle of elli pticity by less than 4°.
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To obtain performance data for our approach, we use the σd values from a simple out-of-plane tilt . The

test object is a white painted metal plate that scatters with strong depolarisation (ρ = 0.78 ± 0.01). The

light scattered off the object is imaged with a lens L2 onto the target of the CCD camera, with 1024×768

pixels. A polariser PF in front of the camera target selects either the vertical or horizontal SOP of the

scattered light. The measured correlation coeff icient for the corresponding speckle fields Svi (x,y) and

Shi (x,y) is c = 0.02 ± 0.005 which is in acceptable agreement with the value of c = 0.03 ± 0.003 expected

for the measured depolarisation coeff icient. Since nSvo/nSho¡0.78, the plane of polarisation of the

reference wave is set to 48° instead of 45° by the POC to obtain Pvb (x,y)¡Phb (x,y), this is, we intend to

replace some 50% of ϕO,vi (x,y) (ϕO,vf (x,y)) by entries from ϕO,hi (x,y) (ϕO,hf (x,y)), whereby the best

utili sation of both speckle patterns is assured.

The reference wave's fibre end is placed in the aperture plane A of the imaging system and positioned to

yield αx = 120°/column on the CCD sensor.

The phase stabili sation works as follows: part of the object light is reflected by the small mirror M1

mounted on the object. It passes through the lens L2 and is then reflected by another small mirror M2,

close beside the CCD chip, towards the plane S. On the opposite side of the CCD sensor, a small

beamsplitter BS reflects a part of the reference wave towards S. By proper adjustment of M1, M2 and BS,

both waves can interfere in S, forming an interference pattern of concentric fringes as shown in Fig. 6.21.

This is far easier to achieve than broad fringes of stable shape.

D1D2

Fig. 6.21: Interference pattern in the plane S of the PID unit; the white squares indicate the locations and areas of

the photodiodes. The circular boundary of the pattern is due to the imaging aperture.

A photodiode D1 is placed in the centre of this pattern where a broad fringe occurs. Another one, D2, is

placed outside the centre, integrating the intensity distribution over some 12 fringes. Thus, the output of

D2 is insensitive to phase variations and tracks the intensity fluctuations of the laser instead. Whenever

phase changes occur between the object and the reference wave, the intensity in the centre of the fringe

system changes. This variation is detected by D1, while intensity fluctuations of the laser are detected by
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D2 and D1. The difference signal of the detectors D1 and D2 is processed by a PID controller and then fed

into a high voltage ampli fier HV. The ampli fier drives a piezo electric cylinder PZ (Ferroperm PZ 27),

onto which some turns of the reference fibre are wound and which works as a phase shifter [Dav74]. By

this closed-loop control system, the phase difference between O and R is stabili sed with respect to that

point of the object surface where M1 is mounted. The achieved cut-off fr equency of the phase

compensating unit of about 1.4 kHz is found to be adequate for the desired purpose. Also, the long-term

stabilit y of this arrangement was found to be satisfactory [Sag98].

At the beginning of the measurement, nBo ¡ 10 and ds ¡ 3 dp were adjusted. Unfortunately, we have to

use an average for R, and hence for the beam ratio, here: as can be seen in Fig. 6.20, the reference wave

was directed so as to ill uminate BS suff iciently. The maximum of its intensity profile lay beside the CCD

array, which caused the local intensity of R to vary between 2nRo and nRo/3 from edge to edge of the

sensor. Hence, 3<B<20 over the image, which leads to slight spatial variations of MI, and thereby, the

fringe quality. Note, however, that rotating the polariser does not affect the profile of B, so that the

modulation criterion remains applicable.

For the initial object state, speckle interferograms were captured for the vertical and horizontal position of

the polariser, respectively. The phase map ϕO,mi (x,y) was calculated from these interferograms as

described above. According to Bi (x,y), ϕO,mi (x,y) contained 49.2% of the pixels from ϕO,vi (x,y) and 50.8%

from ϕO,hi (x,y).

The object tilt was applied to generate Nx¡10, which moved M1 forward (towards the camera) by some λ;

the associated phase change was tracked and compensated by the stabili sation unit, whose bias output

voltage was therefore shifted by some 10% of its complete range. This means that the "I" part of the PID

stabili sation would have to be reset regularly if larger tilts were present. The consequences of the tilt for

the shape of the fringe pattern in Fig. 6.21 are however negligible. Nevertheless, some work has been

done subsequently to get rid of the necessity to attach a mirror on the object, and a highly sensitive

heterodyne system was built that uses the light of one or few object speckles for stabili sation [Bro00].

After the object deformation, Ivf (x,y) and Ihf (x,y) were recorded and a phase map ϕO,mf (x,y) for the final

object state was calculated. Finally, the merged deformation phase map ∆ϕm (x,y) = ϕO,mf (x,y) – ϕO,mi (x,y)

was determined, with σd = 0.051 λ. For comparison, we generated ∆ϕv (x,y) = ϕO,vf (x,y) – ϕO,vi (x,y) with

only one SOP (here v), and found σd = 0.067 λ. Hence, the noise reduction by using both SOPs is about

24%. A visual impression of the resulting phase maps is provided by Fig. 6.22.

The experiment demonstrates that even a simple phase-calculation formula is suff icient to obtain an

accuracy of λ/20 in SPS if it is allowed to process "good" interferogram data. And as described above,

there is still space left for improvements.
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Fig. 6.22: Comparison of sawtooth images from an out-of-plane tilt; l eft, ∆ϕv (x,y) measured with one SOP,

σd =0.067 λ; right, ∆ϕm (x,y) by merging of measurements from two SOPs, σd =0.051 λ.

An attempt to use the intensity-correcting formula (6.6) to derive a modulation criterion that includes

speckle intensities remained unsuccessful. While both ∆ϕv (x,y) and ∆ϕh (x,y) were better than their non-

corrected counterparts, ∆ϕm (x,y) was slightly worse in terms of σd. Apparently, the simple modulation

analysis of (6.25) rejects unreliable pixels well enough, and the inclusion of speckle intensities tends to

complicate the procedure.

In the version of the system described here, the polariser is rotated manually. Of course, it could be

replaced by an electro-optical device, so that the interferograms for both SOPs can be captured in

subsequent video frames. Furthermore, with a polarising beamsplitter and two cameras, it would even be

possible to record the two interferograms simultaneously. In that case, the phase compensating unit can be

given up, provided SPS is used.

6.7 Extensions of SPS by temporal unwrapping

While the reduced spatial resolution in ESPI does not seem to constitute practical limit ations for SPS, the

temporal resolution is increased in comparison with TPS by a factor of at least 3. This has been used for

high-precision classical interferometry to obtain and average phase maps at a higher rate [Fre90b], and the

single-frame measuring capabilit y has enabled successful measurements of high-speed events [Kuj88,

Sho90, Ped93]. But not only can the phase front be monitored at video real-time: it can additionally be

tracked and unwrapped pixelwise in time, which immediately yields displacement and deformation data

and possibly eliminates the need for a posteriori data processing. This approach is known as temporal

phase unwrapping [Hun93a] and abbreviated by TPU. It has been used for profilometry [Tak94, Sal97,

Joe98b] and shearography [vBru98] and was applied to ESPI deformation measurements in combination

with TPS [vBru98, Hun99] and also with temporal FT evaluation [Joe98a]. A method utili sing carrier

fringes with TPU for a shearography ESPI system has recently been described in [Mar00]. The principle

of TPU is shown in Fig. 6.23.
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Fig. 6.23: Principle sketch of spatial (top row) and temporal (bottom row) phase unwrapping; for details, see text.

In spatial unwrapping, a sawtooth image (top, left), representing a temporal phase history ∆ϕ(x, y) mod 2π

= (ϕO (x, y, tf) mod 2π–ϕO(x, y, ti) mod 2π) mod 2π, with i and f referring to undeformed and deformed

object state, is converted to a continuous displacement phase Φ(x, y) (top, right) by appropriate additions

of �2π, i.e. by finding the correct step function 2πn(x,y), n∈¯. This is done by a simple criterion: when

the data satisfy the sampling theorem spatially, there will be no phase changes >π from pixel to pixel. If

such a transition is detected nevertheless, it must then be a 0*2π jump that is wrapped back onto [0, π)

by in- or decrementing n. This procedure along the x direction at an image row y is sketched in Fig. 6.23

in the centre of the upper row.

Temporal unwrapping starts from an empty displacement map (bottom, left) and tracks the phase history

of every pixel (x,y) in time by comparing it with an initial phase map ϕO(x, y, ti). The unwrapping criterion

is applied temporally, as shown in the centre of the bottom row for some pixel (x, y); the temporal

sampling rate must be high enough to keep differences of ϕO(x, y, t) from frame to frame smaller than π on

each pixel, this is, the sampling theorem must be fulfill ed temporally. The phase differences are

unwrapped by addition of 2πn(x, y, t) as required and used to continuously update Φ(x, y, t), which may

conveniently be represented by grey levels as well , as on the right in the bottom row. The advantage of

this method is that errors due to faulty – mostly badly modulated – pixels will not spread across the image

as this may be the case for spatial unwrapping.

In longer monitoring sequences however, the advantage of TPU can become a disadvantage: it

accumulates data, including errors, and severely corrupted unwrapped phase maps Φ(x, y) cannot be

restored a posteriori. It is therefore favourable to store both the temporally unwrapped data and several

phase maps ϕO(x, y, t). If the former are doubtful, the latter may yield conventional sawtooth images

∆ϕ (x, y) that can easily be unwrapped spatially when they contain few fringes.
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This procedure requires a storage interval ∆t for the phase maps ϕO(x, y, t) which is matched to the

possibly varying velocity of object deformation and displacement. The implicit fringe counting capabilit y

of TPU lends itself for driving such a matched course of ∆t automatically. As far as I know, this issue has

only once been dealt with before on the basis of speckle decorrelation analysis [Gül93]; here however, the

quantity of interest that we want to limit i s the number of fringes in ∆ϕ(x, y) instead of the speckle

decorrelation [Bur00b].

In practice, ESPI often deals with objects consisting of several independent parts that may undergo

different displacements and deformations. However, sawtooth fringes do not allow to determine rigid

body movements or the sign of the deformation itself, unless the fringe orders are tracked by additional

devices like, for instance, a phase stabili sation unit [Bro00]. We will see that temporal unwrapping

delivers these data for each object part automatically.

6.7.1 Temporal unwrapping of speckle phases

The use of temporal unwrapping is not entirely straightforward in speckle interferometry; we will

therefore briefly consider the cumulative impact of speckle noise on displacement data.

Not surprisingly, badly modulated pixels cause problems also in this application. The statistical

fluctuations of the calculated phase should yield a displacement of zero when monitored over a suff icient

number of frames. It was however observed that even for longer observation sequences with hundreds of

frames, some of these pixels seemed to change their phase constantly in one direction; both signs of

displacement were present. In a fringe counting procedure, these pixels would trigger data storage even

when no actual displacement has occurred. Therefore such outliers have to be suppressed; and as usual in

speckle interferometry, a low-pass filter can serve to do so. This may be objectionable in TPS, because it

impairs the spatial resolution; but for larger speckle sizes, as used in SPS, the resolution will not suffer

greatly.

There are sophisticated and well -founded filtering schemes [Hun97] that give excellent rejection of noise

in the displacement map over long, albeit not infinite, times of observation [Cog99]. For reasons of

processing speed, a simpler filtering scheme is used here. The accumulated phase Φ(x, y, t) of a pixel at

time t is considered faulty when it differs by more than π from the accumulated phase of at least one out

of its nearest neighbours. In that case,

( ) ( ) ( ) ( ) ( )( )Φ Φ Φ Φ Φx y t x y t x y t x y t x y t, , : , , , , , , , , /= − + − + + + +1 1 1 1 4 (6.26)

and the outlier is eliminated.

By the selection criterion, filtering takes place only when necessary, and processing time is saved. This

helps to obtain a high frame rate, which is very important since also temporal unwrapping relies on the

sampling theorem, as detailed above; and due to the cumulative nature of the process, errors due to missed

fringes (violation of the sampling condition) will l ast in the map of Φ(x, y, t) until it i s cleared. The phase
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maps were generated by a look-up table for αx=120°/sample (cf. 3.2 and Appendix B). The frame rate of

the image processing system (a Data Translation DT3852 frame grabber connected to an Alacron FT200

processor board with two 50-MHz i860 processors) was ¡0.5 Hz for an image size of 800�600 pixels.

The method of f iltering was tested by running the temporal unwrapping for some 30000 frames without

disturbing the system. At the end, the fringe counting procedure reported some 1.5 fringes; this error

suppression is suff icient for our purpose. However, the fluctuations in Φ(x, y) do not appear to be

perfectly random, since they do not vanish even in such a long averaging process. Their structure may be

seen in Fig. 6.24, where the displacement information corresponding to a range of 1.5 fringes has been

converted to grey values and expanded to the whole grey scale for better visibilit y of the effect.

Fig. 6.24: Errors in Φ(x, y) related to "random" noise, accumulated during �30000 temporal unwrapping runs

without actual object displacement.

Another problem occurs in the observation of real displacements. While noisy pixels are not necessarily

detected as such in every frame, their calculated Φ(x, y, t) will not follow the true course; instead, for most

of the noisy pixels it will hover around zero. If such a Φ(x, y, t) happens to be included in the averaging

operation (6.26) before it is re-aligned with its neighbours, its error will propagate into the surrounding

pixels. In the long run, this will l ead to pixel clusters whose Φ(x, y, t) is dragged behind, i.e. will be

somewhere between zero – from where all observations start – and the true value. An example is given in

Fig. 6.25, where an out-of-plane tilt about the y axis has been tracked. The tilt was controlled by applying

a linear voltage ramp to a PZT which rotated the object holder slowly enough to satisfy the temporal

sampling requirement for all pixels in the image.

y

Fig. 6.25: Errors in Φ(x, y) related to object motion; "slow" pixels due to imperfect error rejection.

The line of zero displacement is marked by the white line and the accumulated displacement range Φ(x, y)

is +5 π at the left and -5 π at the right edge. The bright/dark backgrounds tend to deceive the eye; indeed,

the "slow" pixels on the left are brighter than those on the right, which means that the sign of motion is

correctly determined for all of them, but the measured displacement is underestimated. When spatial

averaging takes place in every frame, this behaviour can be suppressed by pixel weighting [Cog99]. In

this subsection, the faulty pixel clusters are selectively removed a posteriori; they must not be included in

the displacement computation [Hun93a], for they will generate a systematic error that is proportional to

the absolute displacement.
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6.7.2 Long-term observation of biological object

Many industrial ESPI experiments allow to predict the number and shape of fringes with which a test

object will respond to a certain load. On the other hand, being a non-destructive examination technique,

ESPI is particularly useful for unique objects about whose properties littl e is known. Therefore it is in

general diff icult to foresee changes in the fringe pattern, all the more when the objects are not subjected to

test sequences or cycles but left to fluctuations – or attempts of stabili sation – of ambient parameters. In

such cases, eventful periods may alternate with hours of littl e or no changes. A "good" experiment

requires that the object motion be adequately tracked in time, this is, neither fringe density nor speckle

decorrelation must grow too large between the capturing of consecutive interferograms; and on the other

hand, no redundant data should be produced. While there may be tasks where a human operator can make

such decisions, this is undesirable from an economical point of view. Also, some observations exclude the

presence of a person.

Temporal phase unwrapping is well suited to utili se the fringe order count n(x, y, t) to generate matched

data storage intervals ∆t: from the continuously updated values Φ(x, y, t), the extreme values Φmax and

Φmin can be extracted in every run of the temporal phase unwrapping loop. When the difference exceeds a

certain threshold ΦT, it is assumed that the corresponding sawtooth phase map ∆ϕ(x, y) = ϕO (x, y, tf) –

ϕO(x, y, ti) between the present phase distribution ϕO (x, y, tf) and the stored initial one, ϕO(x, y, ti), has

acquired m fringes with m  = ΦT /2π. In that case ϕO (x, y, tf) is stored and re-labelled ϕO(x, y, ti), Φ(x, y, t)

is cleared and the procedure begins anew. This technique yields a sequence of few-fringe sawtooth images

that constitute no problem for spatial unwrapping. Note, however, that this method of fringe counting

does not limit the fringe density: when small defects generate high local phase gradients, it may possibly

come to unresolvable sawtooth fringe patterns. The phase gradient is easily accessible with the help of the

co-ordinates of Φmax and Φmin; but this procedure was omitted for the sake of simplicity.

Of course, the most convenient data evaluation would be to accumulate Φ(x, y, t) throughout the whole

observation, whereby it may even become obsolete to save phase maps ϕ(x, y) regularly. But with the type

of filter used here (6.26), it is safer to eliminate accumulated noise or accidental errors (e.g. by abrupt

stress relaxation in the interferometer) by clearing Φ(x, y, t) when a phase map is stored. Thereby the

continuous tracking of phases Φ(x, y, t) is given up, but the propagation of errors is being limited to one

measurement of Φ(x, y, t), corresponding to only one storage interval ∆t. Nevertheless, the whole series of

k phase maps Φk(x, y, t) may be stored and, if usable, added up later on to yield Φ(x, y, ttotal) = ΣΦk(x, y, t).

To test this approach of dynamic data storage, I examined a biological test object whose likely

deformation is not known in advance. The white spot on a fresh chestnut, as shown in Fig. 6.26, was

found to be quite co-operative for interferometry: its surface is reasonably reflective and maintains

speckle correlation over suff icient time intervals. We can expect the displacements to proceed most

rapidly at the beginning of the experiment because the object will relax in its holder. Also, the loss of

water from the surface should result in a constant shrinking, relatively fast initially and then levelli ng off .
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Fig. 6.26: White-light image (left) and deformation map (right) of fresh chestnut.

The changes of the chestnut's surface were monitored over some days from shortly after its fastening in

the interferometer (which was the set-up of Fig. 5.1) until the deformation had settled somewhat. Besides

the matched storage of phase maps ϕ(x, y) whenever the threshold of m=5 fringes was reached, additional

ones were stored at the steady rate of 1 frame per 10 min to study possible performance differences

between the methods. Fig. 6.27 provides an overview of the deformation dynamics. The black curves (left

ordinate) show the courses of the matched and static storage intervals ∆t versus time after the beginning of

the observation. The white curves (right ordinate) show the corresponding courses of the hard disk space

required for storing the phase maps.
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Fig. 6.27: Course of the matched and static storage interval ∆t (black curves, left ordinate) during several days; for

static storage ∆t is fixed to 10 min. White curves: hard disk space required in MBytes/day (right ordinate).

The matched data storage went through several phases: in the first 3 hours, the chestnut appeared to settle

in its spring-loaded holder and short storage intervals ∆t were necessary. After ¡ 15 h, the deformation

slowed down; the matched ∆t were incidentally similar to the static ones in the time period between

¡ 25 h and ¡ 60 h. After ¡ 60 h, a distinct slowing down of the shrinkage took place, and the matched ∆t

remained around 20 – 25 min for the rest of the observation. Hence, temporal unwrapping was able to

avoid undersampling (in the sense of appropriate data storage) initially and to save disk space later on.

To ill ustrate the value of this approach, we shall consider images from the two situations. In Fig. 6.28, a

comparison of a 10-minutes' deformation measurement at t ¡ 7¾ h is shown. Since the automatic routine

determined the instant of saving by itself, the initial and final object states are only by chance very nearly,

but not exactly, the same for the two storage series.
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Fig. 6.28: Comparison of matched vs. static data acquisition. Upper row: sequence of sawtooth images calculated

from 5 automatically saved phase maps ϕf (x, y) (matched ∆t), leading to the resulting grey-scale height

map on the left in the lower row when spatially unwrapped, converted to heights and added. Lower row,

centre: sawtooth image for almost the same displacement calculated from only one phase map ϕf (x, y)

(static ∆t); right: resulting height map.

The deformation is decomposed into five parts (upper row) by the matched phase map acquisition, and the

corresponding sawtooth images indeed show m ¡ 5 fringes each. The incremental sawtooth images can

all be spatially unwrapped with no problems, and the corresponding height data can be added to yield a

flawless deformation map (lower row, left). Depending on the individual phase gradients, the sum of these

incremental phase maps may contain well below 25 fringes, but not more. The single sawtooth image

(lower row, centre) from the static data storage indeed contains only ¡ 19 fringes. Their strongly

fluctuating density causes problems in spatial unwrapping, so that some height assignments are faulty in

the result (lower row, right). While one would not lose track of the course of displacement in this

example, there may be cases where only a higher image rate can ensure getting safely through the process.

After t ¡ 65 h, the situation is reversed: the deformation is oversampled by the static acquisition, which

generates a large amount of superfluous data. Fig. 6.29 gives an example from t ¡ 79 h.

                                                                                                          

                                                                                                          

                                                                                                          

Fig. 6.29: Sawtooth image for matched data storage (left) and corresponding sequence of sawtooth images from

static storage interval (right).



                                                6.7 Extensions of SPS by temporal unwrapping                                          171

At that stage of the experiment, the automatic storage interval had expanded to ∆t ¡ 32 min.

Consequently, the fringe density in the images from the fixed-rate series is unnecessarily low, disk space

is wasted and the data evaluation gets more laborious.

In Fig. 6.29, we also find a hint that our cautious decision to regularly reset Φ(x, y, ti) after each storage is

justified. As the object deformation grows slower, ∆t becomes larger, more noise is accumulated in the

temporally unwrapped data, reduces the accuracy and also triggers storage too early: in the automatically

saved image, we find less than 4 fringes instead of m ¡ 5.

The shown experiment demonstrates that fringe counting by means of temporal unwrapping is suitable to

adapt the data storage rate to the actual displacements. This is helpful not only for long-term observations:

in any experiment where no assumptions about the object's dynamics can be made, its motion can reliably

be tracked by the approach proposed here.

6.7.3 Relative displacements of discontinuous object

Especially in the investigation of historical material, one frequently encounters cracks in the surface under

inspection [Gül96] and it is important to know the relative motion of neighbouring sub-areas of the

object. As a realistic specimen of an aged material, a slice of a historical brick (¡2 cm thick) was

observed under temperature changes. The interferometer was again the out-of-plane assembly of Fig. 5.1,

only the test object had been replaced by the brick slice in upright position. The heat source was an

infrared radiator positioned some 30 cm behind the object. Fig. 6.30 shows a white-light image of the

measuring field.

Fig. 6.30: White-light image of historical brick.

When this sample is subjected to cycles of alternately 15 min of heating from the backside and 15 min of

cooling, the resulting deformations reveal 9 separately moving portions with rather different fringe

densities and complicated boundaries, as Fig. 6.31 demonstrates. The dashed line does not mark a

cleavage; but the fringes slightly change their orientation, as may be verified by viewing them along the

black-white edges at a small angle to the paper. The shown displacements each have evolved in time

intervals of ¡ 10 min. For the heating period, ϕO(x, y, ti) was stored at an ambient temperature T1 when
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the heater was switched on, while for the cooling period ϕO(x, y, ti) was stored at an ambient temperature

T2 when the heater was switched off .
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Fig. 6.31: Displacement phases mod 2π (left) and corresponding "temperature" height maps as delivered by

temporal unwrapping (right), for heating (top) and cooling period (bottom). Numerical values denote

maximum and minimum displacements.

While it would be very laborious to define and spatially unwrap all the regions separately, it is even

impossible to determine their relative heights from the sawtooth images on the left. When such

displacements are monitored with temporal unwrapping, the problems are overcome. Without the need to

fit data from different sub-areas together, a complete profile of the surface changes is obtained. One can,

and should, test its reliabilit y by checking the obtained surface tilts for consistency with those following

from the number of sawtooth fringes. On removing the abovementioned "slow" pixels, Φ(x, y) from

temporal phase unwrapping did not deviate by more than 0.1 λ from Φ(x, y) as produced by spatial

unwrapping of the corresponding sawtooth images, which also justifies some confidence in the absolute

heights that are given in Fig. 6.31.

According to the height maps from temporal unwrapping on the right, the deformations that developed in

the heating period are almost reversed during cooling, apart from some remaining displacements and

deformations that are clearly emphasised by an addition of the height data from the two states, as

demonstrated in Fig. 6.32 on the right. Most of the remaining displacement is presumably caused by an

ambient temperature at the end of the cooling period that differed from T1.
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Fig. 6.32: Overall displacement after heating and cooling. Residual tilt s are visible in the sawtooth image (left);

rigid-body displacements are revealed in the "temperature" height map (right). Arrows mark locations of

possible misinterpretations of the sawtooth image.

On the other hand, the sum of the sawtooth images lacks important information. At the black arrow, a

substantial piston-type displacement is not discernible from the sawtooth image, while at the white arrow,

the nearly matching fringe positions almost conceal the step of ¡ 0.3 µm (1 fringe) that has actually

remained. On the contrary, the results based on the height maps from the temporally unwrapped data are

unambiguous. They need no interpretation and thus allow an easier assessment of object changes.
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7 Summary

This thesis work has presented a detailed investigation of various aspects that concern the application of

spatial phase shifting (SPS) in ESPI. The objective was to broaden the previously somewhat sparse

knowledge of what happens in spatial phase sampling on speckle fields, and to utili se the findings to

introduce some improvements of SPS.

The ground on which to base such an investigation is, first of all , an extensive study of the nature of

speckle fields. Fortunately, speckle statistics have been an important topic in optical research for some 40

years, so that many useful results could be collected and grouped. The theoretical studies were

accompanied by experimental validations of some results.

With respect to SPS, the one-dimensional intensity and phase gradients deserve particular interest, and it

was found that the speckle intensity is correlated with the intensity gradient and anticorrelated with the

phase gradient. This simple rule of thumb provided valuable guidance as to the assistance of speckle

statistics in improving SPS. The speckle intensity field, showing more spatial structure than the phase

field, hardly allows reasonable assumptions to be modelled in the phase calculation, but is directly

accessible in the experiment. This extra information can be used to counteract the disadvantageous

influence of speckle intensity fluctuations on the interferogram. The speckle phase field was seen to be

co-operative for interferometry: the phase gradients are low where the speckle field is bright, and those

regions of the field where the phase "leaps" or is even undefined, were seen to be rather dark anyway.

Since constant speckle phase gradients can be envisaged as linear phase-shift miscalibrations, the use of

phase-calculation formulae that are tolerant of this type of error seemed to be the most sensible decision

for effectively reducing measurement errors.

After getting familiar with the properties of the speckled object wavefront, it was necessary to turn

towards optimisation of the way to process speckle interferograms. For this purpose, digital speckle

interferometry and the phase-sampling process have been reviewed. It was found that it is always better,

in SPS and TPS, to subtract speckle phase maps than to work with correlation fringes; this has been

confirmed by experimental results.

The aspects of speckle interferometry that pertain especially to SPS have been discussed in detail . The

spatial phase shift was seen to be geometrically quasi-constant to a very high degree of accuracy; however

the spatial frequency content of speckle interferograms supersedes this theoretical result, and the subjects

of speckle size and phase-shift setting have been addressed from the viewpoint of spatial frequencies.

Since speckle phase gradients cause significant distortions in the carrier fringe pattern, its spatial

frequency spectrum will be considerably broadened. It is therefore worthwhile to examine the effect in the

spatial frequency domain. Consequently, the well -established and powerful Fourier description of phase-

shifting formulae has been used. It interprets phase extraction as a digital signal filtering process in the

spectral domain, with characteristic spectral amplitude and phase transfer functions. When using this
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method to search for a phase-shifting formula with high phase-shift error resistance, the question arose

whether it would be better to optimise the amplitude or the phase spectrum of the phase extraction

formula for low phase-measurement errors. To settle the question, a simple auxili ary function was

introduced which is invariant under the various optimisations and thus showed that nothing is to be gained

by simply representing a formula in different ways. This behaviour was confirmed in SPS experiments.

Another valuable means of characterising the spatial phase evaluation is the dependence of the phase-

measurement error on the phase to be measured. It was elucidated how the phase reconstruction generates

periodic errors in the sawtooth fringes and systematic biases for the phase calculation, and what role the

choice of the phase-calculation formula plays for this effect.

The quest for a reliable performance figure of ESPI phase measurements, which is indispensable to carry

out comparisons and quantify improvements, has led to the creation of a standardised noise quantification

method that fits an ideal data set to a real one and delivers the standard deviation of the remaining phase

differences. The displacements to use this method were standardised as well . The advantages of the fitting

method have been demonstrated by confrontation with various other methods of generating reference data.

The noise quantification tool was then extensively used to compare the performance of SPS with that of

TPS in various measuring geometries, where a simple phase-shifting scheme was used under stable

laboratory conditions. A multi -purpose interferometer allowed to carry out this comparison under the best

possible constancy of experimental parameters. By varying quantities like fringe densities, speckle size

and shape, and object ill umination intensity, characteristic behaviours of SPS and TPS were explored. It

was found that TPS offers advantages for in-plane measurements and under severe shortage of laser

power; for out-of-plane configurations, the difference was found to vanish with increasing fringe density.

As an extension of the performance study with standard experimental parameter settings and data

processing, several ways to improve the SPS technique have been implemented and tested. A very

important result is the finding that the role of the beam ratio is decisive in SPS but has far less impact on

TPS. Then, in agreement with the hints from theoretical considerations on spatial phase sampling, a phase

shift of 90° per sample was found to yield better measurements than 120° per sample.

Based on the conclusion from the investigation of speckle statistics, a formula was established that can

make use of a separate recording of the speckle pattern alone to correct phase-calculation errors

introduced by speckle intensity gradients. The performance thus gained is however almost reached by

uncorrected measurements when the beam ratio is set to its optimum, which was around 30 for the

experimental set-up used.

To compensate measurement errors by speckle phase gradients, a simple averaging formula was used and

seen to bring about a relevant improvement. This improvement can only partly be ascribed to the

cancellation of phase-shift errors; also the enlargement of the spatial sampling window from 3 to 4 pixels

plays a role.
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The feasibilit y of combining intensity- and phase-gradient correction was demonstrated and shown to

yield the least measurement error; however the intensity-gradient correction does not recommend itself

strongly, since almost the same fringe quality can be achieved without it and at an optimised beam ratio

instead.

An important step is the extension of the phase shift to two dimensions, which allows to use the spatial

frequency plane more eff iciently; thus, multiple phase measurements can be carried out and averaged for

each image pixel to make up more reliable values. The combination of this experimental modification

with the computational solutions decreases the rms of the phase-measurement error in unfiltered phase

maps to below λ/20 for moderate fringe densities, which remains valid when the speckle size is reduced to

2.5 pixels.

This accuracy is about the best that one can obtain by phase-shifting; therefore the Fourier-transform

approach to phase extraction has been tested, for which a speckle-intensity correction can also be carried

out by simple subtraction of the speckle pattern from the interferogram or, equivalently, the speckle halo

in the spatial frequency plane. It turned out that the Fourier method yields an improvement only at very

low fringe densities. For higher fringe densities, the intrinsic data smoothing property of SPS formulae

due to the spatial extent of the phase-calculation window gets apparent, and the noise introduced by

speckle decorrelation is somewhat smaller than in the Fourier transform method.

Another method of error reduction is to use a "standard" phase-shifting method and to enable it to process

only reliable data, i.e. to eliminate invalid pixels from the measurement. This has been realised by

merging valid phase data obtained from orthogonally polarised speckle patterns.

Finally, SPS has been used to implement temporal phase unwrapping, and the combination of the two

techniques has successfully been applied to deal with the practical problems of automating data storage in

long-term experiments and of measuring deformations of discontinuous objects.

On the whole, the collection of aspects of and possibiliti es for SPS presented in this work should prove

useful for its successful application in various ESPI measurements. It could be shown that the suspected

disadvantages of SPS constitute no serious restrictions in practice, all the less as some simple and

effective performance enhancements are possible. With its ease of use not being the least, there are good

arguments to consider SPS as an alternative also for situations where TPS is applicable, and to use it just

as confidently.
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Appendix A: Counting events

Intensity level crossings per unit length

In Chapter 2 we have encountered two occasions where probabili stic events had to be counted. The

derivation is similar for both of them. The level-crossing problem of (2.14) starts from the integral

[Bar80]

N I I I I xdxd t t
d

( ) ( ) /= −∫δ ∂ ∂ ;
(A.1)

here Nd(It) is the number of times that the intensity crosses the value It on a path d (the probabilit y for the

point I=It being an extremum has measure zero on a straight line). The δ function assures that the integral

responds only when I=It; to make each such contribution equal to one, i.e. to establish a counting function,

the integration over x must be undone by the derivative ∂I/∂x; the modulus signs ensure that +1 is being

counted for each event. However, since now Ix appears, which is not independent of I, we need to know

its expectation value at a given I, which requires the joint pdf p(I, Ix) and changes the integral to

N I I I p I I I dI dx

p I I I dI dx

d t t x x x
Id

t x x x
Id

x

x

( ) ( ) ( , )

( , )

= −

=

∫∫

∫∫

δ

;
(A.2)

on integrating over unit length, one obtains the density of the level-crossings,

( )ρ( ) ,I p I I I dIt t x x x
I x

= ∫ ,
(A.3)

which is (2.14).

Intensity zero points per unit area

By the same line of argument as above, we can start from [Ber78, Bar81]

N A A A A x y dxdydisl r i r i
S

= ∫∫ δ δ ∂ ∂( ) ( ) ( , ) / ( , ) ,
(A.4)

where the dislocation is expressed by the vanishing of Ar and Ai , the integral is over an area S and the

quantity between the modulus signs is the Jacobian qJq=pAr,x Ai,y – Ar,y Ai,xp. Obviously, we need

p(Ar, Ai, Ar,x, Ai,x, Ar,y, Ai,y) to evaluate this integral, or, more specifically, p(0 , 0 , Ar,x , Ai,x , Ar,y , Ai,y) after

the δ functions are accounted for. In analogy to above, we write

( )
N

p A A A A A A x y dA dA dA dA dxdy

disl

r x i x r y i y r i r x i x r y i y
AAAAS i xr yi xr x

= ∫∫∫∫∫∫ 0 0, , , , , ( , ) / ( , ), , , , , , , ,

,,,,

∂ ∂ , (A.5)
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and with S equal to the area unit we then have

( )ρ ∂ ∂disl r x i x r y i y r i r x i x r y i y
AAAA

p A A A A A A x y dA dA dA dA
i xr yi xr x

= ∫∫∫∫ 0 0, , , , , ( , ) / ( , ), , , , , , , ,

,,,,

;
(A.6)

with p(Ar , Ai , Ar,x , Ai,x , Ar,y , Ai,y) given by (2.1), the integration is not trivial; it has been shown in [Ber78,

Eq. 43] that the integral is best evaluated in polar co-ordinates, i.e. after conversion to I and ϕ, similar to

(2.4). Fortunately, this needed be done only once and for all , since the "threshold" intensity is fixed to

zero in this case.
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Appendix B: Real-time phase calculation

To utili se the real-time phase measuring capabilit y that SPS offers, the generation of phase maps must be

accelerated by saving as many processor operations as possible. Particularly the arctangent calls, usually

one for each pixel, lead to a great computational burden that is unnecessary when the input "sine" and

"cosine" terms have a reasonably narrow range of discrete values.

Given the expression

ϕ πO

I I

I I I
mod2 3

2
1 1

0 1 1

=
−

− −
−

−
arctan , (B.1)

the atan2 call , and the division, can be circumvented by generating a 2-D array from all possible values

of numerator and denominator and assigning the corresponding ϕO (converted to a discrete grey value) to

each grid point, as shown in Fig. B.1. Also, the construction of MI is indicated; it can be seen that it is

simply the length of the phasor composed by the sine and cosine terms.

  
         

                                   (2I0–I-1–I1 )
 – 510                                0                                510

∝ = − + − −− −M I I I I II 3 21 1
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    – 255

j
O

I I

I I I
=

−
− −
−

−
arctan 3

2
1 1

0 1 1

Fig. B.1: Calculation of ϕO and MI for 3-sample phase shifting formula with α=120°.

For 8-bit digitisation of the In, the size of the array thus defined (1021�511 points) is still manageable

with a formula involving terms from 2 or 3 intensity samples. It is well known that for α=90° and (3.16)

or (3.19), only 511�511 points are necessary. However, Fig. B.1 shows that also (3.17) can be

implemented by a LUT without exaggerated expense. It is unnecessary to use the factor of v3 for the

arrangement of grid points; instead it can be integrated in the LUT. Fig. B.2 presents the central portion of

the LUT, where the anisotropy is visualised by reduction of the grey scale to 4 bits.

Fig. B.2: Anisotropy of LUT for (3.17) due to horizontal stretching and inclusion of �3 from the sine term.
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The stretching in the horizontal direction is clearly discernible; it accounts for the maximal "stroke" of the

cosine term being twice that of the sine term.

Depending on the number of involved intensity samples and their coeff icients, the byte arrays needed for

the LUT may nevertheless get larger; for instance, a LUT for (3.56) would need 511�1021 entries. In that

case, the coeff icient of 2 for both intensity samples in the numerator thins out the grid of possible values

and space can be saved. However, the very same formula in the representation of (3.57) requires a

1531�1531-point LUT, and for (3.58), 2041�1021 possible values must be accounted for. This shows

that a careful choice of the formula can be useful in practice.

Non-integer coeff icients in the numerator and/or denominator can only be implemented if a suitable factor

can be found that converts all the coeff icients for the respective expression into integers, i.e. if the

coeff icients are rational numbers. As seen above, a common factor of v3 constitutes no problem in (3.17)

or (3.58); however, if we had, say, v3 and 3 as coeff icients in the sine or cosine term, we would have to

use a rational integer approximation of their values, for instance 7 and 12; this would allow to put up a

LUT, but remains a complicated procedure. Hence, while it is possible to accelerate phase calculation by

LUTs on more occasions than one might think, the appeal of simplicity gets lost in some cases.
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Appendix C: Derivation of intensity-correcting formulae

To include the influence of the speckle intensity, we can rewrite (3.68) as

I x y t O x y R O x y R x y t x yn k n l i k n l i k n l O k n l n k n l( , , ) ( , ) ( , ) ( ( , , ) ( , ))+ + + + += + + ⋅ +2 cos ϕ α , (C.1)

where R is assumed constant, Oi(xk+n,yl)+R=Ib and 2 O x y Ri k n l( , )+ =MI ; we drop the spatial

dependencies for convenience of notation. With Dn ¬ In–On, we can write

,
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where the quantities of interest are a1 and a2, since they contain ϕO. Setting n ∈{ -1, 0, 1}, thus assuming

phase steps of (–α, 0, α), the linear equation system is given by
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which we abbreviate by Pa = D. As long as O-1,O0,O1≠0 and 0≠α≠180°, P is regular and

rank(P)=rank(P, D)=3 is valid; hence we can solve the equation system by inverting: a=P-1D. This can be

carried out by Cramer's rule [Bro87, p. 159]. With the abbreviations
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we have
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from which we get a0, a1, a2 by

a a a0
0

1
1

2
2= = =

det( )

det( )
,

det( )

det( )
,

det( )

det( )
.

P
P

P
P

P
P (C.6)

For the quotient a2/a1 = tan ϕO , we obtain
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which is (6.4).
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Appendix D: Alternative error-compensating formulae

In Chapter 3.2.2, we have restricted ourselves to a maximum of four intensity samples in the phase

reconstruction formulae. If we do allow the inclusion of a fifth sample, we obtain one more degree of

freedom to customise the compensation of errors. In the context of spatial phase shifting, an interesting

solution has been presented in [Küch91, Küch97]. The derivation is based on the realisation that is it

possible to find three phase-shifting angles, or signal frequencies, for which the phase is determined

without error when five intensity samples are available. With one of them fixed at α=90°/sample, the

other two can be arranged symmetrically with respect to the nominal phase shift. In [Küch91], a formula

is described which works correctly at α=30, 90, and 150°/sample, and with littl e error in between. When

the intensity samples are weighted according to

ϕ πO

I I I I

I I I I I
 mod 2

3

4
0 1 3 4

0 1 2 3 4

=
− + − +

− − + − −
arctan

( )
, (D.1)

this formula is produced. The corresponding amplitude and phase spectra are as shown in Fig. D.1; note

that the frequency is now labelled νxy, since the formula works diagonally, as detailed below.
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Fig. D.1: Filter spectrum for 5-step-30/90/150° phase-sampling formula (D.1); left: amplitudes, right: phases.

It can be seen that the phases are always in quadrature, which follows from the fact that the formula has a

Hermitian arrangement of sample weights. The amplitudes are equal not at one, but at three points in the

frequency spectrum between 0<νxy<νN=2ν0. The convolution, or more precisely, correlation kernels Sxy(n)

and Cxy(n) – subscript xy denoting the 2D arrangement – for the spatial implementation of the sampling

functions are shown in Fig. D.2; to make Cxy(n) symmetrical while maintaining integer coeff icients, it is

necessary to expand (D.1) by a factor of two.
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Fig. D.2: Spatial weighting of the intensity samples for the application of formula (D.1) in spatial phase shifting;

the numbers on the pixels now indicate relative weights, and the phase calculation refers to the central

pixel. Although the method was developed for high-precision classical interferometry, the outline of a

speckle is still i ncluded in the drawing, to compare with Fig. 6.11.
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The sampling window thus defined offers excellent phase-shift error suppression while sacrificing only

littl e spatial resolution; it has been pointed out in [Küch91] that the slant of the carrier fringes saves a

factor of v2 in this respect.

It is also possible to make all three points of zero error coincide at α=90°/sample, which was already

remarked in [Küch91] and later derived independently by [M�o95, Schmi95a]; in this case the phase

calculation is very stable around α=90° but does not reach zero error again when α≠90°. The

corresponding sampling formula reads

ϕ πO

I I I I

I I I I I
 mod 2

4

2 6 2
0 1 3 4

0 1 2 3 4
=

− + − +
− − + − −

arctan
( )

,
(D.2)

and the corresponding filter spectrum is shown in Fig. D.3.
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Fig. D.3: Filter spectrum for 5-step-90° phase-sampling formula (D.2); left: amplitudes, right: phases.

As familiar from the discussion of symmetrical formulae in 3.2.2.4, the phase spectrum is the same as

above; the amplitudes are very similar over a broad range of νxy , which assures low errors even for large

phase-shift miscalibration. A possible implementation of (D.2) is presented in Fig. D.4.
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Fig. D.4: Spatial weighting of the intensity samples for the application of formula (D.2) in spatial phase shifting;

the numbers on the pixels indicate relative weights, and the phase calculation refers to the central pixel.

To address the interesting question how these formulae will perform in speckle interferometry, we

consider again the experimentally obtained distributions of bsc(νx ,νy) in the frequency plane. With the

same input interferogram as was already used in 6.3, we obtain the results shown in Fig. D.5.
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Fig. D.5: bsc(νx ,νy) for (D.1) (left) and (D.2) (right). Black lines: frequency co-ordinates leading to correct phase

calculation, bsc(νx ,νy)=�45°; white outlines: areas of -10°�δϕ�10°.

As to be seen, both formulae are capable of calculating ϕO with pδϕp�10° in a very wide range of (νx ,νy);

(D.1) exhibits a slightly worse phase calculation at very high spatial frequencies, so that we can expect to

find small performance differences in phase measurements. When the interferograms already used for 6.3-

6.5 were re-evaluated with the formulae presented here, the resulting σd(Nx) were as graphed in Fig. D.6.
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Fig. D.6: σd from ESPI displacement measurements as a function of Nx , obtained with (D.1) (white fill ed symbols)

and (D.1) (black symbols). Input interferograms were from the same tilt series as in 6.3.

The plots show that the performance of (D.1) and (D.2) is indeed very similar*; by comparison with the

results in terms of σd in 6.3-6.5, it can be seen that they are also well suited for phase evaluation in SPS

and yield a performance similar to that obtained by (6.16) and its intensity-correcting version, and by the

FTM. However a correction for speckle intensity cannot readily be incorporated in these formulae.

Moreover, a careful comparison of σd at higher Nx with that in previous results shows that now the spatial

extent of the phase-sampling window contributes significantly to the smoothing of phase maps. In this

                                                

* The same applies to formulae with zero error for α=45/90/135° and α=60/90/120°, which were tested as well .
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respect, the schemes developed in 6.3 may be somewhat more suitable to preserve spatial resolution. The

relative pixel weights for (6.11) are visualised in Fig. D.7; it can be seen that the target pixel, in the centre

of the cross shape, contributes the largest part to phase calculation.
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Fig. D.7: Relative pixel weights for spatial intensity sampling by (6.11).

When the sampling pixel cluster is enlarged to enable the application of (6.16), we get the weighting

windows depicted in Fig. D.8.
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Fig. D.8: Relative pixel weights for spatial intensity sampling by (6.16).

Also in this case, the intensity sample from the target pixel enters the phase calculation with the greatest

weight; however, for Cxy(n) some more remote pixels must be included, fortunately with small

contributions.

Comparing the sampling windows shown in Fig. D.7 and Fig. D.8 with those from Fig. D.2 and Fig. D.4,

it gets apparent that the 5-sample formulae are associated with significant low-pass filtering of the

resulting phase maps. In particular, the central pixel has zero weight in the implementations of the Sxy(n),

this being a necessity in symmetrical 5-sample formulae.

On the other hand, since spatial resolution is generally a small problem in practical ESPI, the formulae

that have been briefly investigated here should prove useful as well .
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