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1 Introduction

The present era of high techndogy, with its enormous production cgpadties and ever-increasing rate of
invention, has generated a gred need for tods to make new solutions reliable and safe. It is indispensable
to test prototypes experimentaly to find design flaws, improve concepts and increase outputs. In seria
production d delicate and expensive items, it is desirable to dstinguish faulty pieces quickly from good
ones withou subjeding them to excessve stress and passbly destroying them; consequently, these
methods are referred to as non-destructive.

Whil e nondestructive testing (NDT) suppatsindustrial development, it is also suitable to ded with some
consequences of industrialisation, which has given rise to environmental padlution, changing into
destruction in the past few decales. Dueto air pdlution, the decay of historicd buil dings and monuments
has accéerated in a disquieting way since dou the midde of the 20" century. In exad oppdsite to serial
production, the role of NDT in this context isto asdst in valuation d measures to preserve unique works
of art. The Applied Optics workgroup at the Carl von Osgetzky University of Oldenbug has been
working in thisfield for more than two decales.

Interferometry is an elegant way to acaomplish these ntradictory tasks, with the additional benefit of
being non-contading, in contrast to, e.g., strain gauges. The sensitivity of interferometric methods
depends largely on the wavelength o the used radiation; for the opticd wavelength range, the sub-pm
scde is therefore eaily accessble, and with some cae, even the nm scde can be reated. Since the
invention d strong sources of coherent light [Mai6Q], interferometric methods can be cnwveniently
utili sed for a multit ude of measuring problems.

However, with the alvent of masers and lasers, the so-cdl ed spedkle dfed, known sincethe 19" century,
becane very important. As oppased to classcd interferometry with pdished perts like lenses and mirrors,
opticdly smoath surfaces are generaly rare; they seldom occur in industrial processes, and almost never
in studies of historicd objeds. The wavefront coming badk from a scatering objed has a randam
intensity and phase structure, the spedkle pattern; therefore, a general approac to interferometry requires
comparing such awavefront with itself.

This was initially dore by hdographic interferometry, where a hologram of the objed provides the
reference. By viewing the obed through the hologram, a red-time interference of the reference and the
dightly different momentary wavefront is observed. Depending on whether the wavefronts are locdly in
phase or out of phase, the objed appeas covered by a pattern of bright and dark fringes that can easily be
interpreted as iso-lines of equal objed deformation. Thanks to the high spatial resolution o holographic
silver halide anulsions, these fringes are very clea for the most part and very small spedles are
allowable.

A significant disadvantage of hoographic interferometry is the necessty of relatively long exposure
times, typicdly abou a seand therefore grea stability, most probably in a laboratory, is required, o
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pulse lasers must be used. Also, the wet processng of the holographic plate takes sme time. Therefore, it
isdifficult to carry out in-situ measurements, or quick serial testing, with hdographic interferometry.

Moreover, it has been redised qute ealy [But71, Enn97 that holographic resolution is superfluous in
many applicaions and that useful displacanent information can also be obtained from a much coarser
spedle pattern. This enables the use of two-dimensional soli d-state light detedor arrays with a relatively
poa resolution, bu high sengitivity and short expasure times in the ms range, and eledronic image
processng. This was the invention d TV holography or eledronic spedkle pattern interferometry (ESR)
that has evolved into a very powerful diagnastic methodin the 1970s. The disadvantage of high spedkle
noise in the fringe patterns is more than ouweighed by the mohility and red-time caability. Moreover,
ESH is more eavironmentally friendy sinceno chemicd wasteis produced.

When computer techndogy gathered speed in the 19805, ESHA was on extended by digital image
processng methods and cdled dgital spedle pattern interferometry (DSH) but today the term ESRH
includes both analogue and dgital methods, enabling e.g. analysis of microstructure changes and static as
well as periodicd or transient dynamic displacements.

Since the brightness of the (two-beam) interference has a asinusoida profile, it does not reved
information about the sign o the displacement gradient, e.g., an elevation onthe objed gives the same
fringe pattern as a depresson d the same magnitude. To get rid of this ambiguity, a technique cdled
synchronous detedion was adopted from communicaion theory, initialy for interferometry of smocth
surfaces. It relies on retrieving several samples of the interference intensity while the opticd phase
difference between oljed and reference wavefront is being varied stepwise or linealy. With the intensity
being propattional to the asine of the phase difference one can establi sh an equation system into which
the acdua intensity realings are inserted to solve for the phase diff erence unambiguouwsly. This approach
is today known as tempora phase shifting (TPS. It enhances acaracy and opens up a way to largely
automatic data evaluation. In pradice however, the shifts of the reference phase never coincide perfedly
with theory, since time- and spacedependent disturbances, as vibrations of the interferometer,
fluctuations of the medium's opticd properties, or even accasiona rapid movement of the objed itself, are
hard to suppress Hence measurement errors are introduced o the data ae even useless

The time-dependent part of the disturbances can be dficiently minimised when the phase-shifted data ae
recorded simultaneously. There ae severa ways to doso; all of them can be summarised under the term
gpatia phase shifting (SPS. For this approad, the necessary phase-shifted images are generated staticaly
on several image sensors, or on separate or interlocked parts of one sensor; hence the phase shifts are
constant in time. Provided the exposure time is sufficiently short, it thus becomes possble to "freeze” all
motion and oliain clea phase maps even under adverse @ndtions. Spacedependent errors, as generated
by, say, inhamogeneiti es of the medium, canna be suppressed by SPSeither.

As no dynamic phase shifting is invaved, SPSsystems do nd require moving parts and controlli ng
subsystems, which is advantageous in mohile use. Moreover, the built-in cgpability of red-time phase
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retrieval can help to increase the tempora resolution d measurements. The implementation d SPSis by
far easiest with the so-cdled "spatia-carier" approad; in a different terminalogy, this method would be
cdled of-axis image-plane (TV) hoography (cf. [Lei62]). By suitable ajustment of the reference
wavefront, the spedkle interferogram aqquires a "carier” fringe pattern, so that the phase difference
between oljea and reference wave varies linealy in ore spatial diredion. The phase signal is encoded in
dight variations of this carier fringe pattern and the phase-shifted data ae available from a one-
dimensional spatial sequence of sensor pixels.

With this smple method havever, there ae some disadvantages to SPSin spedle interferometry. The
abovementioned equation system for phase remnstruction contains three unknawvns. the badkground
intensity, the interferometric moduation depth, and the phase difference between the interfering
wavefronts. These quantities are asumed constant in solving for the phase difference bu the phase-
shifted intensity data come from — at least three— adjacent sensor elements, this is, different portions of
the objed's gedle field. Therefore the randam spatial variations of intensity and phese that are
charaderistic of (and Utimately make up) a spedle pattern will im pair the phase cdculation becaise the
constancy assumptions are dways more or lessviolated. Hence, the spedkle size must be large enough to
obtain the phase-shifted data (statisticadly) from an area with sufficient spatial coherence, i.e. with
tolerable fluctuations of the interferometric parameters. This entails a lossin spatia resolution d the
measurement, as well as alessemnamic utili sation d the objed light, because the imaging aperture must
be stopped down to oltain larger spedkles.

Due to these "built-in" drawbadks, deformation measurements with SPScan be expeded to yield a
somewhat inferior fringe quality than thase with TPS as long as the latter can operate in a sufficiently
stable environment. Indeed, SPSappeas to be mnsidered as an aternative in spedkle interferometry only
under very unstable @ndtions, and much effort has been spent on wsing TPSeven in such applicaions.
Consequently, TPShas been investigated much more thoroughly than SPS

Spatial-carier SPSset-ups are so easy to construct and use that one can exped them to be rather useful in
pradice However there seamed to be aneed for a degper understanding of why, how, and hav well
spatial phase sampling works in spedle interferometry.

The first aim of the present study is to provide atheoreticd badkground for what one is doing when
extrading phases from a spedle field. While it has been observed before that phase measurements are
easlly made with the SPStedhnique, the spedle asped of the measurement has recaved ony marginal
attention; in faa, littl e material is hitherto avail able that goes beyondthe basic observations already stated
abowe.

A seamndmain ojediveisto settle the question whether the ammmon preference of TPSis justified, and
to seein what situations one @muld pcssbly do withou TPS and still obtain "good' measurements with
SPS In this context, it is also worthwhile to utili se the theoreticd insights for improving the phase
reconstruction by SPS and also to explore the versatility of SPSin pradicd tasks.
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Chapter 2 starts with a detail ed survey of first- and second-order spedkle statistics; but besides compili ng
and grouping today's knowledge of this field, we will keg an eye on the intended application to SPS
where the phase shift takes placein ore spatia diredion, and pu some emphasis on the one-dimensional
intensity and phase gradients. To ill ustrate the theoreticd findings, experimental results from a large-
spedle interferometer are provided.

In Chapter 3, we will review and dscussthe groundvork for ESH and phase shifting, spending some
theoreticd and experimental effort on finding the best way to cdculate spedle phase differences. Then,
since SPSmust rely on simple phase-sampling formulae with 3 a 4 samples, we examine the spedral
charaderistics of such formulaeby Fourier analysis and become a@uainted with a useful generalisation o
their spedral behaviour. In the subsedion on TPS an easy way to determine small spedle sizes is
presented. The remainder of the dhapter is concerned with athorough investigation d the peauli ariti es of
SPSin ESA.

Sinceit isour am to quantify measurement acarrades, we neal to oltain reference data with which we
can compare the experimental results. Chapter 4 is dedicated to this subjed and starts with an overview of
methods that can be used to approximate ided data, panting out their strengths and weaknesses. This
discusson leals to the proposal of a new method which can generate noise-freeimages from a cetain
classof fringe patterns with amost arbitrary amourts of noise, so that a standardised error quantification
isat our disposal.

In Chapter 5, the performance of SPSand TPSis experimentally compared to settle the question how
close the acaracy delivered by SPSmeasurements can get to that of the widespread and well -establi shed
TPSmethod.Various experimental parameters are explored, such as objed/referenceintensity ratio, prese
shift, spedle size/shape and fringe density. The most common interferometer geometries are
implemented for both TPSand SPSto get a "threedimensional” view of the measurement errors. The last
subsedionis dedicated to theisaue of light efficiency that is among the most criticd onesin pradice

Having leant abou the performance of SPSwhen implemented in a "standard" manner, we explore
various ways in Chapter 6 to improve the phase determination by means of SPS Some computational
methods to dminish the influence of spedkle intensity and/or phase fluctuations are discussed; but also a
change in the diredion d the phase shift is siown to be helpful. With the asstance of these
improvements, we make the spedkles as snal as possble withou saaificing acaracy. Learing the
terrain of phase sampling, we dso consider the Fourier transform method as a candidate for a pasteriori
data processng.

The last posshility of error reduction that we study is the merging of informations from orthogonally
polarised spedkle fields produced by ade-pdarising objed, which reduces the influence of noisy pixels.

Finally, the single-frame measurement cgpability of SPSis combined with the temporal phase unwrapping
method to solve two pradicd tasks in ESR: automatic control of data storage in long-term observations
and dsplacanent measurement of discontinuows objeds.



2 Statistical Properties of Speckle Patterns

When a rough oljed is illuminated coherently, e.g. by a laser, the light field scatered badk from it
aquires a randam, grainy structure. The objed can be mnsidered "rough" as on as the surfaceheight
variations are on the scde of the light's wavelength. The irregular light field extends into space and at
eath spatia point we find a mherent superpasition d many scatered elementary waves that all have
randam intensities and pleses. This produces a spedle pattern whose spatial intensity and plhase structure
is randam as well. Spedkle noise is what makes haographic interferometry and ESH measurements
inherently more noisy than those of clasdcd interferometry. But the spedkle dfed is nat restricted to
eledromagnetic radiation; it has aso recaved some dtention in utrasound reseach [Bur78, Wag83,
Hon97.

To get an ideaof the phenomenon, we will consider the properties of spedkle patterns in this chapter.
These ae of course treaded with the todls of statistics, and awedth of knowledge has been colleded since
the first pioneaing studies [All63, Gol65, Low70, McKe74]. We begin with the first-order statistics of
intensity and phase and their gradients, puting some eanphasis onthe 1-D gradients that play an important
role for SPS The gradient statistics provide useful fads for changes of the spedle field over distances
well below the mherence length, o spedle size; to get a description d the field for two pants that are
arbitrarily far apart, we neal the explicit second-order statistics. These ae particularly important for SPS

The discussonis restricted to the so-cdled fully developed spedkle patterns, sincethese ae generated by
the gred majority of objeds that are not opticdly smocth; in fad, the scaterers to produce partialy
devel oped spedkle patterns have to be spedally prepared [Cha79, Tak75, Kad85,Mol90a]; a good general
survey on this topic is [Tak86]. Moreover, we asume the light to be perfedly monochromatic and
poarised. The treament will be valid for freespace propagation (objedive spedles) as well as image
fields (subjedive spedles), provided the objed”s microstructure is not resolved (see2.2.1).

2.1 Experimental set-up

Where gpropriate, we illustrate the findings by experimental results from a large-objedive-spedkle
interferometer with spatial phase measurement that was built as down in Fig. 2.1 [Kun97. Large
subjedive spedklies would be rather dark due to the small aperture needed; and also, since most apertures
are polygons, one would oltain anisotropic spedkles. Of course, it is passble to design subjedive-spedkle
interferometers, and experimental findings for image-plane spedkles produced by week scaterers have
been reported in [Kad85).

The basic set-up is of Madh-Zehnder type. In contrast to [Kol99], our geometry shoud compensate for the
sphericd part of the scatered field, so that we measure its gedkled part only. Thisis indispensable if we
are to find ou something abou phase gradients. The aljustment of the interferometer therefore requires
speda cae, since the arvatures of the wavefronts drodd match exadly when they are brought badk
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together. Ancther interesting posshility of measuring spedkle phases is the Fizeau configuration reported
in[Mol90a,b].

BS Moz L2
M2/SP
e A 3
NDF “— .
MO1 Ny
S
L1 I
M1 1) I
*\* 71T | ccp
P1 BSC ¢ ’

Fig. 2.1: Opticd set-up for generation d large spedles and phase measurement by SPS Abbreviations: BS(C),
beam splitter (cube), NDF, neutral density filter, MO, microscope objedives, L, lenses, M, mirrors, SP,
scatering plate.

The laser bean is divided, expanded by microscope objedives of the same type axd made cnvergent
again by lenses of the same type (f=120mm); we cdl the path with comporent index 1 the reference path.
To adjust the spedkle size, the scatering plate (matt white painted metal) isfit and L2 is did bad or forth
to produce the proper spot diameter (in ou case, =3.1 mm). The neutral density filter is chosen so asto
maximise the moduation d the spedkle interferogram. Here, we set R/{l)=7:6. Then SPis replacal by
M2 and L1 is moved so that P1 and P2 aqquire the same distance from the CCD chip; thus the aurvatures
of the two sphericd waves are matched. By rotating M1, the spatial phase shift can be aljusted with no
de-focusing: Pl is merely shifted sideways as M1 is rotated. The lateral offset between P1 and P2
determines the fringe density on the CCD, i.e., the spatial phase shift. An explanation d the underlying
geometry can be foundin Chapter 3.4.1 Uniting the two fields invalves snding at least one of them
through glass which introduces phericd aberrations. Here, we subjed both waves to almost the same
ateration by using a beam splitter cube with high-planarity surfaces. The dtainable flatness of the
measured wavefront depends on the quality of the opticd comporents; aresidua error of about A/4 was
found,which is tolerable for our range of spedle sizes. Also, any misalignment of the spatial phase shift
will generate an additional phase ramp; but sinceit is linea, we ca easily deted and remove it by the
fitting procedure described in Chapter 4.2

Oncethis cdibration is done, M2 must be replaceal by SP again, and their surfaces sioud be in exadly
the same position. For this purpose, we used an auxili ary adjustment frame that was removed afterwards.
The scattered light isweakly de-pdarised (=1:10); but aswe will see very littl eimpad on the statisticsis
found (for a detalled survey on partially polarised spedle fields, see [Bar85]). The laser bean has a
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Gaussan intensity profile; after expanding, only its innermost part is being transmitted by the lenses, so
that we can approximate the ill uminated scatering spot by a drcle of uniform brightness

Moving the CCD camera avay from BSC offers the alditional passhbility to scan the spedkle field in the
diredion d propagation, which we label z It is then nd necessary to re-align the spatial phase shift: the
ratio of fringe density to spedle size, being the relative resolution d the spedle phase maps, will remain
constant. For a series of images with varying fringe density, the phase maps can most conveniently be
obtained by the Fourier transform method (see Chapter 6.5). A norrinteger number of carier fringes will
leave aresidual global phase ramp after the FT evaluation. This bogus wavefront tilt must be removed if
we ae to measure spedle phases only; and again, the "fringe" fitting algorithm of Chapter 4.2is cgpable
of finding the global ramp that we have to subtrad.

The CCD camera used for this experiment was a SONY XC-75 with interline transfer sensor (dust cover
removed) and aresolution o 736x576 pxels of =(8.5um)? ead; we cdl d, = 8.5 um the pixel size. the
video signal was digitised to 8 hts (256 grey levels) by a Data Trandation DT3852B-2 frame grabber,
driven by the cameras pixel clock.

The example image that we will use to chedk our theoreticd results has an average spedkle size of
ds=26d, and a mean brightness of (I )=56.2 grey levels. It is displayed in Fig. 2.2 together with its
interferogram.

ml;l' | m ’,”ﬂ“ il]lm;l‘ (A
'“Ml' l f!“' l | H'"l{!l
- ' l' I If |1|l§||| '
f” || ”m}lil'll’ll m"' | l ||| ;||'::|/1'

i l“’(\ hml;”p

‘“ | (I} M [{|| f|
““ I

‘ il i “““
l"” ||| {ll e ll‘1|||""l”' ml”lu

Fig. 2.2: Left: sample spedkleimage; right: correspondng interferogram with spatial phase shift.

The interferogram has a carier fringe spadng of =7 d,; on closer scrutiny, ore finds many forks, bath
upward and davnward, in the fringe pattern. These indicate the so-cdled phase singulariti es that we will
discussin detall in 2.2.5 The phase map (Fig. 2.17) was cdculated by the Fourier method, which is why
we onsider 512 pixels here.
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2.2 First-order speckle statistics

To simplify and generalise the treament of first-order spedkle properties, we will first derive ajoint
probability density function containing all the quantities of interest and then elimi nate whatever we want
by integrating it.

2.2.1 Basic probability-density function

A light-scattering rough objed can be regarded as an array of individual, mutualy uncorrelated
microscopic scaterers, ead o which sends an elementary wave into space The aherent superposition o
al these oontributions a a cetain spatia point determines the spedkle intensity and plese & that point.
The treament is aso valid for imaging geometries, provided that several point images of scaterers
overlap at eath pant of the image plane. This condtionis aso referred to as unresolved microstructure.

The dementary waves are most conveniently regarded as vedors A in the ammplex plane, with the
squared moduus |AF correspondng to their intensity | and the agument giving the phase ¢. This
representation is well known and very useful; the complex vedors A are usualy named phesors, or
complex amplitudes. Assumed that

(i) the waves” amplitudes |JA| are independent of their phases,
(ii) the phases are uniformly distributed owver [—mt,1), and
(iii) the number N of scdterersislarge enough (which beginsto hdd from N = 50 or),

the summation d the cntributions may be visualised as a randam walk in the complex plane, puting N
phasors together in the manner of vedor addition. Then we may use the ceitral limit theorem [Pap65,
p. 264 to trea the spedkle pattern formation as an asymptoticdly Gausdan process If we dencte the red
and imaginary parts of the phasors by A, and A; , the two are cdled jointly Gausdan variables [Goo79.
This assumption has been experimentally confirmed in [Mol90b]. As derived in [Pap65, pp.253and 473,
aso the spatial derivatives A, x, Aix, Ary and Ay ,where A x == 0A/0X €etc., are jointly Gausdan with A,
and A . Asumed the standard deviation d A and A is 0, we can establish

IO(Ar,Ai ,Ar’X,Ai’X,Ar‘y,Ai‘y):

1 1 Ar2 Ai2 [ 1 [ A, x2 + A x2 +A y2 + A y2 O (2.1
2 exp 2 E 2 exp ‘ ’ ’ ‘
20°m 20 AC* 1T 2C,

as detail ed in [Och83, Fre95c, Leh9d, with {«) denating the ensemble average; 202 isindeel the arerage
spedle intensity (1) aswill be derived in (2.7). Cy depends on the shape and size of the scatering spot or
aperture. It is essntially the aurvature of the spatial amplitude autocorrelation function at its peék,
0% (Raa*(AX,AY)|axco, ay=0)/d(AX)* = 0*(Raa(AXAY) =0, ay=0)/d(Ay)?, provided the source is yymmetricd.
For circular scatering spats, we get [Fre95c, Leh9g
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Mm20D P
=g (22)

with D being the diameter of the spat, A the wavelength and z the distance between scatering plane and
point of observation. Cy isinversely propartional to the square of the spedkle size and scdes the gradients
A x etc. For our exampleimage, we find Cp=0.152grey level s/dpz.

In order to come from the amplitude description to intensities and phases, we @nvert the variables to
polar co-ordinates:

A =+/I cosp A =+/1sing
A= ocosp=glTsng A= sing +,T cost 29
Af,yzzl—y\/l—cos¢—¢y\/l_sin¢ A-,yzzl—y\/l—sin(p +¢yI cosp
with the Jacobian ||J||=1/8; the procedure is described in more detail in [Och83. We arive &
p(l ,¢,|X,¢X,Iy,¢y):
ool et P o0 29
16C02n2 H 8IC @ex H 26 F

with 0<I <co, —Tt=< ¢ <11, —00 <(l, Py, ly ,¢px) < 00. Any desired marginal or joint probability density function
of the invalved quantities can be foundfrom this expresson. More general cases are of course the two-
dimensional gradients; the mrrespondng functions of |0I| and/or |O¢| are eaily foundfrom (2.4), and
we will also consider them below.

2.2.2 Intensity and phase

Now in afirst step, we integrate over al gradientsto find p(l, ¢), and oliain

ol ¢) eXPE' E (2.5)

we notethat @ doesnot turn upin this equation, which meansthat | and ¢ are statisticaly independent of
ead ather. Therefore, ore can also write p(l, ¢) = p(1) - p(¢), which functions are

I
p(l) = expg-l—ﬁ (1 =0)
(2.6)
IO(¢)=5T (-m<¢ <m).
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So the spedkle intensity exhibits a negative exporentia distribution and the spedkle phases are uniformly
distributed. Furthermore we can state mean values and standard deviations for | (using (2.1) and
UMK "=n! [Goo79) and ¢ :

@2.7)

An intensity distribution like the one predicted here would be very inconvenient for interferometry, since
the most frequent spedle intensity is zero, whence no signal can be obtained. On the other hand, this
fradionis dill very small in relation to the rest of the intensity scde. Moreover, any physicdly existing
detedor has afinite aeg which shifts the maximum of the intensity distribution function the farther away
from zero the more "spedkle aeas" fit into a pixel area[Goo75, p. 54 The resulting function favours
spedkle interferometry; but in any case, a fradion o dark pixels remains that deliver only a week
interference signal upon superpaosition with a reference wave. In many ESH measurements, these low-
resporse pixels are the main arigin of the so-cdl ed "salt-and-pepper” noise in sawtooth images.

As for the phases, it can be eaily understood from the randam-walk model that there is no preferred
phase value in the spedle pattern; therefore the phases are uniformly distributed over their range. It has
been demonstrated that the measured spedkle phase distribution can be helpful in cdibration o phase-
sampling procedures; detail s onthiswill follow in Chapter 3.4.6

The statement that the phase is a"fre€' quantity in ou pdf'sis of course valid for (2.4) as well; therefore
we can integrate ¢ ou, rewrite (2.4) as

(2.8)

1 010 1 J 1k +1y
[ | = expF-— exp- @ex R USRI S
and proced to the gradients.

2.2.3 Gradients in one dimension

In TPS eat pixel areaintegrates over some portion d the spedkle pattern; if there ae intensity and/or
phase deviations in it, the "pixel interferometer” will still function corredly, athough with deaeased
interferometric contrast. In SPShowever, the fluctuations of intensity and phese play a significant role for
the measurement, since in this case we will encourter different mean intensities, moduation contrasts,
and plese off sets for adjacent pixels. As the spatial phase shift takes placein ore spatial diredion, we
start by investigating the gradients I, and ¢« . Nonzero values of these quantities will result in linea
deviations of bias intensity and spedle phase; the latter is equivaent to a linea phase-shift
miscdibration. The 1-D treament acourts for al diredions of phase shift, as we ae freeto choocse the
co-ordinates in the most convenient way.
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2.2.3.1 Intensity gradients
From (2.8) we get [Ebe79by; Grad4, formula3.329

5 I R

(Iy) = ! ex —0<|, <o (2.9)
0= Tacat) “*H Tacol < |

which functionis cdled Laplagan density. It is a negative exporential function for either sign of I, with a
mean value and standard deviation d

(1x)=0 0, =2Co(l), (2.10)

and hes been experimentally verified in [Ebe79a]. The simil arity between the distributions of the intensity
and its gradient has a simple and astonishing reason that has been foundin [Fre96H]: spedles tend to be
"congruent”, i.e. to have very similar intensity profiles, irrespedive of their brightness Hence bright
spots are ssociated with large intensity gradients, while smaller gradients belong to dm spedkles. The
spedles congruence propagates the negative exporential intensity distribution to the gradients.

This observation implies that we find an interadion d the spedkle intensity and its derivative in the
correspondng pdf. Indeed, the intensity and its gradient are not statisticdly independent since their joint

density
I S | H 1x*
o1 1) = 115 2P 1155 e, P Bicor 1D

foundfrom (2.8) by integration, is nat separable. Thisjoint density functionisplotted in Fig. 2.3,

(1h2V/2rCo-p(l 1)

Fig. 2.3: Pseudo-3D plot of p(l, 1,).
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This graph shows that for small 1, I also tends to be small; indeeal it approadhes 0 as | —0: loci of zero
intensity must at the same time be minima with vanishing intensity gradient (see &so Fig. 2.15. A proof
of this property has been given in [Kow83]. Hence, the aorrelation d | and I, is nealy perfed in regions
of low intensity. To lean how the gradients are distributed onthe rest of the intensity scde, we wnsider
the correlation o | and |ly|. To oktain p(|1x|) and p(l, |I«|), we multiply the right-hand sides of (2.9) and
(2.1 with 2andset 0 < |l4| < o0. Calculating the average of |14|, we now obtain anon-zero value:

{ >=\/Evco<'>=a“x‘- (2.12)

Asauming a uniformly bright circular illumination d the scatering spat, {|lx|)= 1.9X1)/ds . This

I X

demonstrates that it is aimost certain to find substantial intensity variations on neighbou pixels, except
when the intensity itself is very low. To formulate this quantitatively, we cdculate the rrelation
coefficient of | and || [Pap65, p. 21Dto be

|3/2
_<||Ix|>_<|><|lx|>_3\/§\/<§> ~{I2G{l) - 05 2.13)
W e T e

where (11| ):= gﬂl [1|p(1, |1x])dI dly. Thisresult is disadvantageous for spatial phase shifting: it indicaes
asignificant tendency of large intensity gradients, and hence phase arors, in those portions of the spedle
pattern that deliver the best interferometric signal due to their brightness although, as pointed ou in
[Ebe8(], integration ower the pixel areaincreases the probability of finding small gradients.

Having derived p(l, Iy), we can oltain another useful quantity: given a threshold kbrightnessleve I, the
above-level dwell distance d.(lI;) of spedle intensity reveds the spatial extent of structures that are
brighter than I;. To clarify the meaning of d.(l;) and to get an impresson d the intensity fluctuations, we
consider the intensity profile & row 256, i.e. at the verticd centre, of our sample spedle pattern. This
givestheintensity curve I(x,256) plotted in Fig. 2.4, where x isthe @wlumn number.

25
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- > ¢ > [
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28 256 384 X 512

Fig. 2.4: Intensity profile of row 256 d spedle image (Fig. 2.2, left side), namalised by (1).
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We seethat d.(ly) is the distance over which | remains abowe the threshdd I, whichis %t to 1.X1) in this
example. We find three dove-threshod events and hence obtain three different measurements of
d+(1.5(I)). But instead of colleding events, it makes of course more sense to aim analyticdly for an
average of the aowve-level distance (d.)(ly), and fortunately its theoreticd derivationis avail able.

The number of events per length urit that the signal crosss I, the so-cdled level-crossng density, can be
cdculated by means of along-known formula by Rice, as detail ed in [Ebe79b,Bar80]:

(p(1y)) = Jllxlptl \/7‘/_ <—t 125;/_ <—t EL H (2.14)

(see &so Appendix A), where we have used (2.2) and (2.43 to relate the expresson to the spedkle size ds
produced by a drcular scatering spat; an example for a square spat is given in [Bah8(. The average
number of level crossngs per speckle size dsisdepicted in Fig. 2.5, and revedsthat {1)/2 is being crossed
amost once per spedkle size (for pixel-integrated spedkleit shoud, and daes, contrad abou (I) [Bar88)).

1
Sm //\
=/
=l AN
¥ .
\\
N
~__
\\\
0
0 1 2 3 4 1,) 5

Fig. 2.5: Expeded nunber (N (l;)) per spedle size ds of crosdngs of intensity level I, as a function d normalised
threshdd intensity I,/{I). This curve follows smply from setting ds=1 in (2.14).

Being aware, however, that (2.14) acounts for both pasitive and regative aossngs, we conclude that 1(x)
goes beyond a below (1)/2 every other speckle size. Now we can answer the question ower what distance
| remains above/below a cetain I, by evaluating the expressons for the average @ove- and below-level
dwell distances[Bar801],

[)dl 1- dl
[0 [0 g

— — - [ .
<d+>('r)‘;<p(.) 122f\/7 E<p('t)> 122f EK_H (@19

which are the total fradions of distance that the intensity spends beyondbelow I;, divided by the mean
density of upward/downward level crossngs. Of these latter, ead contributes of course one half to the

" With amisprint in Eq. (16), where & and u must be swapped.
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tota {p(1)). Fig. 2.6 shows the two functionsin unts of ds.

3 ll I | I
\ ) — (A1) ds|
\ [/
) ; — =0/ ]
\ /
y
NS
1 >\\
// \\\
7
!/
0
0 1 2 3 4 | KI)y 5

Fig. 2.6: Average above-level distance (d.) (solid line) and below-level distance {d_) (dashed line) in urits of ds as
afunction d normali sed threshald intensity 1/{1).

The graph for {d.)(l;) affirmsthe visual impresson d a spedle pattern: moderately bright spats (I ; =(1))
have indeed awidth of abou the typicd spedkle size. This coincides nicdy with the experimental findings
in[Mar91]. The very bright parts of the peaks are of course narrower. For | =0, we have {d.)(0)— oo: the
intensity in the spedkle pattern is aimost always greaer than, and certainly never crosss, zero. On the
other hand, (d_)(l;) shows that very dark structures are redly narrow; but the typicd extent of structures
where the intensity remains below (1) is =1.6ds. For large Iy, we have to go very far dlong x to encourter
abrighter speckle (consider, e.g., the length of the below-threshold events for I, =1.5(1) in Fig. 2.4).

The balanced pant at which {d.)(I)={d_)(I) ocaurs at I/{I)=In 2,and the arerage extension d the bright
and dark structures is then =1.11ds. On hinarising the sample spedkle image & the gpropriate intensity
level and evaluating the length distributions of blad and white line segments, | obtained (d.)(l;) =1.14ds
and (d.)(ly) =1.18ds, which isin reasonable ayreement with the theoreticad value.

The way from the mere arerage descriptions to the pdf's of level-crossng intervals is long, but has been
shown in [You9q; interestingly, it turns out that for scatering spots with step-function edges, the pdf's
oscill ate, but for Gausdan scatering spats the oscill ation is damped out. In short, if | has crossed I and
failsto doso again after one spedle size, it must wait until the next spedle gpeas on the way along x;
in between, the transition is indeed somewhat less probable. Several doulde and triple pe&ks and vall eys
can befoundin Fig. 2.2to make this plausible.

Very recently, oder work about the zero crossng rate of I, [Oht82] has been verified and extended
[Kes98]. An acmurt of this thorough study abou level-crossng densities of A, A, | and ¢, and al their
first and second cerivatives, is definitely beyondthe scope of this chapter; but it will be valuable for a still
degoer understanding of what changes in the field guantities one probably finds on a straight line through
the spedkle pattern.
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We @nclude this subsedion with anather interesting and comparatively easy interpretation d spedle
intensity maps, namely as snoath 2-D surfaces or landscapes. Hence considerations about the laws of
"twinkling" of a sunlit seasurface[Lon6Qq are indeed applicable to the spatial intensity structure of a
spedle pattern. This allows one to establish for the relative numbers of spedle (zero and nonzero)
intensity minima, Npin, maxima, Nmax , and sadde points, N4, respedively [Lon6(Q:

Npmin * Nmax = Neag - (2.16)

More recantly, this has been re-derived with the @mncept of singularities of the normalised vedor field
O1/] 011, in which minima, maxima and saddle paints appea as topdogicd singularities [Fre95l], and the
evolution rule for spedkle fields has been formulated that a new extremum must always appea, or vanish,
together with a saddle paint. It has further been found that Npin:Nmax=3:2, this is, we encourter more
minima than maxima in a specle pattern [Wei82a,b]; the typicd spatial arrangement is that of chains of
aternating minima and saddes in the dark valleys between the bright spots (cf. Fig. 2.2). For a drcular
aperture, the statisticd densiti es of the intensity feaures have been determined by computer simulation as
[Fre95h

(1 yero) 0046/ A

ol in) 0013/Ag

o(1 rex) 0039/ A g (217
p(lgg) 0098/A.

As being the spedkle aeadefined in (2.36), and p(/ro) dencting the density of zero-intensity minima, to
be further investigated in 2.2.5 Thus, the rule (2.16) is confirmed, and in total we have dmost two o
these "criticd points’ of intensity per spedkle aea The density of parameters necessary to describe dl the
feduresin (2.17) isamost 6 times the sampling density required to properly resolve the spedle field; this
means that the feaures canna redly be statisticdly independent and hence must be more or less
correlated [Fre95b, Fre98a] .

It is now interesting to lean at what intensity levels these fedures occur most frequently; in this resped
the values

(1 max) 025 (1)
(1min) DOO7(1) (2.18)
(1gq) D05 (1)

are given in [Fre96h]; the separate dassof zero-intensity minimais here excluded from (ln). The most
frequent peak-intensity level (at the centres of the bright spedles) is =1.8(1), which suppats (2.13:
most of the bright spots gand ou strongly and are necessarily associated with large intensity slopes. This
canadso beseeninFig. 2.4

There ae other structural correlations, nonobvious orders and quesi-lattices [Fre95b, Fred5c, Fred7h,
Fre98a] in spedkle patterns, again too numerous to describe here; but there shoud now be no doulh that a
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significant influence of the varying spedle intensities can be expeded when phase cdculations are
caried ou with neighbouing pixelsasinpu data.

2.2.3.2 Phase gradients
The probability density function d the phase gradient in x-diredionis [Och83

Covi(l)
(2co+(19,2)"%

P(dy) = (2.19)

a bell-shaped function that approadies zero dstinctly more slowly than a Gaussan function d similar
pegk width; this result has been verified experimentaly with the help of a Shadk-Hartmann sensor in
[Voe9l]. Evidently, it has (¢x) =0, urfortunately, gy cannd be determined from (2.19 becaise a
divergent integral appeas in the cdculation o {¢°). Thisis physicdly corred, since the phase gradient
indeed diverges at the phase singularities, noretheless we will need a way to circumvent this problem,
which is siown below.

Thejoint density function d the phase gradient and the intensity is given by

A 0 10 0 ¢20
p(l,¢y) = WGXDH' WHEXIO%‘ ﬁ% (2.20)

and dsplayed graphicdly in Fig. 2.7.
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Fig. 2.7: Pseudo-3D plot of p(l, ¢.).



2.2 First-order spedkle statistics 19

Althouwgh p(I, ¢x) shows ome wincidence of small | with smal ¢, , we dso find a significant
contribution from large | with small ¢, , and vice versa. Note that there is again a speda behaviour for
I|—0: the distribution d ¢y flattens out, which means that very high phese gradients can and do @cur nea
zero-intensity minima. At =0 however, p(l, ¢y)|=o = O: where the wavefield vanishes, there is no phase
either. On switching from ¢y to | ¢«|, we get

2
(9x))= <f§) (2.21)

which amourts to = 110° per spedkle size for a uniformly bright, circular scatering spot. But as in the
case of intensity gradients, it seems worthwhil e to investigate the interrelation o | and ¢«. However, as
stated abowe, r |, 4, canna be cdculated. Therefore, in analogy with [Fre95a,.c], we will make use of a

variable transformationand céculater | 4 , where g is given by

| U

@ = arctanE<| > O<sg@ < (2.22
X

NN

This confines the integration and allows the cdculation d whatever statisticd moment is desired. The
results will reproduce the behaviour of p(l, @) quite well, since the mapping is quasi-linea in the region
of low phase gradients, and substantial compresson takes place only for that (small) fradion d the
spedkle field where the phase gradient is very high. Converting p(¢y) to p(@) [Pap65, p. 126 ore gets

p(e) = cos;. (2.29)

The stetistica quantities required for r | , are

<@<>=E-1 <@<2>=i-2 Op =NTT-3; (2.24)

2 4

for the mrrespondng quantities of |, we can of course refer to (2.7). With ||J]|= (| ¢| )/cos?q, it follows
from (2.20 that

_ 271 0 O
p(l ,gq()—<|>3/2 ncoszqg(exp%ﬂ)coszr&% (229

from which we get (I - ¢«)= (3£ 7){I)/6, andfinally,

@’1 = 229

=-0443.

o <|>

This sgnificant anticorrelation between | and ¢ indeed indicaes that high intensiti es tend to go with low
phase gradients ¢y, and viceversa, as aso depictedin Fig. 2.8,
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The pe&k shows that the aincidenceof low intensity and high phaese gradient ¢, (where @ =172) is nealy
perfed. On the other hand, we dso find a significant probability of @ =0 for low intensities. This
however need na hald for (¢ , and agood ced of the @ntribution a ¢ = 0 comes from the seledion o
the x comporent of (¢ .

p(l,@) /e (1)*72
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Fig. 2.8: Pseudo-3D plot of p(l, @).

Applied to interferometry, this result aleviates the disadvantage that the high value of (|¢x|) seamsto
imply. The highest phase gradients tend to accur in regions of the spedkle pattern that are rather dark and
noise-burdened anyway, whilst in krighter regions it is fortunately more likely to encourter moderate
phase slopes.

To finish, let us chedk our results experimentally. From (2.12), we have (|14|)=4.1 grey levelg/pixdl, and
from (2.21), (| ¢«|)=4.2%pixel. Approximating |l«| by the dsolute intensity differences and | ¢«| by the
absolute phase differences from pixel to pixel, ou test image yields (|lx|)= 3.9 grey levels/pixel and
(| ¢«|)=4.2%pixel. The spatial distribution d the gradients, appropriately converted to grey-scae images,
can be seen in Fig. 2.9 the |lx] map has been rightened upfor display, and the largest |¢.| detedable
and shown is 1807pixel.

The bladc spats in the brightest regions of |ly| are due to camera saturation by very bright spedles. This
partly explains why the experimental {|l«|) is ©mewhat too low: |l4| is grealy underestimated where the
deteded spedkle intensity is clipped. Moreover, a minor impad of the nonperfed poarisation canna be
excluded. The scde chosen for | ¢y| does nat at al acaourt for the divergence nea the singularities; but
dueto the very small areafradion d these aiticd regions, the measured (| ¢«|) remains corred. From the
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positive crrelation d | and I and the anticorrelation d | and ¢y, an anticorrelation d Iy and ¢ results
that isimpressvely ill ustrated by the figure: the worm-like structures of high | ¢«| circumscribe the bright
spedkles (being regions of high |ly|) amost exadly. The white boxes assst in finding examples. The
pinched maximaof | ¢y| indicae phase singularities (seeFig. 2.17).

Fig. 2.9: Mapsof |1,| (Ieft) and | ¢« (right). White boxes all ow comparison d details.

2.2.4 Gradients in two dimensions

The previous treament, although particularly relevant for our subjed of spatial phase measurement, does
not provide a omplete insight into the structure of spedle intensity and plase. Therefore we consider
also the two-dimensional gradients,

o1 = /1,2 +1,/2 with 6 = arctan
06| = /9,2 + ¢y with 6y = arctan

The pdf'sinterms of |Ol|, |J¢| are eaily obtained from functionsinvalving Iy, ly, @x, ¢y by integrating

over 6 andlor 6, onthe drclesgiven by ,/1,% + 1,2 andior /¢, + % , which gives fadors of 2 Ol|

and 2t O¢|, respedively. This changes (2.8) to

[ ||
<
[ [

Ix

(2.27)

S
s

X

B 0 | DIDI||D¢| 0 o2E. B o ¢|2E

from which we can derive
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1 g gl OoPPE
p(1,[01]) = 775 exp5- 7Haic, P sic b (2.29)

plotted in Fig. 2.10
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Fig. 2.10: Pseudo-3D plot of p(l, [OI]).

On comparison with Fig. 2.3, a qualitative difference between p(l, I« ) and p(l, |O1|) is evident. While in
bath functions no intensity gradients at all occur for zero intensity, thereis a significant probability of 1,=0
for | >0; this is because (2.11) seleds the x comporent only. In contrast, the probability for |0I[=0
vanishes for the whde intensity scde: p(l, |01|)]oi=0 = 0. Thisrefleds the fad that the — certainly existent
— intensity extrema and saddle points constitute aset of measure zero, as explained in [Kin77, p.8§). The
same observation hdds when we switch from p(|1x|) to p(|d1|); by integration o (2.29, we then get
[Gra94,formula3.471.12

il o d

0 | | o
p('D"):2c0<|>K0§Jm§ with (01 =—=/Col1). (2.30)

which has been derived in [Kow83] and [Fre95c] before. Ky here denotes the modified Bessel function o
seaond knd and zero order. In contrast to (2.9), and by the @ove agument, the probability for vanishing

intensity gradient is zero: p(|0I|)[o=0= 0. For a uniformly bright, circular scatering spot, we get
(101)= 3.0K!1 ) per speckle size. It isthe relatively sharp oulines of the bright spedkles that give rise to
so large agradient; in addition, it changes its sgn at least once over the distance of a spedkle spat.
Therefore it is very difficult to pu a simple aumption abou the @urse of the intensity into a phase
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cdculation formula. However, it has been shown that the integration ower the pixels finite gertures can
aleviate the problem somewhat [Bar91].

Considering the two-dimensional phase gradients, we derive from (2.28

1o 0 0
p(',|D¢|)=%exp§L<:—>§%exp§— 2, E, (231)

whichisplotted in Fig. 2.11
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Fig. 2.11: Pseudo-3D plot of p(l, [O¢]).

In this figure, the stationary paints of the phase (extrema and saddle paints, for which |J¢@|= 0) lie onthe
| axis and the zero-intensity minima on the |d¢| axis. They are both existent but of measure zero, again
in quelitative diff erenceto the one-dimensional case. The phase gradient alone obeys

IO(|D¢|):4<|>C0 o¢ with <|D¢|>:l &
2o+ >|D¢|2)2 J2 ﬁ (2:32)

which results in (|O¢|) = 172° mr spedkle size. But like Fig. 2.8 Fig. 2.11 clealy reveds
anticorrelation between intensity and phase gradient, so that we can expea |O¢| to fall below {|O¢|) in
the brighter regions of the field. Thisis demonstrated in [Shva95]: bright spedles tend to lie dose to, bu
not exadly over, the stationary points of phase; the phase is foundto vary by typicdly 45-90° owr the
half width of aspedle, with (|0}, = 49%ds at the intensity maxima. Most of the stationary points of
phase ae saddes; phase extrema @ntribute only = 1/15. This distinct qualitative diff erence between
phase andintensity field will be briefly interpreted in 2.2.5
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Moreover, the study [Shva95] shows that the major part of the anticorrelation is due to higher intensities
and lower phase gradients. This is mainly due to the relative aeas. while intensity minima mincide
amost perfedly with very high phase gradients, they contribute only a very small areafradion to the
spedlefield.

As above, we @nclude the mnsiderations by confronting them with the experimenta findings. Inserting
our Cyg and (I) into (2.30 and (2.32, we now find {|0I|)=6.5grey levels/pixel and {|0¢|)=6.6%pixel.
From the sample image we get measurements of (|0I|)=6.1 grey levels/pixdl and {|0¢|)=6.37pixel,
where the gradients are goproximated by the square roat of horizontal plus verticd squared pixel-to-pixel-
differences. This time, the slight systematic underestimations mentioned above dfed both results, since
they are increased by the inclusion d two dmensions; but still the agreement is good. The spatial
distribution d the 2-D gradients, converted in the same way as abowve for Fig. 2.9, is siown in Fig. 2.12
this may be cmpared with the results of a cmmputer simulation presented in [Fre96k] .

Fig. 2.12 Mapsof |0I| (left) and |O0¢| (right). White boxes enclose same portionsasin Fig. 2.9.

Not surprisingly, these maps round df the findings above and show that within the bright spedles, the
phase field is co-operative for SPS thanks to moderate gradients; on crossng the dark spedle
"boundaries’ however, the phase may leg considerably, and mostly does, acording to [Fre98l], the
phase difference from one intensity maximum to the next assumes values from +12 to +3172 with
almost constant probability, andis amost never zero.

Eventuall y it may be worth nding that

() o) 2 = (icosl),

(o)~ (og]) ~m VP

which is exadly what shoud result from a projedion.

-m<f<m, (233
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Apart from statisticad considerations, a very simple eplanation o the phenomenon is the phasor
interpretation suggested in [Bur98a, Leh9g and shownin Fig. 2.13

A A Ay (AX, Ay)
A,(AX, Ay) As(X2,Y2) +—
As(X2,Y2) — /A 1(X1,Y1) /Al(xl,)h)
/ -

$2(X2,Y2) /I A P2(X2,Y-2) / A
1(X1,Y1) 1(X1,y1)

Fig. 2.13: Variation d a spedle phasor A; due to a perturbation A, for different amplitudes |Ai(x1y1)l. ¢1(X1y1)
and Ay(Ax, Ay) are the samein bah cases.

If a phasor Ai(X,y1) undergoes a dnange A, (Ax, Ay) while we move from (X y1) to (X2)y2) in the spedkle
field, then the phase dhange will grealy depend onthe length of Ai(x1yi1). In the sketch to the left, the
phase ¢ changes considerably on the way from (x1y1) to (X2Y2), since |A1(xyy1)| is relatively small. The
drawing to the right demonstrates the higher stability of brighter regions against changes: when |A1(X2.y2) |
islarge, the same A, (Ax, Ay) leadsto adistinctly smaller phase dhange. Thisis valid for al arguments of
A, except =¢,. Unfortunately, this model is not suitable to uncerstand the crrelation d intensity and
intensity gradients. To conclude with, Fig. 2.14gives an impresson d the relation between intensities and
phases in the sample spedlefield.

Fig. 2.14: Intensity (blad/white) and phase (coloured isolines with 45 spadng) of a spedlefield.
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It can clealy be seen that the phase dhanges relatively slowly in the brighter regions, while in the dark
valleys the isophese lines tend to get very dense. Many phase saddles are discernible by their X-shaped
isophese lines, and some few closed phese wntours indicae the presence of phase extrema. Moreover, the
1-D phase gradient mostly changes little & we aoss bright spedles, which we will use for developing
suitable phase cdculation methods in Chapter 3.2.2.4 The most problematic feaures are the junctions of
the isophese lines that are associated with rapid changes in the diredion d the 2-D phase gradient. These
points, forming a network conneded by isophese lines, are the so-cdled phase singularities to which we
will dedicae the foll owing subsedion.

2.2.5 Zero-intensity minima

In the darkest regions of a spedkle pattern, we find a dassof very interesting feaures: the zero-intensity
minima, also known as phase singulariti es, discontinuities, screw dislocaions, or vortices. They have first
recaved attention as pealliarities in sound fields [Nye74, Ber78], and later as obstades for phase
conjugation d spedkle fields [Bar81, Bar83, Fri9g]; anather example ae the phase singulariti es that have
been foundin the phase distribution d the global tides [Nye88]. Indedad, singularities occur in aimost any
complex-structured two- or threedimensional wave field. The field amplitude is exadly zero at these
particular paints, or lines in space and the consequences for the phase ae remarkable. Indedd, all of the
terms given abowe refer to a property of the phase: it becomes undefined where there is no amplitude, and
on crossng the minimum, the phase jumps by 1t (as also knowvn from simpler interference eperiments).
This can be understoodwith the help of Fig. 2.15that gives an overview of the wavefield's quantities. The
drawings are generally applicable to first-order singularities (see below), since A(x,y) and Ai(x,y) are
smoath functions and can always be gproximated by tangential planes in a small region (dx,dy) of the
wave field.

X

Fig. 2.15: Left: pseudo-3D plot of A(X,y) and Ai(x, y) in the immediate vicinity of a phase singularity. For visual
clarity of the intersedion, eat tangential plane is plotted half as mesh grid and helf as @lid grey area
Right: correspondng intensity (top) and plese, coded as grey values (bottom).
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Aswe can seefrom (2.1), A(x,y) and Ai(x, y) are statisticadly independent; hence they will i ndependently
fluctuate with amean value of zero in the spedle field. The zero crossngs of either function form closed
contours in the (X, y)-plane; and frequently these lines intersed. In Fig. 2.15 they do so at a right angle,
which is a spedal case. On moving along the A/(x,y)=0 line in pasitive y-diredion, the phase of the
wavefield remains constant until Ai(x, y) vanishes at the singularity and then flips sgn, which resultsin a
phase jump o Tt The new phase value dso remains constant as we move avay from the minimum. Since
A(x,y) and A(x,y) can be gproximated by planes, the intensity has a quadratic minimum. It has been
shown in [Fre96h] that these "intensity wells' are very narrow: their typicd diameter is only 1/7 that of
the spedkles. The moddl singularity shown here is, by definition, paitive and o order +1: during a
counterclockwise loop aroundit, the phase increases by +1- 21t This nonvanishing rotation d the phase
has led to the term "vortices". If the zero pants of A/(x,y) and A(x,y) are sadde points or extrema, a
dislocaion d order N, i.e. with a phase progresson d N- 21t per revolution, can occur [Fre99a,b]; but
these ae very unstable [Fre00] and d no pradicd importancein spedkle patterns.

The @rrespondcence of phase dislocaions and vanishing field amplitude is indicaed in Fig. 2.16 Since
the spedkle field is not completely poarised, the dislocaions do nd always coincide with pants of zero
spekle intensity, bu they cetainly appea a the zeros of interferometric moduation, as the
interferometric phase measurement extrads that state of polarisation from the spedkle image which is co-
poarised with the reference wave. For this reason, Fig. 2.16 uses the map of moduation rather than the
spedle intensities as the underlying field. As to be seen by comparison with Fig. 2.2, it resembles the
total spedkle intensity closely but not exadly. The signs of the dislocaions are not indicaed here; seeFig.
2.17for this purpose.

Fig. 2.16: Distribution d phase dislocdions (white dats) vs. interferometric moduation o Fig. 2.2 right side.

Phase dislocations of order +1 are topdogicd fedures in the spedle field [Nye74]; they always appea
and vanish in pairs of oppasite sign [Fre93]. In analogy to the intensity map, ore can aso define a
normalised vedor field (¢ /|0¢| to find phese dislocaions as well as phase minima, maxima and saddle
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points, which appea as "phase topdogicd singularities’ in the vedor field [Fre95d|. Thislealsto the rule
that a new pair of phase dislocaions must simultaneously creae two new phase saddes. Therefore, phase
saddes are d least as dense in spedle phase maps as phase singularities, leaving littl e spacefor phase
extrema.

Moreover, Fig. 2.14 demonstrates that most of the isophase lines are open contours that conred the
singularities; but phase extrema ae of course foundin closed isophese lines only. Thisisin qudlitative
difference to intensity fields, where dl iso-intensity lines are dosed contours and extrema ae very
frequent. To compare with (2.17), we list the statisticd densities of criticd points of the phase that have
been found ly computer simulationin [Fre98a]:

P(dgig) 00460/ Ag
P(Pmin) D002V A
P(Prre) D005/ A’
P(Peng) 00492/ A

(2.39)

from which we seethat the phase field shows less $ructure, or spatia variation, than the intensity field.
The feaure density is abou half that of the intensity map; but still the required parameter density is sme
three times greder than the density of the required sampling points, which indicaes that there ae
significant correlations aso between the aiticd paints of the phase. However there is no plysicd reason
why phase minima shoud be more likely than maxima; with a larger ensemble, their densities shoud be
equal [Fre98q].

The cae depicted in Fig. 2.15 i.e. right-angle intersedions of the zero-crosgng lines of A(X,y) and
Ai(X,y), corresponds to the spedal case of a so-cdled isotropic phase dislocaion. This means that the
isophese lines radiate outward from such feaures with constant angular density, i.e. ona drcular path
aroundthe dislocation, the phase slope is constant. For this case, an interesting analogy arises: the phase
field generated by a distribution d isotropic singularities is smilar to an eledric field generated by a set
of paint charges, and completely free of extrema, i.e. closed field lines. Thisis, however, na the generic
case: the zero-crosang lines of Ai(X,y) and Ai(x, y) frequently intersed at angles diff erent from 90°, which
concentrates isophese lines within the aate angles that they enclose, and thins them out in the obtuse
angles; see[Fre93, Fre94a, Fre97a] and Fig. 2.17. In the limit, when the zero lines of Ac(X,y) and A(X,Y)
coincide (this is, the "screw" dislocation becomes an "edge" dislocation, see below), we have @nstant
phase of the wave field oneither side, and a phase jump of 1T on crossng them. To give an impresson o
how the structure of Ai(X,y) and Ai(X, y) generates phase singularities, Fig. 2.17 presents the phases of our
sample field together with the zero lines of its red and imaginary parts (that, of course, depend onthe
momentary interferometric phase; but it is easy to see that the lines intersedion pants will remain
unaffeded by whatever phase shift).
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Fig. 2.17: Left: phase distribution o sample spedkle field; [Tt represented as grey shades from blad to white.
Right: zero crosdngs of A/(X,y), blad lines, and d Ai(x, y), white lines. Red dds: positive, green dds:
negative singulariti es.

The figure shows that the zero-crossngs of Ai(x, y) and Ai(X, y) intersed at all angles between 0 and 90°
[Fre94a], and also explains easily why dislocdions aways appea and vanish pairwise: it isimpossble for
the dosed zero contours of A(X, y) and Ai(X, y) to generate only one new intersedion. This is also the
resson why they alternate in sign — also cdled topdogicd charge — on ths along any zero-crossng
contour [Shva94, Fre94b, Fred5d. When the zero-crossngs of Ac(x, y) and Ai(x, y) touch, they do so
tangentially and generate azero-amplitude line, or "edge" dislocaion [Nye74, Bas95], of infinitesmal
length in the x-y plane, that instantly splits up into the two "screw" dislocaions as the zero crossngs of
A(x, y) and Ai(X, y) intersed, i.e. as we shift our x-y-plane in z diredion and the wavefield evolves in
space The trgjedories of the singularities can be thought of as dark lines that piercethe x-y-plane and are
orientated mostly in z diredion [Ber78]. Their shape in spacehas been referred to as "snake-like" [Bar83];
the process of pair credion a annihilation therefore mrresponds to turning points of these trajedories
where the zcomporent of their diredion vedor changes sgn.

The @ovementioned z-diredion scan o the spedkle field gives us the oppatunity to trad the loci of the
dislocaions diceby sliceto seewhether a pair of dislocations that has appeaed together will also vanish
together, and hav one shoud imagine the zero-intensity tragjedories in space Fig. 2.18 presents the zero-
intensity linesin the very centre of the sample phase field; the clouring helps to distinguish them. If they
end, it means that they have moved ou of the sample volume or that their trading is discontinued for
clarity of the representation.
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X/mm

Fig. 2.18: Shape of some seleded zero-intensity trajedories in a sample volume of (2 mm)*x<100 cm; left:
projedion onthe y-z plane; right: projedion onthe x—z plane. Positional data from 26 x—y dices with
increasing spadng: 2 cm at the bottom, 6 cm at the top, and spline interpdated in between.

We will consider the meaning of these plots first by following the largest of the yell ow structures: at z=73

cm, a pair of disocations is creaed. Initialy, they quickly move avay from ead aher until (z>80 cm)

they approach again; finaly they read and vanish at z=94 cm. This is an example of a processin which
the same dislocaions appea and dsappea together. All such events foundare mloured yellow; and as to
be seen, they are rather rare. The general case is the one we find when following the dark green line: it
turns over at z=116 cm, which means that the dislocation tradked thus far reads with ancther one, from
the pair that appeaed at z=106 cm. This in turn means that the latter pair does not vanish together: its
remaining dislocation propagates without further interadion unil z=160 cm. Hence, every time azero

carier bends bad and forth again, a new pair of dislocaions appeas, and the short-lived dislocaion d

that pair changes its partner on vanishing. Extreme examples of this are the orange and the red lines, with

a total of 5 pair readions ead. Of course, al the zero trgedories could be ewvisaged as sparate

sequences of lines, with alternately positive and regative z-comporents in their diredion vedors, that are

conreded at their turning points with resped to z; but their spatial structure is pointed ou more dealy
when we tred them as entities.

The trgedories withou turning points correspond to singularities that persist at least throughou the
sample volume, i.e. 1 m of depth. Since the spedkle length |5 acording to (2.49 is =19 cm for z=60 cm
and =135 cm for z=160 cm, this poverty of events does nat contradict the as<ertion that the zero lines
"longitudinal size of nonruniformity" is of the order of the spedkle length [Bar83]. It is possble that some
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of the noninterading lines belong together and read at lower or higher z (espedaly the lines in magenta
and green are very close & z=160cm); but this canna be safely concluded from the avail able data.

The white line in the figure shows that the diredion vedors of the zero trajedories can sometimes have a
very small z-comporent, which means that its associated dislocations will move very fast in the x-y plane
as we diange z. This raises the question whether an urambiguous assgnment of zero-intensity lines to
cetain phese dislocdions as in Fig. 2.18is posgble & al; but since the zero contours of Ac(x,y) and
Ai(x,y) (cf. Fig. 2.17) evolve oontinuowsly with z, there is enough information abou the singularities to
always know which is which. It can, havever, na be excluded that some minor zero-intensity loops
between the recrded slices have gone unrecognised: the detedion d new pairs of dislocaions depends
onthe (3-D) resolution d the measurement.

Concerning the interadion and couging of dislocaion pairs, there ae caes of dislocations appeaing and
vanishing together (the dosed yellow loops within the measurement volume), bu generaly, the zero-
intensity trajecories will turn over more than twice and this results in swinging of relatively short-lived
dislocaions from and to dfferent read¢ion partners. No statement can be made @ou the open zero-
intensity lines: some might be large dosed loops, some might extend to infinity.

From the statistics derived so far, also the average dislocaion density {pgg) in the spedle field may be
found [Ber78, Bar81]: setting A, =A; = 0 in (2.1), ore can come to an expresson that courts the
dislocaions per area We remark here that the derivationis based onthe same formalism as that of (2.14);
the detail s are given in Appendix A. For a drcular scaterer, we get [Bar83, Fre93, Fred44]

D 046
(Pgs) = g%ﬁg 0 A (2.39

S

where we have assumed circular spedkles with an area

T Az z
AS:ZQ'ZZE 1117 D ; (2.36)

(pdis) is again the quantity that we have encourtered as p(/zxo) in (2.17), and as p(¢qig) in (2.34), andin
perfed agreanent with the experimental values quaed there. In [Fred3] the ad hac argument is given that
aspedkle field contains equal amourts of bright and dark "grains® and that, therefore, {pgig) shoud equal
1/(2A¢) independent of the scaterer's ape. The dlight deviations in (2.35, and aso for other scaterer
shapes, are atributed to a somewhat inappropriate definition d the spedkle aeg this leads to the
suggestion d referring the spedkle aeato {pgg) asan urambiguous quantity.

The monstancy of {pgg) aso delivers an argument to suppat the eovementioned assumption abou the
"longitudinal size of non-uniformity" of the zero-intensity trajectories. The speckle aeadepends on Z, as
does their length. Since {p4¢) is constant, the number of dislocaions per unit areashoud fall with a 1/7
dependence but this is aso the spedkle "frequency” in z diredion. Hence, ore can think of ead bright
spedkle a being acaompanied by azero line that "ends’ (i.e. turns over) when the spedkle "ends".
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The z-diredion scan d the expanding wavefield enables us to verify (2.35 by determining the number of
dislocaions, Ngig , in every recorded slice of 512 pixels: with

<Pdis|> O A, DA ’ (2.37)

sensor

we can use (2.36) to establish

Acnsor 046 1

T A/ NdiSI , (238)

the spedkle sizes thus obtained are plotted vs. zin Fig. 2.19
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Fig. 2.19: Number of didocaionsin sample aea and correspondng spedle sizesfor 60cm < z< 160cm.

The expeded dependenceis confirmed by the measurement; not surprisingly, the determination d ds from
Ngis gets more and more predse & the latter rises. For this to function, the spedkle field must of course be
well resolved by the canera. The fitted straight line dmost passes through the origin even though no dita
are available for z<60 cm. When comparing the ds thus obtained with those from an evauation d the
spedle fields autocorrelations, the values coincide within +5%. Since the number of spedles on the
sensor is relatively small, the autocorrelation method is applied to a small ensemble, which daes nat
match the spirit of the goproach and explains the deviations. Apparently, the method d determining the
spekle size from the dislocaion density works quite well when the spedles are large. Other
experimental results, confirming the linea dependenceof pgg and D, are given in [Bar83].
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2.3 Second-order speckle statistics

In SPS andin TPSwith urresolved spedles, it occurs that the distances over which the spatial structure
of the spedkle field changes are not much larger — or even very much smaller — than the pixel size. Then
one nedls to know the spatial relation d spedkle intensity and plese between two pants P1=(x, y1) and
Po=(X2, ¥2) in the spedkle field, p(l1, 12, @1, ¢2), or smplifications thereof. We will proceeal from the most
general concept, the spatial autocorrelation d intensity and plese, to the somewhat more complicated
topic of therelation ketween intensity and plese.

2.3.1 Intensity autocorrelation

Probably the most popuar and indeed very useful secondorder quantity is the concept of the mean
spedle size in terms of intensity. We start with the autocorrelation d the cmplex amplitude,

Raa® (X1,Y1,X2,Y2) = <A(x1,y1)A* (X21YZ)> : (2.39)

which is also referred to as mutual intensity of the spedkle field [Goo75, p. 3. For our purpases, it may
suffice to remember that this function is esentially the Fourier transform of the intensity distribution
within the scatering spot or the gerture shape, depending on whether objedive or subjedive spedles are
concerned. For the latter case however, the treament is corred only if the imaging aperture contains a
large number of spedkles. Then the gerture may be thought of as ancther rough surface whaose shape
plays the same role for the formation d subjedive spedkles as does the scatering spat in the cae of
objedive spedckles.

The mutual intensity is usually normali sed to yield the complex coherencefador

Raa* (X1, Y1, %2, Y2)
Raa* (X1, Y1, X0, Y1) Rap + (X2, Y2, X2, Y2)

HUA(XL, Y1, %2, Y2) = ] (2.40)

which is unity for x;=x, and y;=Yy, and decgs as the points move avay from ead ather; when it beaomes
zero, the points are said to be one spatial correlation length or spedle size gart.

It can be shown [Go075, pp. 3639] that the intensity autocorrelation R(x1, Y1, X2, Y2) iSgiven by
—/1\2 2
Ry (A, 2y) = (1) L+ |ua(ax,ay) E (241)

with Ax = x—x; and Ay = y>—y;. That is, the shape of the pa curve determines that of atypicd spedle aea
or correlation cdl, in the spedlefield. If the scatterer or aperture is auniformly bright circle, we get

23¢(a)
a

_ - _ D [ 2 2
/JA(Ax,Ay)— with a—nAZ AXS +Ay“© (2.42)

J; denating the first-kind Besl function d first order. This can very easily be generali sed to the dlipticd
apertures that are dso used in the experimental work. For circular apertures, ua is the well-known Airy
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function, which demonstrates that the spedkle shape is closdly related to the gerture’s point spread
function. It assumesitsfirst zero at

Az
[ A2 2 -
Ax© +Ay“ 0122 ds, (2.43)

which gives the mean spedle size. The shape of R(Ax, Ay) is givenin Fig. 2.20 If we write the intensity
corrdation as R, (X1, Y1, X2, Y2)=C1(X1,y1) 1(X2,y2)), we can use the independence of P; and P, at ua=0to
decompose it into {I(x,y1) Y{I(%,y2))=(I)? while for pua=1 we have P;=P, and ohain {I(xs,y1)
I(x1,y2))=2{1 Y? ={I ?). The "bias correlation" refleds the fad that the intensity is never negative, in
contrast to the phase and its autocorrelation.

2

R, (A, Ay )2

1.5
1 A N
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Ax)? +(ay)” —
(ax)2 +(ay) T

Fig. 2.20: Spedle intensity autocorrelation function for a drcular scatering spot with uriform brightness

This definition is merely statisticd and daes not imply anything abou the true distribution d shapes and
sizes of bright or dark regions. However, it has recantly been found that the well-known and poven
notion d "spedle size" is corred aso with resped to the individual size of the bright spots [Fre96h].
Even the intensity profil es of individual spedles have been foundto follow the @murse of R (Ax, Ay) quite
well [FreQ6b, Fre98a], which means that there is only a very small region d quasi-constant intensity
within a bright spedle; the greaer the pea intensity, the greaer will be the intensity gradient within the
spekle aea

The derivation d (2.41) is based on a two-dimensional treament of the Kirchhdf-Fresnel diffradion
integral. It is posgble to extend the cdculation to find the threedimensiona autocorrelation [Leu9(q. The
general result is rather difficult an expresson; however considering the z diredion orly, ore finds for a

circular aperture [Leh9§
(A2) = T EpniAzg with a-8)\i
HA\BH =5 a2 ®PH o - D2
(2.44)
z
and |uA(Az)|: sinc%%a

where sinc(X)=sin(TX)/(TX). Thefirst zero o this expresson, indcéing the length of a @rrelationcdl, isat
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Az:8}\§§g =lg; (249

see &so [Li 92,Y0s93]. The quadratic relationship of |5 and z generates more and more dongated spedkles
—the asped ratio is propational to z—that are "cigars' only nea the scaterer or aperture, and "worms" in
most pradicd cases (cf. [Wei77]): for zD=1.5,lJdsisarealy =10.

2.3.2 Phase autocorrelation

It is clea that the phase structure of spedkle patterns affeds gedle interferometry as sgnificantly as does
the intensity structure. Again, espedally for SPSit is useful to find ou how the phase of a spedkle pattern
will fluctuate statisticdly, and ower what distances we may exped to find some phase rrelation.
Unfortunately, ¢ is accessble moduo 2t only, which is difficult to trea mathematicdly: if we map the
phases onto [—TL 1), two padnts with ¢1(x1,y1)= —Tt+€ and @(Xz,y2)=Te=¢ would yield Ag = ¢p—@1 = 2T-2¢,
while the adual differenceisonly 2¢.

Consequently, there ae two ways to ded with ¢. The first one regards ¢ as a antinuouws function withou
—Tt— Tt jumps, which can lead to problems with path-dependence in complicated phase distributions with
dislocaions, such as gedle phase fields. The other confines ¢ to [—Tt 1), which makes it a unique but
discontinuous (wrapped) function.

For continuous phases, the phase autocorrelation function has been cdculated long ago [Mid6Q as that of
aband-limited randam signal, an example of which is gedle naise (as for the band limitation, see3.3.7).
If the primary phaseinterval is st to [t 1), the function reads

R¢,c(l~lA) =Tt arcs n(|UA|) —arcs n2(|HA|) + % nz > (2.46)

with ua , the cmplex degree of coherence to be cdculated from the scaterer's charaderistics; the
subscript ¢ stands for "continuows'. A primary phase interval of [0, 2m) would correspond to a "bias
phase" of Ttand merely add a cnstant of 12 to the function.

For discontinuows phases, the deaease in correlation hes particular properties becaise of the —tt—Tt
transitions of the phase taken as red 2rtjumps; this function hes been established only recently [Fre96a]
andreas

0 2nC
1 . . 12 Relu
Rp.d (a)= P ET acs n(Re(/JA)) +arcs nz(Re(UA)) 5 > #E, (2.47)
n=1 n E
where the subscript d denotes the discontinuots interpretation. Both of the functions are evaluated for n=1

to 100,with ua acording to (2.42), and shown in Fig. 2.21 The scding of the ordinate refleds the fad
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that the phase variancein the spedkle pattern is zero for |ua|= 1, and 12/3 for |ual= 0, which corresponds to
auniform distribution.

1
Ry(Ax,Ay)/ T3

0.8 / e \
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Fig. 2.21: Spedle phase autocorrelation function for a drcular scatering spot with unform brightness
solid line: Ry, brokenline: Ry .

Since Ry depends on L, as does R, its correlation length is exadly the same & for the intensity. The
gualitative difference of the functions is due to the permissble ranges of phase differences between
neighbouing paints, which are (—t, 1) for Ry, and (-2, 2m) for Ryq. Hence, Ry q deceys very quickly
initially and even changes to anticorrelation after its first zero, which corresponds to an average phase
change greaer than +T1t for more detail s, see[Fre96a].

To clarify the interpretation d ¢, we @mnsider Fig. 2.22 giving an example of the two methods applied to
the familiar sample phase distribution, dsplayed in the middle of the top row. Of particular interest in this
context are the so-cdled "branch cuts' [Fri92], the transitions from bladk to white where ¢ crosses 1t
These jumps are related to the discontinuols interpretation o ¢ ; it is hard to imagine a ontinuows
representation. The outer images display the locd phase @rrelation for Ax= 10pixels; to the left,
continuous phases are asumed, and to the right, the discontinuity of ¢ shows up dstinctly wherever the
diredion vedor of abranch cut has a non-zero y-comporent. In al correlation maps, white wrresponds to
complete wrrelation (no phase difference between (x; ,y) and (%2 ,y)), medium grey to zero correlation
(phese difference of +m), and Hadk to complete anticorrelation (phase difference of =+2m).
Remembering that the field's phase jumps by Ttwhile we ae aossng paints or lines where it vanishes, the
identificalion d zero correlation with a phase off set of Ttseems quite ressonable.

It can be seen that R;. does not produce anticorrelations; as explained abowe, this is because phase
differences greder/smaller than =1t do nd occur in this interpretation. In the map of Rsg, we do find
phase jumps of +21t nea the branch cuts of the spedcle phase, giving rise to phase anticorrelation.
However, the branch cuts are no ptysicd redity, sincethey can be moved aroundin the image by adding
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global phase shifts, as demonstrated in the bottom row. The phase distribution shown in the centre is
exadly the same & in the top row, only a global phase shift of 1T has been added (or subtraded) moduo
211, as can be seen by the drculation d the branch cut in the bladk circle(s). The remaining correlationis
unatered when we aume @ntinuows Yedle phases — the images in the left column look exadly the
same —, whereas the results from the discontinuous interpretation are rather diff erent from ead ather.
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Fig. 2.22: Interpretations of phase fields leading to different phase arrelations. Centre, spedle phase distribution;
blac circles: sample dislocation. Left, Ry ; bladk circles, example of decorrelation "spat”; right, Ry .
Global phase shift of 1t between top and bdtom row; seetext.

Clealy, it is impaossble for the phase derrelation to depend onthe globa phase off set, which makes
evident that the discontinuows interpretation is not suitable for our purpose. Moreover, when phase
measurement errorsin dsplacenent images are evaluated, we will assume that they are in the range (-1, m)
(seeChapter 4.2). The decorrelation "spat” enclosed by the blad circles in the left column of Fig. 2.22is
an example of how phase singularities contribute some amourt of complete phase decorrelation (cf. Fig.
2.15 even for small Ax and when branch cuts are ignored.

2.3.3 Second-order probability densities

As abowe, it proves easier to start with the amplitudes. The joint probability density of the complex
amplitudes A=A +iAg; and A=Ay +iAy a the paints P, and P, is given by [Goo75, p. 42
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* * |:
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DD-| 1| +| 2| HAAIA Y — LA Aq 2. (2.48)
20 (1—|uA|)

1
o(Arr . A, Pr, Aoy ) =
’ 404712(1 |uA| )

the derivation relies on Aqy, Agi, Ao, Asi being al jointly Gausdan variables, and o is the same quantity as
in(2.1). Using (2.3 again, the mnwversionto | and ¢ yields [Goo75,Vry86, Leh9g

0 0
1 eXp%I1+|2-2\/@|HA|COS(¢ -9 2“/’)%

2 2 :
02421 |ua®) 0(1-lua) -
with |[J]|=1/4 and pua=|ualexp(iy). The phase fador ¢ of the mmplex degree of coherence is

deterministic and related to the phase distribution d the illumination and the scaterer's maaoscopic
geometry and symmetry; in genera, it represents the nonspedkled part of the wavefront. As we ae

p(11,12.01.02) = (2.49)

considering a system that is ymmetricd abou the opticd axis, we can set (/=0; to preserve generality
however, we will continue including ¢, as it might play arole in ather geometries. When |ua| vanishes,
(2.49 can be decompased into p(l1, ¢1) - p(l2, ¢2), refleding the statistica independence of the functions.
As abowve, we will now derive some joint probabilit y densities from this general expresson.

Since the derivation d the presented expressons relies on jointly Gausdan variables, the extension to
higher ordersisin principle straightforward; the third-order pdf p(ly, 12, I3, ¢ 1, ¢ 2, ¢ 3) has been cdculated
in [Ran9]], also by starting with the complex amplit udes.

2.3.3.1 Intensity statistics

In afirst step, we will put the phases aside by eliminating ¢, and ¢, and oliain [Goo75

D

I +15 Dz,/ 415 |uA|D

A W a T (N )a ) =%

where o — nd to be confused with ou intensities — is the modified Bessal function d first kind and zero
order. The murse of (2.50 is nat too complicated, as Fig. 2.23ll ustrates for |, fixed to some abitrary
value. This plot arealy provides a mmplete interpretation o (2.50), asit is ymmetricd in I, and .

The limiting case of |ua|=1 is not displayed becaise it corresponds to (X1,y1)=(X2,y2) and yields
P 1,12)] yai=1= P(I2) - &(12,11). For the other extreme, p(l1,12)|4=0 = P(11)P(I2), with ead of them asin (2.6).

Hence the distribution d 1, is initialy free ad assumes the well-known exporential form; as | ual
increases, it isgradually being forced to centre on 1;.
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Fig. 2.23: Pseudo-3D plot of p(l4,15).

To find ou the influence of afixed I;, we write down the pdf of 1, condtioned onl,, whichis

0, 0 O 0
o{1l12) = pllnly) 1 oo g |1+|225052\/E|u§| al o5
o) a-luaP) T f-kal)g B0 sl

As to be seen, the ouding between |, and |; depends on |ua| and I;. To understand the role of 1, we
visualise three caes with |u4|=0.1, 0.6,and 0.95 respedively.
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l

Fig. 2.24: Pseudo-3D plots of p(l|l1) for {I)=1 and | ua|=0.1 (I&ft), 0.6(centre), and 0.95(right).

While it is nat surprising that |, almost remains a negative exporential when || is snall, we find an
interesting behaviour for intermediate values of |ua|. When |1 is gnal, the distribution o 1 is only
dightly atered, which means that the dark portions of the spedkle field are narrow structures. their
influence does not read very far. Then, at large |1, the maximal probability of I, reluctantly moves away
from zero, bu remains quite low. This means that bright spats do cause their surroundngs to get brighter,
but that the latter will nornethelessbe considerably darker than the bright spots themselves, in agreament
with the positive correlation d the intensity and its gradient that we foundin 2.2.3.1 The last example
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with | ua|=0.95 suppats this further: while p(l2]l1) has its maximum amost at |; when Iy is low, this
maximum is shifted towards lower values for high I;; for instance, at 1,=3, the most probable value of I, is

=2.7. This imbalance of properties of "dark” and "bright" structures is the reason why we can instantly
tell aspedkleimage from itsinverted counterpart.

It isclea that |, also exerts a cetain influence on mean value and standard deviations of |, as compared to
the "fre€' values givenin (2.7). Also these cdculations have been caried ou [Don79, and we have

<|2>||1:<|>(1‘|HA2|) +|HA2|D|1

U|22‘|1 =(l >2(1‘|/1A2|)2 +|/1A2|2<| >(1—|IJA2|) 0, (2.52)

where we have written down the variance for convenience of natation. It is easy to seethat we obtain the
"free' values again for |us|=0. With growing |ual, the couding of {l,) to |1 gets gronger and reades
unity when (x3,y1) and (xp,y2) coincide. For the variance we find the strongest influence of 1, at

|ual =0.71; of course the variance eventually drops to zero when | 4|=1. The functions are shown in Fig.
2.25
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Fig. 2.25: Pseudo-3D plots of {I,)|1; (Ieft) and o,|l1 (right), namalised by {I).

For {I»)|l1, the dowve interpretation d (2.52 suffices to understand the graph: the doser (xp,y2) is to
(Xwy1) (i.e the larger |ual) , the more ae the intensities likely to be equal. When looking at o 1|11
however, we seethat the standard deviation gets larger than the freevalue o ,|l110,=0=¢I) when I is

large and | 4| takes onintermediate values. This again shows the tendency for rapid intensity fluctuations

espedadly in the brighter regions of the spedkle pattern. As dhown in [Bar87], this remains valid for
aperture-integrated spedkle patterns as well .
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2.3.3.2 Phase statistics

To okan p(¢1,¢2), we have to integrate (2.49 over 1; and I,, which is rather complicated, bu has
fortunately been taken care of before [Mid60,Goo75; theresult is

—_ 2 _
D(¢11¢2)=%(1-B2) 3/ZEBarcsin[HB7—2T+w/1—[32§, (253

where [B=|ualcos(¢1—¢.+) and we ded with ¢ as above. To look at the quantity of interest, namely the
phase & (x2,y2) in relation to that at (xg,y1), we can content ourselves with fixing ¢, to some abitrary
value and varying ¢, from —tto 1t For convenience, we introduce the relative phase variable 9:=¢1- ¢+
and consider p(¢), which yields one plot for al ¢;. Repeding the procedure with swapped angles ¢; and
¢ would tead us nathing new, as Bis ymmetricd in ¢; and ¢, . The resulting probability distribution o

\

9 vs. |ual is downin Fig. 2.26
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Fig. 2.26: Pseudo-3D plot of p(9) for 0<|pua|<1.

For high values of ||, ¢ and ¢, are indeed close together; as abowve, the cae |4|=1 correspondsto a d
function because of ¢y, -1=¢1, and is nat plotted. As we recele from (x1,y1), |1al deaeases and the
likely phase differences read ou, urtil we have auniform distribution at | t4|=0. This constant value &
| ual=0 has mistakenly been given as 1/(2m) [Mid60,Goo79; but as we have fixed ¢; to some value, we
seeonly one of the two angular variables svee its range in Fig. 2.26 therefore the value producing the
corred normalisationis 1/(41?), which results immediately from (2.53 when =0.

The condtional pdf for the phasesis smply
_pleno) 1 |HA|
p(¢21¢1) = olp) - on ( ) @Barcsn[ﬂg +1- @ (2.59)

this is the function that we find in [Mid60, Goo79 and that looks qualitatively like in Fig. 2.26 When
<0, thewhdefunctionisjust shifted by talong the ais of ¢, becaise of —cos(¢)=cos(¢p+T1).
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For mean value and variance of ¢, condtioned on¢,, we have [Don79

<¢2>I¢1 =¢; B>0

=¢p1+tm <0
|UA|2FI
n2

(2.55)

T . . 1
sz ¢, = 5 narcsm|uA| +arcsm2|uA| —Enz:l

T 0.84
D?(1—|IJA|) ;

the last line gives a useful approximation [Leh98. The mean values instantly get plausible by the
symmetry in Fig. 2.26 we avoid | ua| =0, because then the statement of a mean value will be meaningless
The derivation d 02¢2|¢1 is given in [Don79; we omit the details here and just retain that the phase
offset, ¢1, playsnorole a all. Therefore we make use of ¢ again and dot o, inFig. 2.27.
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Fig. 2.27: Plot of 0, vs. |al.

For |ua|=0, we obtain the "free’ standard deviation d 17+/3, correspondng to a uniform distribution o
¢o; for |ual=1, the infinite sum in (2.55 is T¢/6 [Bro87], and therefore the standard deviation becomes
zero as expeded. It is remarkable how quickly ¢, shakes off the influence of ¢1: for |us|=0.8, we have
dready 0 ¢,|¢1 = 10(2+/3). Thisis the reason why phase-measurement errors due to spedle decorrelation,

i.e. the deaease of | 4| dueto latera displacement or tilt of the objed, increase rapidly initially [Hun95,
Leh97H, while the fringes vanish ony gradualy as |ua| —0. Many examples for this quasi-asymptotic
course can be foundin Chapter 5. Although | 4| refersto ore and the same stationary spedkle field in our
treament thus far, (2.55 turns out to be avery universal description d phase erors due to fading spedle
correlation [Cre85a, Vry86, Own9la, Hun95, Leh974; in fad, once |us| can be derived from the
interferometer geometry, (2.55 applies likewise to image-plane deorrelation (latera objed
displacement) and aperture-plane decorrelation (objed tilt); moreover, it is almost independent of the ratio
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of speckle sizeto pixel size. Hence, Fig. 2.27 gives the expeded standard deviation d the aror in many
ESH phase measurements, where ¢1(Xx,y) istheinitia and ¢,(x,y) the final spedle phase distribution.

2.3.3.3 Interaction of intensities and phases

As drealy pointed ou in [Don79, (2.49 is nat separable into a product of marginal pdf's, which means
that al of the invalved quantities are mutually dependent. Hence we have dropped some information by
eliminating intensities or phases from (2.49. Also, in 2.2 we have foundthat high spedle intensities are
asociated with low phase gradients, and vice versa. Therefore, we will now consider the interadion d
intensities and phases more generaly. This has been dore in [Don79 as well; | list the results for
completeness here and also give asimple qualitative interpretation for 9=t that | think has nat been
mentioned before.

Since we ae aain interested in phese differences between two pants instead of absolute phases, our
relative phase variable 9 will be useful again. Then, we can investigate two general cases. (i), what
influence do I; and 9 have on I,, and (ii) what does ¢ do when we @nstrain I, and I,? The pdf of I,
condtioned onthe other quantitiesis[Don79

3 15~ 2ua|cosd 1715 0
p(12111.81,62) = Pll1.12.41.02) = ! exp- 2= 2Halo0s9 1112 P(3), (2.56)
olndide) “i-laP) 5 Of-la®] B

where we have abreviated

I

0= |HA|COSz9 >
{ >(1'|“A| ) (257)

D(8) = 1+ exp(82)(1+ erfé))_l

In contrast to the cdculations in [Don79, we use || everywhere; since 9 appeas as an argument of a
cosine only, we can constrain 0<9 <t and still explore -1<|ua|cos?<1; thus, we need na ded with the
ambiguity of ua-cos$ aswas dorein [Don79. Unfortunately, it is gill confusing to go through the many
possble ways of plotting (2.56 with various fixed and runnng variables, so that we will resort to simpler
functions. Inded, it turns out that the statisticd quantities

(I2)l11,8 = %(Hm\lz)(s— D(3) +25°)
(2.58)

I
oy, 11,9 = %(1—|HA|2)\/6— (1— 262)D(6) — D?(5) +852
will provide sufficient insight. There ae still three parameters to vary, namely |ua|, ¢, and I;; unlike
[Don79, we do nd use the mmposite parameter ;- cos’9/{1), but only I3, which will alow us a direct
interpretation and to see the dfed of 9 more dealy. We normalise () to unty and investigate
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1,0{0.3, 1, 3},; the correspondng plots are shown in Fig. 2.28 The limit |ual=1 is difficult to tred, but of
course it implies 1,511, 0 ,|11,9=0 and 9=0. Therefore the maximum value of |ua| in the plots is 0.995.

These graphs show all combinations of |ua| and ¢, athough some ae dmost impassble in the underlying
pdf (2.56).
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Fig. 2.28: Pseudo-3D plots of {I:)|11,9 (upper row) and o ,|l1,9 (lower row) for 1,=0.3(I) (l€ft), 1,=(I) (centre),
[,=3.01) (right).

All the functions show a pronourced dependence on 9 that gets dronger as I, increases; the aurves for

9=0 correspondapproximately to those in Fig. 2.25 while for $=172, bah (I,)|l1,9 and g,|I1,9 approach

zero monaonicdly as we increase |Ua)- It is easy to seethat the monaonic deaease sets in at 9=+172,
where &=0 and

<|2>||1ﬂ9:U|2||1,19:<|>(1‘|HA|2)i (2.59)

hence, for a phase difference of >172 between (x1,y1) and (Xz,¥2), I2 isnat only likely to be smaller than I,
but will probably even be smaller than (I). This agrees with what we have found l&fore: given a large
phase difference between two pants, we ae the more cetain to find a very low intensity at one of them
the doser they are together. In particular, for 9=t and |ua|=1, we ae nea a phase singularity, which
interpretationis aso helpful in understanding the asymmetry in the crrespondng plotsin [Don79. Then
of course ahigh value of I isvery rare, bu not completely impossble.
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The second case we will consider is[Don79

D(|1,|2,¢1'¢2)= 1 exp(zcosd)
p(in1o.81)  4am®  1o(2)

with zZ= 2|HA| AELY

(i-lua?)

p(dall1,12.61) =

(2.60)

as already shown in (2.53 and (2.54), ore ould eiminate ¢; simply by multiplying p(¢.|11,12,¢1) with
2m, yielding p(9|14,12). Likein 2.3.3.2 the symmetry in 9 gives immediately

(Bo)l11,12,01 =1 B>0

—g 4 B<O (2.61)
Therefore the variance ajain depends on |ua| only, and we get [Don79
2 n
2 ™ 4 2 (-)
og|ly,lo=—+ U In\2), 2.62

where I,(+) are the modified Bessl functions of first kind and n™ order. It is now instructive to compare
this function with (2.59 for various pedkle intensities. Since the intensities appea together in z, we can
set (1)=I,=1 and vary only I, ; Fig. 2.29 covers the range of O.1<\/E<10. As before, we plot the
standard deviation rather than the variance
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Fig. 2.29: Pseudo-3D plot of g,ll,l, for alarge range of spedkleintensity ratios |/1;.

For large values of l1l», gyll1,l> deaeases rapidly as on as |ua[>0, which means that in the very bright
spedles, the phase indeed shows good constancy. At 111,=(1), the standard deviation is gill everywhere
below the "free' (i.e. uncondtioned) value of Fig. 2.27. As I4l, deaeases, g,|l1,l> grows and eventually
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excedls g, everywhere. Hence, most of the uncondtioned standard deviation is due to thase =63%
(1-1/e) of the spedkle field that are darker than (I). As abowve, the gplicaion d (2.62 to interferometry
with partially decorrelated spedkle fields is possble [Leh970, which immediately shows that phase
measurements from bright spedkles are more reli able than from darker regions of the field. Because of the
low spedkle intensity, the interferometric signal will be weg and susceptible to eledronic noise, to which
also a "decorrelation” parameter can be assgned [Hun97. The remaining interference amplitude will be
further diminished by integration d the rapid spatial phase fluctuations over the pixel area Finaly, the
averaged phases will also strongly fluctuate from pixel to pixel, which makes the phase measurement by
SPS more difficult. The best way to evade such problems would redly be to retrieve dl phase
measurements from bright spedkles; one step in that diredionwill be shown in Chapter 6.6.
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3 Electronic or Digital Speckle Pattern Interferometry

The spedkled wave scatered dff an oljed beas arandam intensity and plese structure that, in itself, will
not reved information abou the objed’s maaoscopic shape or deformation. By superpasition with a
reference wave, it becomes phase sensitive and the intensity moduation d ead spedkle is deterministic.
It obeys the relationship

(X, y)=0(x,y) + R(X,y) + 2/ O(X, Y)R(X, y) cos(¢o (X, ¥) = PR (X, Y)) (3.2)

where | denates the interferogram intensity, O that of the objed wave and R that of the reference wave,
and ¢o and ¢r the respedive phases; x andy are the m-ordinates of the image plane. While bath O and ¢o
fluctuate strongly with x andy, the spatial variations of R and ¢r are generally negligible. For the sake of
readability, we will henceforth amit the spatial dependence of all variables. If two spedkle interferograms
arerecorded, we have

I i:Oi+Ri+2 OiRi Cos(¢0,i _¢R,i)

, (3.2)
I, =0; + R +2,/O R Cos(¢o,f _¢R,f)

with subscript i for the initial and f for the final objed state. On assuming that the intensities do nd
change during the experiment — which is easy to asaure for R but requires the dsence of spedle
deaorrelationfor O —, we can reasonably rewrite this as

|. =0+ R+ 2J/OR cos(¢,)

|, =0+ R+2/ORcos(¢,, +Ad)’ (33)

where we have set ¢r;=0 withou loss of generality, and amitted the "initial" subscript for the spedle
phase. The deterministic phase change A¢ is caused by objed displacements, but includes passble global
fluctuations of ¢rs as well. From (3.3), the difference to classcd interferometry is clea: for diffusely
refleding objeds, no reference surfaceis available, and we nead to compare it with itself. This can be
dore ather by hdography [Har94], where we have true interference of two ojed wavefronts, or by
aqquisition and subtradion d digitised interferogram intensity data [Lgk87, Dov0(. The latter is
commonly cdled dgital or eledronic spedkle pattern interferometry (DSH or ESH), and the digital
difference images are sometimes referred to as soondary interferograms, which is to dstinguish them
from dired, or primary, interferometric images.

Compared to hdographic interferometry, the resolution d the pixel array-based digita method is poa,
but with appropriate magnification d the objed surface still sufficient for many purposes. Among the
advantages of an eledronic system are versatility and very quick carying out of experiments. Fig. 3.1
sketches the basic parts of an ESH set-up.
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Fig. 3.1: Standard ESH set-up.

The objed isilluminated by a wherent wavefront, typicdly an expanded laser beam; its urfaceis imaged
with an oljedive onto an eledronic image onwerter (CCD or, more recently, also CMOS chip) where a
subjedive spedle pattern is observed. The reference wave is re-combined with the scatered olged light
by a beam splitter; it shoud be focused in the goerture plane so that its radius of curvature matches that of
the objed wave, the origin of which may be thought to lie in the centre of the gerture. Otherwise
concentric interference fringes will be generated that deaease the wntrast of the interference signal. The
interferograms are digitised, most conveniently, bu not necessarily, with ore-byte resolution, and stored
in the memory of the cnreded computer for whatever image processng is desired.

The gerture size is usualy chasen to match the spedkle size to the canera’s pixel dimensions [Joh89,
based onthe ad hac consideration that this ensures best spatial resolution and kest fringe visibility. It has
been shown however that resolving the spedlesis naot strictly necessary [Wyk87, Y 0595, Ma&7] and that
even a spedle size of 1/8 pixel is aufficient to oltain a usable signal, which gredly improves light
efficiency [Leh9g. On the other hand, adjusting too large a spedle size results in reduced spatia
resolution, faster speckle dearrelation and waste of light efficiency because of the small aperture.

By appropriate choice of illumination dredion(s) and wavefront form(s), the assembly can be made
sensitive for displacenents normal or parald to the objed’s surface or mixtures thereof. The former is
cdled ou-of-plane set-up, the latter is referred to as in-plane geometry. Examples and sketches of the
diff erent types can be foundin Chapter 5.

The gplicability of ESA ismainly limited by spedkle decorrelation, caused by large objed displacenents
or changes in the objed”s microstructure, which can lead to severe signa degradation. The sensitivity of
the ESH system to these dfeds depends on, e.g., the spedle size and the dimensions of the image field.
Also, for the sewmndary displacement fringes to be well resolved, their width shoudd exceel



3.1 Subtradion-mode ESH 49

some 4 spedkle sizes. This value was given in [Tan68 for haography; in ESA however, the detedor's
pixel sizeplaysarole aswell.

3.1 Subtraction-mode ESPI

On subtradion d the interferograms obtained from the initial and final objed state, we have

I =1, =2JOR(cos(¢ + A¢) — cos(¢o))

= ~aOoRMSinp, + L anEe I (34)

with the seand sine term representing the signal fringe profile and the first sine term the multi plicaive
spedle noise on it. Thus, ore obtains a — sewndary — fringe profile from the subtradion o two
— primary — spedle interferograms. To give these fringes the familiar appeaance of interferometric
fringes on, e.g., a monitor, the negative values in the diff erence image have to be mnverted into pasitive
ones. In DSA, it is easy and customary to use the moduus of the diff erence,

: AP, AP
sinbo +7§5”§A7%’ (35)
averaging over ¢o gives amean fringe intensity of
N e r
_8J/OR| . A¢
-8/ ‘S”QAT% 39

in the so-cdled correlation fringes (note that the fringe envelope is nat cosinusoidal and only serves to

I -1;|=4VOR

visualise the objed changes). If an initial spedkle interferogram is gored and the diff erence between it and
the aurrent one is viewed, ore gets darknesswhere the optica phase is the same in bah the images (i.e.
the opticd path has changed by an integer multi ple of the wavelength) and krightnesswhere the diff erence
is maximum (i.e. the path has changed by an odd multiple of haf the wavelength). Thus the digital
secndary interferograms are formed.

Anather way to generate the output isto square the fringe signal, in which case the fringe profile is given by

(1 - |i)2 =160Rsin2§oo +A—2¢§sin2§%l’g 37

and, after averaging over al ¢o,
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<(|f -1,) > 16OR<sm ¢@>sm Q&Q
= 8ORsin? %@ (38

= 40R(1- cos(Ap)).

This methodyields a asine profile and shoud be more suitable to generate wrrelation fringe images as
an inpu for phase-shifting methods; but in the faceof the drawbadks of the wrrelation fringe method
discussed below, the performancegain will be negligible.

The dark regions of the images are noise-freg while the quality of the bright fringes is degraded by
spedle naise: the visihility of the primary interferometric intensity moduation depends on the individual
spedkle brightness and hence fluctuates from point to pant. Moreover, there ae points where, due to
unfavourable ¢o, the subsequent phase thange does nat effed a brightnesschange:

coS(@p) =Cos(¢g +AP) = g = A2¢ (3.9)

which just means that ¢o and ¢o +A¢ are symmetricd abou a— primary, cf. (3.3) —intensity extremum;
and there ae many more points coming close to this condtion. While (3.9) is true for every
interferometric measurement, it is — besides the fluctuations of O(x,y) — the randamness of the ¢o that
prevents a spatially uniform detedion d A¢. It is worth nding that in the averages over ¢o in (3.6) and
(3.8), thislossof signal leadsto the fadors 2/1tand ¥2,respedively.

If, however, another pair of interferograms were avail able with phese off sets of, say, 172 eat, we would have

[l T T
| fp ™ Iim2 =2\/ORECO§§110 +A¢Q +E§— CO%”O +E%

=2JOR(sin(¢o) - sin(g, +A9)) (3.10)
__ 0 JAY YY)
=~/ORpotpa + iy 1
and could average the two secondary interferograms to oltain brighter correlation fringes:
. . A A
=4,/OR sn%%%s n@bo + 7¢§+ coﬁgbo + %%
_ O AP O A
_4ﬁ‘\/§sn§vo rt 4§sn§%a.

The improvement of using (3.11) over (3.5) is demonstrated in Fig. 3.2, where on the left-hand side an

—|.1+ —1.
||f ||| ‘Ifnlz II7'{/2

2

(3.11)

image acording to (3.5 is siown, and onthe right, a superposition acwrding to (3.11); the increase in
brightness $ioud be /2 andisin fad 1.38.In simple words, the disadvantageous points of one image ae
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filled up ly well-moduated data from its +172-complement. But of course, controlled phase shifts are not
automaticdly availablein an ESH system.

Fig. 3.2: Left: ESH correlation fringes from subtradion d two primary spedkle interferograms; right: average of
two correlation fringe images with phese offsets of 12 in the underlying primary interferograms I;, I,
andly, Iy, (seetext).

Although the optimisation d spedle size and fringe contrast has been the subjed of numerous gudies
[Tan68,Sle79, Wyk87], the overly —in the sense of (3.9) — spedkled appeaance of the arrelation fringes
till limit s the acoracy of ESA measurements to abou 1/10 fringe. Moreover, the fringe profile is an
even function d A¢, which makes it impossble to determine the sign of the measured dsplacement
gradient. To get rid of this ambiguity, a-priori information hes to be used: either a pre-set bias fringe
pattern with knowvn phase gradient reveds the relative fringe orders when it changes, or the load is applied
in such away that only one diredion d deformation gradient is possble [Wya82, Mat8§].

A far more degant method to retrieve quantitative displacanent data is to convert the wsine into a
tangent by means of several phase samples and then to extrad the phase mod 2t by a four-quadrant
arctangent. This approach has beaome very popuar under the name of phase sampling — athough it relies
on intensity sampling —, a phase shifting. It eliminates completely the difficulties described by (3.9),
which is an important reason for its superior performance

3.2 Phase-shifting ESPI

The technique of phase sampling or quasi-heterodyning has long been knawvn in information theory and
has first been used in clasgcd interferometry to enhance acaracy [Car66, Bru74, Wyar5]. After the
application d phase shifting to hdographic interferometry [Har82, Cha85], it was the merit of [Nak85,
Cre85b, Ste85, Rob8q to have redised that also adigital spedkle interferogram is an array of independent
"micro-interferometers” that work like dasscd ones — although some of them suffer from too faint an
objed wave.

Hence the phase information d a spedled wave front, athough randam per se, nevertheless responds
deterministicdly to phese changes due to displacanent or deformation d the test objed, and dgita
subtradion d two spedle phase fields yields a difference phase field. The use of phase shifting has
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gredly extended the posshiliti es of ESA and enhanced the atainable acairacy of phase measurements by
a fador of abou 10. Whereas quantitative evaluation d correlation fringes requires sophsticaed
automation algorithms (see Chapter 4.1) or laborious interadive procedures, the phase shifting method
automaticdly yields complete phase maps, so that today the @rrelation fringe methods have mostly been
superseded by phase-shifting ESH.

To introducetemporal phase sampling, or stepping, we establi sh the expresson
L (X y,t) =1, (%y) + M, (X, ) [Bos(@o (X, y,t,) +a, (X, Y,t,)) (3.12)

with

n: number of phase sample

l: measured intensity in the n™ frame

Ip: bias intensity; corresponds to O+R

M: intensity moduation; correspondsto 2- /OR

do: spedle phase

a,: additiona (known) shift of ¢r; generaly, a,=n-a andn 0 {0,..,N-1}.

For now, we restrict ourselves to static phase shifts, since adistinction between temporal and spatia
phase ramping must be made that will be described in 3.3and 3.4.4 respedively. Also, ¢r has been set to
zero as above. All quantities depend onx and y due to the underlying spedle field. The phase shift
an(x,y,tn) may be, but in pradiceseldom is, spatially uniform; various numbers N of phase samples can be
used. Asauming O(x,y) and R(x,y) to remain temporally quasi-stable, we still have to acount for possble
temporal fluctuations of ¢o and ¢r. For conveniencewe put them all into ¢o.

The set of equations given by (3.12 can easily be lineaised; the principle is outlined in Appendix C. It
contains three unknowns, namely I, M;, and ¢o, and hence we nedl at least threelinealy independent
measurements of the I, (N>3), with pairwise different a,, to solve unambiguouwsly for ¢o. This can be
dore by generating an expresson that gives tan(¢o)=sin(¢o)/cos(¢o); i.e. one needs a numerator
propartional to the sine and a denominator propartional to the wsine of ¢o. To adhieve this, the |, are put
together as

N-1
> anly
$o modr = arctanN=0— with %an:%bnzo, (313
> iy
=0

which is valid for any phase-sampling scheme. In all of such formulag the cefficients in numerator and
denominator add upto zero, which cancds the contribution from I,. The simplest expresson to evaluate
the recorded deta relies on equally spacel a, that are uniformly distributed in the interval [0,2r); it iswell
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known sincedecales [Bru74] and hes recently been referred to as DFT (digital Fourier transform) formula
[Sur9g]:

N-1
- > Ixsina, 5
_ n=0 - -
$o mod2rT = arctan NZ_T with ap = nEIW. (3.14)
n COSap,
n=0

With this choice of the a, and b, , numerator/denominator represent the digital implementation d a
Fourier sine/cosine transform [Bra87, p.17, where a(x,y,t) has an angular frequency of 217(N samples)
and the sample interval is in time or spaceunits; the Fourier asped of phase sampling will be treaed in
greder detail in 3.2.2 The signs of numerator and denominator are used to generate a 0-21t arctan, in
contrast to its mathematicd definition wsed in Chapter 2, where it ranges from —1v2 to 172. This is more
convenient when converting the phasesto grey levels.

For 3-step formulae ore can also choose n [{-1, 0, 1}, thus assume phase shifts of {-a, 0, a} and write
down the generall y valid expresson [Cre88, Schwi90, Gre92]

(M-cosa |1_¢-1; 0O 0 l_1-1; O
$o mod27T = arctan[3—; (= arctandan @—D. (3.15)
[l sna 2|0—|_1—|1D U 2 2|O—|_1—|1D )

Much work has been dore to improve these simple gproades to very sophisticated sampling schemes,
frequently at the expense of increased N . These ae often cdled algorithms, although their flow diagrams
are trivial; to dstinguish them from ancther class of phase-retrieval methods that are truly algorithms
[Ger72, FieB2, Rav99], | will avoid the term "algorithm™ henceforth. Today, there ae not only tail ored
formulae with excdlent rgedion d various errors [Schwi83, Har87, Lar92b, Sur93, Schwi93, dsro95,
Hib95, M1095, Schmi95a, dGro97, Hib97, Kiich97, Ser97b, Sto97, Zha99], bu aso, the properties of
phase-shifting formulae ae by now so well understood [Fre90a, Lar92a, Rat95, Sur96, Phi97, Sur97b,
Sur98c, Dor99] that for many purposes phase-extradion schemes can be tail ored to adapt to the particular
task. Good measurements read an acairacy of abou A/100[Schwi83,Har87].

But the basic goproadhes with N=3 to 5 have survived in ESH because superb theoreticd acaracy would
remain theoreticd where speckle noise and cecorrelation set the limits. Also, since ESH is obviously nat
concerned with predsion surfaces, the requirements are often lower.

Moreover, asmall N helpsto determine phases very quickly: sincethe most time-consuming step in phase
cdculation is the actangent operation, it is advantageous to map al possble values of numerator and
denominator in two-dimensional look-up tables (LUTS).

The size of these LUTs depends on the digital resolution as well as on the respedive number of samples
invalved. In the cae of (3.15 with 8-bit digitisation, the LUT would have 511x1021entries, becaise the
numerator can range from —255to 255and the denominator from —510to 510.These integers then serve
as matrix indices to retrieve the assciated phase value, which is often represented by an 8-bit integer as
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well. This has been succesqully applied in pradice (cf. Chapter 6.7) and smplifies the acournt of
[Nak95], where a3-D phase LUT was used. But in general, the LUT approach works only if al the
coefficients a,, b, can be integrated in the LUT; hence the requirement is that the efficients, or at least
their ratios, be expressble by integers; an exampleis given in Appendix B.

For all these pradicd reasons, we will restrict ourselves to standard three or four-sample formulaein this
work. From (3.14), we get the widespread four-step formulafor a=90°,

Is—11
mod 27T = arctan———
$o modzm o- 1> (316
and the three step formulafor a=120°,
lo—1q
d2m=arctanv3_———,
Po modam=ardten35 " T, (317)

where afador of ¥ has been cancdled from the fradion. Note that this formula foll ows li kewise from
(3.15 because, for a=120°,1 .1 21,. If however a=90°,(3.15 deliversthe threestep (nonDFT) formula

l_1-14

$o mod2rr = arctan .
2lg-1-1-11

(3.19)

To simplify (3.18), it isusual to accept a phase off set — which is hardly relevant in classcd, andless ®in
spedkle interferometry — and choose arepresentation in which the efficients are equal for al intensity
samples:

(‘/’o - 45°) mod2rr = arctanlz—1

lo—I1 (319

As mentioned above, the phases obtained from such cdculations can be mapped orto a grey scde of, say,
256 steps. When ¢o crosses a 21t bounaxry, it jumps bad to zero, and so dothe asciated grey levels;
this is why the images thus generated are known as swtocoth images. Since spedle interferometry is
abou comparing phases, we will dedicate the following subsedion to finding out the best way to doso.

3.2.1 Calculation of phase changes in ESPI

There ae several ways to come from interferograms to A¢(x,y), the displacanent phase map which is
represented in a sawtooth image; and since the acaracy in measuring A¢(x,y) is the pivota issie in this
work, it is certainly worthwhil e to investigate the diff erent strategiesin detail .

In what follows, we will refer to the first two approades by the handy terms "phase of difference’ and
"difference of phase"; this nomenclature follows [M0094, ore of the relatively few papers on ESH
concerned with quantitative performance isaues. For the third method, | propase the term "complex
division'. All of the methods have been introduced together with phase-shifting ESH [Nak85, Cre85b,
Ste85]. First of al, the treament concerns temporal phase shifting, i.e. we shift the phase in time,
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an=a(t,), to oktain a temporal sequence of phase-shifted interferograms I1,(X, y, tn); but once we have
clarified the diff erent methods, the transfer to spatial phase shifting is very simple.

3.2.1.1 Phase-of-differences method

The first approach to think of when processng secondary interferograms is to determine their phases as
familiar from primary interferometric fringes. Given a set of images I,; of the initial objed state, ore then
needs only one frame lo,; of the final state, so four or five images are sufficient to use the phase-shifting
methods of (3.16) or (3.17), respedively. As only one frame of the final objed state is invalved, we shall
cdl the I; plus lo,s a "reduced” data set. The phase-shifted secondary correlation fringes I, are formed
acording to

e =(1r = 1n)

= 40R(cos(g, + A9) - cos( + a,))’

=40R(1-cos(2¢, +A¢ +a,))(1-cos(A¢ —a)) ,

(3.20)

where the first cosine describes the spedkle naise in the arrelation fringes and the second cosine is the
envelope, phese shifted by an. This approach df ers one significant advantage: if the objed under test can
initially be observed at rest, the caturing of one interferogram suffices later on to oltain phase-shifted
correlation fringes.

There is anather important consequence of (3.20 that has, as far as | know, na been emphasised before:
the first cosine depends on 2po. Thisis of course owing to the squaring operation —and would na look
very different if we were deding with the moduus —, bu it means that we caana distinguish between
positive and regative spedle intensity changes anymore. Thus, haf the information delivered by the
intensity changes is discarded, with important consequences for the measured A¢. The situation is
represented in Fig. 3.3 the bladk curves sow the result of using squared correlation fringes as in (3.20
for the standard four-sample phase cdculation d (3.16).

To the left, asimulation result is hown: for eat pre-set A¢ , 64 dfferent ¢o, unformly distributed over
[0,2m), were inserted into (3.20 to form the @rrespondng sets of |, where a=90°. These 64 sets of |,
were inserted asthe I, in (3.16) to yield 64 \alues for A¢ , whose arerage gpeas as cdculated A¢ . The
average over al ¢o thus gives the expedation value of the cdculated vs. the true displacanent phase. On
the right, the measured A¢ = A¢(X), i.e. for verticd sawtoath fringes (cf. Fig. 3.4), averaged owver 200
rows and represented as grey values, confirms that indead the extradion d A¢ is amost impaossble dter
the squaring or redificaion process The white airves refer to the diff erence-of-phases method and will

be discussed below in 3.2.1.2
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Fig. 3.3: Left: cdculated A¢ , averaged over ¢o, vs. pre-set Ag, for the methodsto be compared in this sibsedion.
Right: measured profiles of verticd sawtoaoth fringes, averaged over 200rows.

Evidently, the phase-shifting methodis nat diredly applicable to spedle rrelation fringes. It will only
work acceptably if theindividual spedkle phases are suppres=d, i.e. the seandary interferograms must be
smoothed to approximate the csinusoidal envelope of (3.20 as closely as possble. Thisis usualy dore
by alow-passfilter and reduces the spatial resolution.

The left-hand part of Fig. 3.4 shows the fringe profile plotted in Fig. 3.3 on the right: surprisingly, the
image does yield dredion information, although the averaged fringes do nd. The reason is that for
W4< A¢ <3174, the average is adualy made up d intermediate grey values; for the other A¢ , badk and
white occur more frequently. The standard deviation d the diff erence between the cdculated A¢ and the
best fit of a noise-free sawtooth image (cf. Chapter 4), gp¢ , is 62.1°,and the pdf of the cdculated A¢
shows four pronourced maxima, as depicted in the grey-level histogram. All the histograms in this
subsedion have been generated from 5.0 fringes, so that the measured phases ought to be uniformly
distributed. On the right side of Fig. 3.4, the sawtooth image was cdculated from correlation fringes
previously smoathed by a 9x9 averaging filter, which reduces ops to 7.7°. Although this is quite large a
filter, the spedkle structure has not disappeaed; and since the spedra power density of a spedkle pattern
keeps increasing toward the spatial frequency of zero, it is nat passble & all to remove the spedcle noise
in the arrelation fringes by low-passfiltering. Therefore, the measured pheses are still not uniformly
distributed: this effed canna be suppressed either.

o

Fig. 3.4: Results of cdculating A¢ from raw (left) and 9<9 low-passfiltered correlation fringes (right). Inserted
histograms show relative pixel courts of grey levelsfrom O to 255.



3.2 Phase-shifting ESH 57

But remembering that we have initially been enforcing paositive intensity values only to dsplay them
conveniently on a screen, ore might argue that there is no red need to doso. Therefore we have to settle
the question whether a kind d "signed" correlation fringes exists that circumvents the problems
asociated with squaring or redification. If we form fringes acording to

In,s =1 f In,i = Zﬁ(COS((IJO +A¢) _COS(¢O +C¥n)), (3.21)

with the subscript s for "signed"”, al of the information is being preserved. Unfortunately, when we insert
these I,,s into a phase-shifting formulalike (3.13, we caana measure A¢: because of > a,=> b, =0, the
contributions from the first cosine ae cancdled, and what we then measure by phase shifting is just the
spedkle phase. This has been verified experimentaly and demonstrates that redly some information is
ladking from our reduced set of images |, and lgs.

Nonetheless some spedalised methods exist that can determine both A¢ and ¢o, corred for ¢o and thus
generate accetable sawtooth images from unfiltered correlation fringes. In [Kuj89] a so-cdled "spedle
phase @rrelation method' is derived for a=120°that indeed uses I 1,2, and los withou filtering. The
same is dore in [M0094 for a=90° and l;g123, and los . However, nore of these methods can find the
corred specle phase withou help: the eguations involve an arccosine and a square root and have four
solutions, which again refleds the lossof information krought about by the redificaion. This problem is
solved by initially generating a smoothed phase map A¢ i in the usual way (Fig. 3.4, right side), which
serves as a reference that solution for ¢o which brings A¢g —¢o closest to A¢ 5 is Eleded as the @rred
spedkle phase and subtraded. In this way, the phase measurement from raw correlation fringes can be
significantly improved, as snown in Fig. 3.5.

Fig. 3.5: Results of cdculating A¢ with the method d [Kuj89] (left) and [M0094 (right); the underlying sets of
interferograms come from two dff erent experiments with a=120° and 90, respedively.

l1+15 +1
ol c= 1t l2tls

"With amisprint in one of the expressons, which should re -l 4 in the nomenclature used.
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The left image in Fig. 3.5 was cdculated acording to [Kuj89 from a data set with a=120°, which
reduced opy = 62.6° as obtained from raw correlation fringes (image not shown) to gpy = 24.0°.To the
right, the method d [M0094 was applied to the previous data set with a=90° that led to the resultsin Fig.
3.4, and gp¢ dropped to 27.2°.In bah cases, the acatracy is more than doulbed and most of the initial
gpatia resolution is maintained. The price for this is incressed computational effort: a reference phase
map must be generated first, whaose lower resolution may influence the doices for ¢o somewhat, and ore
out of four phase values must be seleded for every pixel. Since generally no ided referenceimage will be
available, the arorsinit will also influencethe doiceof ¢o and propagate into A¢g. Finally, the histogram
distortion can in neither case be removed.

Another method that uses ljo1;, and l;gq ¢ With a=90° has been proposed in [Own88); while it is
obviously nat suitable for highly dynamic phenomena, it does find A¢ unambiguously. The result of this
cadculation can be seen in Fig. 3.6. Both the phase map (gxy = 53.29 and the histogram of the phase
distribution show that this method is rather susceptible to ndse; therefore it has been used in [Own88,
Own91Hh with smocthing the sine and cosine terms before cdculating A¢. The agument of cdculation
spedl that led to the development of this method is nat important anymore; but interestingly, the very
same scheme has meanwhil e been applied in tempora phase unwrapping, again for reasons of, inter alia,
speed [VBru98, \Bru99.

Fig. 3.6: Result of cdculating A¢ with the method d [Own8§.

As these mnsiderations have shown, the use of ESH correlation fringes for phase-shifting purposes is
problematic when we ae ansidering raw, i.e. urfiltered, phase data. Thisis becaise one uses only one set
of phase-shifted data to determine A¢ . Nevertheless this approach may sometimes be a good way to
perform phase measurements when dynamic objeds are studied.

3.2.1.2 Difference-of-phases method

Provided it is possble to recrd two sets of phase-shifted interferograms I,,; and I,,; for bath oljed states,
one can cdculate two spedkle phase maps by, e.g., (3.16):
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I3 (X, y) =15 (%)
Lai (X, Y) =12 (X, Y)

¢o,i (X, y) mod2m = arctan

13 (6 Y) = 115 (X, Y) (322
X, Y) mod2rt = arctan
bo.1 (x3) Lo (6 Y) =121 (X,Y)
and then determine the phase dhange
AP (X,Y) mod2n:(¢o1f (X,y)mod2rr— g i (X,Y) mod2n)mod2n. (3.23

Admittedly, this requires more information than the phase-of-diff erence gproach — 8 images with (3.16),
and 6 with (3.17) —, bu eiminates al the problems brought abou by the ambiguity of intensity
differences. Also, the pixels are truly regarded as independent entiti es, which accounts appropriately for
the spedkle nature of the wavefront to determine. In this case, the phase cdculation reproduces the
expeded fringe profil e rather well, as the white airves in Fig. 3.3 demonstrate. The displayed sawtooth
edges are somewhat blurred by the averaging over the residua spedle noise; but the crrespondng
measured phase map, shown in Fig. 3.7, is of excdlent quality when we @mpare it with the other
unfiltered results obtained so far. In that case, oag = 18.2°without any low-passfiltering. Also, the pdf of
measured pheses is now uniform, which shows that computational biases are negligible for this method.

Fig. 3.7: Result of cdculating A¢ with the diff erence-of-phases method.

This confrontation clealy indicaes that it is necessary to genuinely measure the spedle phases twice to
get the best sawtoath image. While an approximate recovery of information from reduced data sets is
possble, the performance of this approach remains restricted. Therefore, the performance data given in
chapters 5 and 6 are based on sawtoath images from the diff erence-of- phases method without exception.
A pradicd merit of keguing realy the spedkle phase distributions for every recorded oljed state is that
one need na compare dl data to the initial state anymore. In ather words, it beaomes passble to track
phase differences incrementally even if the first and last state show decorrelated spedkle patterns [Fl093.
We will come bad to thisisaue in Chapter 6.7.
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3.2.1.3 Complex-division method

Both of the methods discussed thus far have in common that they require one phase cdculation and ore
subtradion, and dffer in the order of these operations. There ae however aso methods to cdculate ¢o in
only one cmmputation step. They require two complete phase-shifted data sets and combine the steps of
phase cdculation and dfference formation in ore formula. Examples of such cdculations have been
given before [Ste85, Ste90, Fa®3, Hun93, Sal96]; however the somewhat laborious derivation d the
formulae ca be generalised and grealy smplified when treaed by the formalism of complex division
[Bur98h. As mentioned above, the numerator in phase-shifting formulae shoud correspondto the sine
and the denominator to the asine of the phase angle to be found, so that we can switch to complex
notation and write:

0o mod271:arctansm¢o’i :arg(cos¢ i +ising -)':arg( )
O COS¢O1i O, O, ) 4
. 3.24
() mod2n:arctansm¢o’f :arg(cosq’) +ising )':arg(z ) o
o, f cosfo 1 o, f o,f ) f
Now A¢ can be determined acording to
Zs O
A¢ mod2rr=¢o t —¢o, =ag(zs) —agy(z) = ang*ZTEmOdzn’ (3.25)
where
Zf _SNgg,i SNPo, § +C0SPo i COSPo f N Singo, t COSPo i —SiNPp j COSPO 1
4 cos? $o.i +sin? 90, cos? $o.i +sin? 9o, ' (3.26)
Eventually we cmbine these expressonsto get
[(Zs O sin COSpp i —SiNgp i COS
A¢ mod2rm= argDLD: arctan $o.1 0o . do; . bo.f mod2rt, (3.27)
Uz O COSPg i COSPo,  +SiNPg i SINPQ 1

which provides a generaly valid instruction on hev to compose the expressons of phase-shifting
formulae of course, the same result follows from the trigonametric relationship for the difference of
arctangents [Cre94]. Now we can instantly establish ore-step cdculations; for instance, from (3.16),

(Iz¢ =11¢)Ugi = 12) = (g = 15)Uos —12¢)
(lgi = 12)(Mof —log )+ (g —1g)(Iaf —I15)°

A¢ mod2rT = arctan (3.29)

and (3.17) changesto

(s =115 )2lgi =1y —1o) = (g = 14)2los =115 —12¢)
(2lg =1y = 12)2lor —lyr =l2¢) +3(1 5 ~ 1) 2 ~l1¢) (3.29

A¢ mod2rr = arctan+/3
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These formulae help to save processng time, since (i) no intermediate images are formed, and (ii) only
one actangent cadculation per pixel is required. But due to the invalved multiplications, this method can
be accéerated by LUTs only if enormous dorage space or substantial data reduction in the LUT are
accetable.

As the omplex-divison method is mathematicdly equivalent to the diff erence-of-phases approacd, the
performance in terms of gy is exadly the same for both of them. It has however been demonstrated in
[Vik93] that phase diff erences can be determined from six intensity samples even with an unknavn phase
shift.

3.2.2 Spectral transfer properties of few-sample phase shifting formulae

In ou context of spatial phase shifting, the number of phase samples must be & snall as possble, eg.
threeor four; at the same time, the phase extradion method shoud possessthe best passble tolerance of
spedkle intensity and plese gradients. The latter cause deviations of the phase shift from its nomind
value. A valuable tod to investigate the behaviour of phase-sampling formulae under linea phase-shift
miscdi brations (also cdled "detuning”) is the so-cdled "Fourier description” of phase-shifting formulae
It was begun in [Ohy86, Ohy88], developed to its full potential in [Fre90a] and is nowadays a ammmon
tod to assessthe performance of phase-sampling formulae [Lar92a, Hib95, M1095, Schmi95a, Hib97,
Zha99, Mal00]. We will restrict the discusson to linea miscdibration sensitivity here, for which the
Fourier description is particularly suitable. Moreover, it will provide ameans to quantify how the signal
sidebands in the frequency spedra of SPSinterferograms (cf. Fig. 3.29 will be used and/or dtered by the
phase cdculation.

To understand the behaviour of some few-sample methods in the frequency domain, we will briefly review
the underlying principles. Some emphasis is put on the spatia version d phase extradion; but the phase-
shift parameter X, denating one spatial co-ordinate, can be replacal by t as well. As (3.149) indicaes, the
general task in phese determinationisto generate signalsthat are propartional to sine and cosine of the phase
of an unknavn signal, say, I(x), and then extrad its phase ¢ by an arctangent operation. We start with the
continuos (anaogue) description d the process which will help to clarify the properties of the discrete
(digital) version. An extensive overview of the formalism, and dso of the spedral charaderistics of many
phase-shifting formulaebesi des the ones that we will examine here, can befoundin [Ma 98, pp.113-245.

3.2.2.1 Analogue synchronous detection
When I(x) is moduated with a so-cdled carier frequency vy, we can write
I (X) =1,(X) + M, (x) [os(¢(X) +27v, X) (3.30)

and wse the well-known method d "synchronous detedion” to extrad the phase ¢(x) in (3.30. An ealy
application d this methodto spatial fringe analysis has been given in [Ich72; moreover, it isthe principle
uponwhich lock-in amplifiers are based. The first step of synchronous detedion is to multiply the inpu
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signal I(x) with suitable "filter functions” of the frequency vox , Where generally vox=vy is assumed. It is
however esential to nae that we will |ater be @wncerned with the dfeds of vc#voc . To measure the
phase, we define the filter functions as

S(x) = —sin2nv,, X

C(X) = c€os2mv, X, (3:31)

and the multi plications yield the signals
I (X)S(X)
== 1,(X) SN2y, x + (sin (@ (x) +2m(v, — Vo, )X) —sin(@(X) + 2m(v, + VOX)X))

| ()C() (332

M (cos(9) + 2, = U5, )X) + COSP() + 27Y, + 5 ))).

M, (X)
2

= l,(x)cos2nvy, X +

Both o the equations contain contributions from the pure carier frequency and from difference and sum
frequencies. Since W= vy, the difference frequencies are low; in the ided case, v«—Vox=0, and the low-
frequency contribution is determined by ¢(x) alone. One can think o the fringes resulting from the
multi plication as a moiré dfed [Wom84, Arad7, Kat97]. The semnd step of synchronous detedionis to
remove, or "filter out", the high-frequency terms by integrating the product functions, which gives the so-
cdled "filter outputs'. Thisintegration, a filtering, is achieved by the aosscorrelation functions

S(x') = J'I (X)S(x — x")dx

. (3.33
C'(x') = J'I (X)C(x — x")dx
if we cdculate them for xX=0. The "filter outputs’ therefore ae
S(0) = II (X)S(x)dx O sing(x)
-~ (3.34)

C'(0) = }I (X)C(x)dx [ cosg(Xx) .

Using the central ordinate theorem [Bra87, p. 136 together with the convdution theorem [Bra87, p. 110,
we can replacel (X), x) and C(x) by their Fourier transforms [Fre90e; Mal 98, p.134 and rewrite (3.39) as

"To apply the mnvolution theorem, we must use S(X—x) and C(X—x) in (3.33), which changes the wrrelation into a cnvolution.
The sign change in (3.33) then simply leads to a cmplex conjugation in (3.35). This is posgble since §(x) and C(x) are red
functions, which means that their Fourier transforms are Hermitian. Thisis, their red parts are even and remain ureffeded by
the sign change, while their imaginary parts are odd and must be inverted after the integrations in (3.33), athough their
contributions vanish anyway.
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S(0) = }T<vx>§*(vx>dvx

o (3.39)
C'(0) :II (v,)C (v, )dv,,
where til de denates the Fourier transforms and the sign convention [Bro87)
f(ve):= [ (X)exp(+27ivyX)dx (3:36)

isadopted, i.e. the phase runs forward in the Fourier transform.
It is sen from (3.35 that the spedrum of 1(x) is weighted, o filtered, by the spedra of §x) and C(x),

which is why we have cdled them filter functions. We will therefore refer to §(vx) and é(vx) as filter

spedra. Since I(x), S(X) and C(x) are red functions with Hermitian Fourier transforms, we can simplify
theintegrals (3.35 to [Fre90a]

S(0) = 2Re}or(vx)§*(vx)dvx
0

% (3.37)
C'(0) =2Re[T (v,)C  (vy)dvy .
0

This s, the filter outputs are indeed composed o al inpu spatial frequencies that may be present in 1(x),
with weights determined by the modui of the filter spedra, |§(vx)| and |5(vx)|; we will refer to these

latter also asfilter resporses. With our initial choice of §x) and C(x), we have

S(0) = II (x) - sin 2, xdx
- (3.39)
Cc'(0) = II (X) cos2mvy, xdx

being propational to the Fourier sine and cosine transforms [Bra87, p. 17 of I(X) at the frequency Vo,
and the spedral descriptions real:

S'(0) =2Re T (vy)id(vy —vox)dvy
0 (3.39)
C'(0) =2Re[T (vy)3(vy —Voy)dvy .
0

This models theided case that we can evaluate the signal over an infinite anount of space which lealsto
unity filter respornses at the nominal frequency vox and perfed suppresson o all other vy.
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Finaly the third step o synchronous detedionisthe extradion d ¢(x), using (3.34) and (3.39, by means of

2Re Ir(vx)ic‘i(vx ~ Vo, )dv,,

tang(x) = 2 0 :or;z((i)) : (3.40)
2Re J'r(vx)é(vx ~ Vo, )V,
0
It was $hown in [Fre90q] that a corred phase determination requires
Swa=lCw) _ Bel= Bl e

S (v,) =iC (vy) S(vy) =-iC(vy),

this is, the filter spedra must have equal magnitudes (also cdled "resporses’) and ke 90° ou of phase
(also cdled "in guedrature"), so that S(0) represents the sine and C'(0) the wsine of ¢(x). As a summary
of the invalved operations, the whole procedure has been given the name of "quadrature multiplicaive
moire" [Wom84].

In (3.40), (3.41) nead only had for vox, Since nothing is deteded at other vy ; but when we cnfine the
integration to afinite interval (—X,X) instead of (-c0,00), the filter respornses will broaden around vy, . This
neal na be adisadvantage, becaise more signal energy — if present — may be utili sed in this way; and as
long as (3.41) remains vaid, ¢(x) can still be crredly determined also for v, #Zvg,. The objedive of phase
sampling is now to satisfy (3.41) with oy a short sequence of digiti sed samples of 1(x).

3.2.2.2 Digital synchronous detection

Let us now assume that we ae working on a discrete pixel grid, where the pixels are assumed to be point
detedors with dstance d,. Let M be the number of pixelsin x diredion and k their individual numbers.
Using the "filter property" of the d function, the filter outputs are now — with an appropriate choice of the
origin of the w-ordinate system — given by

S(0) :_J;l (x)S(x)kZlJ(x ~kd,)dx = kzl | (kd,)S(kd,)
(3.42)

C'(0) = I | (x)C(x)i S(x— kd )dx = i | (kd,)C(kd,)

i.e. the signa is being sampled by a sequence of J functions only. For convenience we retain the
asumption d infinite spatial extent of the signal. To measure ¢(x) at a given pixel ky and thus introduce
the spatial resolution d the phase measurement, the sampling pulse sequence must be "windowved" by
seleding only a few intensity samples at (ko+n)dp, with n O {0,..,N-1}, so that, in the simplest case of
using aredangle function as awindow,
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00 M O N-1
Sie = [1(9S(%) D& rect((x — kod ) / Nd J3(x - )= 5 (ko +m)dy)S{(ko + n)d, )

Zoo =1 n=0

- - B (3.43)
C\, = :[ol (X)C(X) Dézlrect((x— kolp) / Nl J3(x - k)0 = r;)l ((ko +m)dl, Jc{(ko +1)d, )

where, following [Bra87, p. 52, red(x)=1 for 0<x<1, and zero elsewhere.

Considering the spedra S(v,) and C(v,) of the expressons under the integrals in (3.43, we seethat the
sharp resporses of (3.39 are till present but will undergo convdutions with the spedrum of the sampling
window. This gedrum is continuows for any finite window, so that S(x) and C'(x) aajuire asignificant
sengitivity to signal frequencies v, #Vy, . Recdli ng that §(x) and C(x) have been designed for, or "tuned”
to, vox , we now have found the reason for the "de-tuning” sensitivity of short sequences of sampling
pulses.

Due to the uncertainty relation between the spatial and the spedra domain, the spedral "response pe&”
of phase-shifting formulaewill generally be the broader the smaller N gets, and Vice versa. However, to
obtain a narrower sampling-window spedrum, it is passble to replacethe redangle window by triangle or
bell -shaped functions [dGro95, Schmi96, Sur98c]. An extreme example with N=101 and a bell -shaped
window function hes been studied in [dGro97]; but its resporse pe&k is gill broadened abou the nominal
signal frequency. Besides, it is certainly not applicable to spatial fringe analysis because of the mere
number of samples involved; and as discussed below in 3.4.4 we would be ill -advised with too sharp a
filter resporse for spatia phase shifting on spedle fields. With pradicd choices of N=3 o 4, the
suppresson d frequencies vy ZVoy inded is poar, and it isimportant to observe the validity of (3.41) over
alarger range of vy.

With §x) and C(x) acarding to (3.31), and v=1/N, we arive a the truncaed dgita equivaent of (3.33,

N

- 21
ZO (ko +n)d, smWDh 1= 1(x,) 0 S(n) O sing(x)
N-

n=
Cy, = ((k0 + n)dp)cos%ﬁh 1= 1(x,) 0 C(n) Ocosp(x) (3.44)
n=
(X)) OS()
and ¢(X) mod2rmr= arctanm

where ® denotes the @rrelation. Note here that (3.44) isjust (3.14) rewritten for spatial phase sampling.
We cdl the §n) and C(n) the sampling functions, beaing in mind that they are sequences of weighted o
pulses. These sampling functions constitute apair of digital filters;, they ad upon bah amplitude and
phase of the inpu signal [(xs), depending on vy As suggested in [Mer83, VIad4, Sur96], ore can also
regard the two processng "channels' (sine and cosine part) as one complex digital correlation:
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Z(X) = 1(X,) 0 (C(n) +iS(n))
with ¢ (x) mod2m = arg(Z(x,))’ (3.45)

where ag(e) is the paar angle of a complex number; this corresponds to a notation c,=bptia, in (3.13
andisthe starting point for the description d phase-shifting formulaeby complex poynomials [Sur96].

To ill ustrate the significance of the fads compil ed thus far, we rewrite (3.16) as
| I:)Ox Q_ | F)OXQ
% 4 §4
P ’ (3.46)
0155}

where Po,=4 d, is the period d the carier fringes, and a=217P = 90%d,. (This denotes the phase shift
per pixel, na the phase gradient in °/m.) Thefilter functions are

-2

C(x) = 5(x) - k-

¢, mod2r = arctan

(3.47)
t

and the @rrespondng spedrareal

~ O . 3 O o . [ Orv,0 O 0O1 v
S(v, ) = explR2rmi v, U— expl2rmi v, 0= 2sind-—-0Oexplhn = —X%
O 4y, 0O U Vox U 2 vy, O OO 2 Vox LTI
3.48
~ O . 0 Orv,0 O 01 v, M (348
C(v,) = 1-expl2mi v, O=2sin0-—Oexpln - + 1
O 2ve 0O Rvy, O 002 2vy,

with vo,=1/Poy. In these expressons, the sine terms represent the amplitudes and the exporentias
represent the phases of the filter spedra, so that the behaviour of S(v,) and C(vy) can be read off
diredly. Whenever we get a pure phase term, it is possble to pot the rest of the expressons as red
amplitudes, which we will denate by amp(e). For more complicaed formulasg it is not aways passble to
arrive & separable expressons; but once §(vX) and é(vx) are established, ore can oltain at least their
modui and arguments separately.

This now gives us a means to explore the transfer charaderistics of phase-shifting formulae by plotting
their spedra. Extending the common pradice of plotting only the anplitude spedra, we will consider the
phase spedra s well. In al our spedra plots that follow, the frequencies will be normalised by vo, and the
range of frequencies will be from 0 to 2vy, where vy is the Nygvist frequency 1/(2 d,), correspondng to
a=1807d, . Consequently, when vox = 90%dy, 2vn = 4voy; and for vox = 1209d,, 2vn = 3vox. The
ordinates of the anplitude plots are dimensionlessand scde with the a, and by, in the underlying sampling
functions; the phases are shown in radians.
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The spedral transfer properties of (3.48 are shown in Fig. 3.8 while the amplitudes of §(vx) and
é(vx) are seen to be the same throughou the frequency spedrum, the phases are in quedrature only at
Vil Vox =1 and v/ vox =3, which corresponds to a=90° and 2707d, (aliased as —907d,), respedively. Also,
S(x) will represent sin(¢o) in the former and sin(—¢o) in the latter case: if we reverse the phase shift, the
cdculated phase must change its sgn too. It can aso be seen from the phase spedrum that (3.16
measures ¢o without offset: at vo,, arg(C(vy)) = 0° and arg(S(vy)) = -9C°, as (3.41) requires.

2 ‘ 3.14
amp(S(vy)) /] &
1L "-__ - - - amp(C(wy)) 1.57
o Vy/Vox Vy/Vox
0 s ol 0
0 1 2 3 4 0 1 2 3 4
1+ = -1.57 - "‘ 7‘
' arg(S(vx))
/ —agCwm) |
2 -3.14 ‘

Fig. 3.8: Filter spedrum for 4-step-90° phase-sampling formula (3.16); Ieft: amplitudes, right: phases.

The zero transitions of amp(S(vy)) and amp(C(vy)) a v =n- vy, n({0,1,2}, cause the phases to jump

by 1t this corresponds to the "singular” cases of a=0°, 180°, 360/, in which situations the diff erences of
phase-shifted intensity samples record orly |, with nointensity moduation, and a phase measurement is
impaossble. Thefilter outputs then must vanish becaise of the requirement that I, be suppressed.

The spedra resporses of smple sampling functions can sometimes be qualitatively understood without
Fourier analysis. For instance, a difference of two samples will be maximal in the average over al ¢o
when they are 180° ou of phase. This behaviour isrefleded in Fig. 3.8 sincein (3.16 the nomina phase
difference of the intensity samplesin §n) and C(n) is 180°,their resporses pe&k at the nominal frequency
Vox . After this example, we now investigate the transfer properties of some phase-extradion methods that
recommend themselves for SPSbhecause of their small number of samples.

3.2.2.3 Three-sample formulae

When we consider (3.18), we obtain

S(vy) = 4sm% E: % %x%n%l 1vx

Vox 4 Vox 2 2VOx

C~Z(vx):4sin2%‘/—x% 0 exyﬁnﬁ —V—X%
4V0X 2V0X

thistime the phase fador associated with vy is the same in bah expresgons, which means that the phases

(3.49)

always remain in quedrature; but in turn, the amplitudes depend onvy, as hown in Fig. 3.9. The samples
for C(n) are now nominally 90° apart, bu by the agument used above, the maximum average resporse
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for that arrangement occurs when they are 180° apart, i.e. a V=2vox. Also, (3.18 measures @o+1v2
instead of ¢o (cf. Fig. 3.8). Therefore, in [Fre90a] we find §n) and C(n) swapped, and the new §n)
inverted, which cancds the off set. An example of how thisworksis given below in (3.53 and (3.54).

4 3.14 =
3l e \ ag(Su) |
N / - — ag(E(w)

N

/ V,/Vox

0 \ Vy/Vox 0 | ‘

10 :E. J 3 X 4 0 1 2 3 4
amp(S(vy) |

21— amp(C(wy)) 157

3 amp(S(vy)) /3

-4 ‘ -3.14

Fig. 3.9: Filter spedrum for 3-step-90° phase-sampling formula (3.18); left: amplit udes, right: phases.

Asto be seen from Fig. 3.9, reliable operation d (3.18), i.e. validity of (3.41), isasaured orly within small
deviations of v, from Vo, : while dS(v, )/ dv,|,,, =0, amaximum of dC(v, )/ dv, occursat vox. A low
influence of phase-shift errors would require both gradients to be equal or at least close to ead ather; then
the phase reconstruction would tolerate some miscdibration. The graphs $iown in Fig. 3.9 are dso
qualitatively valid for phase cdculation with (3.17), and more generally with (3.15, since §n) and C(n)
are just scded to shift up a down that v, which fulfils amp(§(vx)) :arnp(é(vx)) . Thisis indicaed by
the airve labelled " amp(S(vy)) /3", which would suffice to change (3.18) to (3.17). The phase spedra

are indeda the samein ether case.

With 3 plase steps of 90°, it is more cmmon to use the representation (3.19, which formula has the
transfer properties depicted in Fig. 3.1Q in this case, the anplitudes are equal for al vy, while ajain
S(vy) and C(vy) arein quedrature only at a=90° and —907sample; also, the inherent phase off set of -174
Isclealy reveded by the graphs.

2 o 3.14
157
11 o o
| 0 1 2 3 Vx/VOX4
amp(S(vy)) | L. S
: - amp(C(vy)) - . ag(S(vy)
0¥ | | — ag(C(w))
0 1 2 3 Wlvox 4 -314 * :

Fig. 3.10: Filter spedrum for 3-step-90° phase-sampling formula (3.19); left: amplitudes, right: phases.

It is possble to balance amp(S(vy)) and amp(C(vy)) for a=120°as well, yet at the saaifice of integer

coefficients. From (3.14), ore can easily derive
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~ 02591 - 07071, + 0966l

—15)mod27r = arctan
(¢O ) 096615 —0.7071, —0.259I , (3.50)

with the transfer charaderistics snown in Fig. 3.11, which are indeal very similar to those of Fig. 3.10
Note the different normalisation d the frequency axis; here, 2vy = 3vok, and {¢o—159) is deteded at
2Vox 2 0=2407%d, (ali ased to —1207dp).

2 T S 3.14
1.57 i

1+ :. ‘.‘ 0 "]
/ \ 0 1 2 Vidvox_ 3

amp(S) | .
- A arg(S(v
- amp(C(vy)) y o( ~( %))

N | % —agCm)

0 1 2 Vu/Vox 3 -3.14 |

Fig. 3.11 Filter spedrum for 3-step-120° phase-sampling formula (3.50); left: amplitudes, right: phases.

But also for cyclicd permutations of the intensity samples, which is equivalent to changing the off set by
integer multiples of a [Schmi95l, the transfer functions of our formulae tange wnsiderably. This
brings up the question whether a formula redly can benefit from such an operation: generaly spe&king,

improving the matching of anp(S(v)) and amp(C(v)) worsens the quadrature properties, and vice versa,

so that we aein nead of amethodto acourt for both aspeds smultaneoudly.

An interpretation o S(v,) and C(v,) as complex phasors, also suggested in [Mal97], is very helpful to

read conclusions abou this paint. Therefore we introducethe auxili ary function

bsc(vy):= arg(C(vy) + S(vy)) -ag(C(vy)), (351)
where bsc stands for the bisedor between §(vx) and E(vx) . Of coursg, it is the bisedor only when the
modui of S(v,) and C(vy) are equal; its general range is -TV2<bsc(w,)<12. At »=vo, S(vy) and
E(vx) are in guedrature, and bsc(vox) = —45°, which is the value indicaing corred phase cdculation.

Thisisvalid for al vy, since arg(ﬁ(vx)) is being subtraded, so that the angle between the phasors always

has one side onthe red axis. The alvantage of bsc(vy) is that it responds to changes in bah moduus and
phase of §(vx) and C~:(vx) . The ided situation is ketched in Fig. 3.12 on the left, being the graphicd
representation d (3.41).
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bchX) e PEW) bsc ()

R Re Re
\é(vx)
7 d
S(VX) v S(VX) v
Im Im Im

Fig. 3.12 Graphicd representation o bsc(v). Left: ided case, centre: |6(VX)| = \/§|§(vx)|, right: quadrature lost;

seetext.

In the centre of the drawing, |5(vx)| is too large by a fador of /3 due to some eror, which changes
bsc(vy) to —30° the cdculated phase will oscill ate aoundthe true value with a p-v amplitude of =15°
(seeFig. 3.14). The same dfed is produced when, eg., arg(§(vx)) deviates from its nominal value by

30°, as depicted in Fig. 3.12 on the right: athough the phasors for §(vx) and é(vx) have the same
length, bsc(vy) =—-30°.The — namally irrelevant — overall offsets of ¢ (see3.2.2.9 that the two types of
errors produce ae not the same, however. Also, it must be stressed that the purpose and cgpability of
bsc(vy) isto analyse, na to design phase-shifting formulae

A vedor representation d filter spedra has already been used in [Ma97] to customise phase-shifting
formulae however the influence of detuning had to be treaed for amplitudes and preses sparately. With
the help of bsc(vy), we can nav valuate anplitude and phase spedra of our phase-shifting formulae
simultaneously, and it can be seen from Fig. 3.13that this approad is indead able to gredly clarify the
situation.

157 157
0.785 0.785
0 0

0 1 2 3 Wlvox 4 0 1 2 Vy/lVox 3
-0.785 -0.785
-1.57 -1.57

Fig. 3.13: Left: bsc(vy) for phase-sampling formulae (3.16), (3.18 and (3.19; right: bsc(vy) for phase-sampling
formulae(3.17) and (3.50.

One finds that bsc(vy) produced by linea detuning is the same for the 90°-formulae (3.16), (3.18 and
(3.19’, and for the 120%formulae (3.17) and (3.50), respedively. The interpretation o the values for

" bsc(vy) also reveds me redundancy in [Fre90a]: the reported "case examples' 1 through 4 for 90°-phase-shifting formulae
areinded identicd (with resped to p-v detuning errors, cf. Fig. 3.14). Also, bsc(v,) solves the quadrature problems with cases
2, 3 and 5that have been addressed on p. 547.
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=0 is that §(vx) and 5(vx) pant in amost oppasite diredions, while they have nealy the same

argument at v,=wvn. Asmentioned abowve, for v,=0 and v,=vy, no plase information at al can be retrieved.
The orred value of bsc(vy) appeas at v=vox for a=90° a 120°,respedively. It isinteresting to nae that
the p-v phase erors increase symmetricdly for v#vox when a=90° while for a=12C, they rise more
stegoly for v>vgx than for v<voy. Also, the slope of bsc(vey) is greder for a=120° than for a=90° which
immediately explains the observation that 120%formulae ae somewhat less tolerant of phase-shift
deviations than 90%formulae[Cre96].

On the whade, this treament shows that, except for convenience of computer implementation, no
advantage or disadvantage is to be expeded from different representations of phase-sampling schemes.
This has been found ly guite adifferent approach in [L6p0J and also agrees with the findings in [Sur0Q],
where the dharaderistic palynomial theory [Sur96] was applied to show that diff erent representations of a
given formula can be identified with constant phase fadors that do nd ater the formulas properties.
However, this invariance need na hald for spedle interferometry, since different seledions of samples
(here: pixels) to include in the cdculation result in dfferent utili sation o the spatial information in the
spedleinterferogram. Therefore, we will chedk the validity of our findings experimentally in 3.4.5

3.2.2.4 Four-sample formulae

As discussed, the choice of the a, and by, is dictated by the necessty to get one sine and ore @sine term
with no bas intensity, which is a significant restriction for only three intensity samples. Sophisticated
averaging or windowing approadies [ Schmi95a, Zha99], or the dharaderistic poynomia theory [Sur96],
are not helpful here: the three-step formulae aie minimalistic in that they do nd contain any redundancy,
so they need a corred signal to deliver the corred phase.

Therefore we take into acournt one more sample, which will give us a cetain freedom to customise our
formulae The largest impad on acaracy is to be expeded from the sensitivity to linea phase-shift
miscdi brations. Recadli ng our finding of Chapter 2.2.5that phase extrema ae very rare in spedle fields,
it follows that the spedkle phase fluctuations over a few adjacent pixels will amost always contain a
linear contribution; hence it redly makes snse to consider its effed. Possghilities to suppress the
influence of linea phase-shift deviations have been thoroughly investigated in phase-shifting research and
there ae many formulaeto cope with them. Whil e there ae even methods for exad compensation that use
three [Ran86, Ser95], four [Car66] or five [Lar96, Sto97] samples, they invave higher computational
load, and fail to work as well as predicted on spedkle fields, so that we will i nstead consider again the
minimalistic goproacdes, for 90° and 120° & nomina phase shift.

A linea phase-shift miscdibration causes 0@y = ¢o rea -¢ocalc to oscill ate with helf the period o ¢ itself

[Schwi83, Che85, Lar92c], as depicted in Fig. 3.14 for phase cdculation with (3.19 and a=95°. These
5°(2£0.087rad) of miscdibration are propagated as p-v eror to ¢ocac ; additionaly, ¢ocac aaquires an
overal offset, which isirrelevant unlessabsolute phases are desired. Under small miscdibration, d¢o has
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a quasi-sinusoidal dependence on ¢o; however it has been shown [L6pOQ that this dependence
approadhes a sawtooth profil e when the detuning error islarge.

0.14 ‘
o%q/rad
0.07
/rad
0 )
0 1.57 3.14 4.71 6.28

Fig. 3.14: Deviation d¢o of cdculated phase from true phase ¢o when a=95° instead of 90°. Arrows: ateration d
phase measurements due to d¢o (see3.4.6.

There is a smple intuitive way to understand these phenomena: when the sample spadng is incorred,
errors periodicd in ¢o will arise in the sine axd cosine terms of the phase-sampling formulae their
relative phase lag introduces a doulde(2vyy)- and a zero-frequency (off set) error [Lar92c] in their qudient,
which then propagates into the cdculated phase.

The fad that d¢o = —&(¢9o+90°) alows for a very simple gproach of error suppresson. If the nominal
phase shift is st to a=90%sample, we can use (3.19 and construct two conseautive phase measurements
with an off set of 90°,

(P No sing’
$'0, mod2m = arctan *—=+ ::—0:—(1’,O
lo—11 Dy cos¢'q
I3=1, _sin(¢'o+90) (3.52)

'~ mod27r= arctan =
Poy l,—1, cos(¢'o+90°) "

where we abbreviate ¢po—45° by ¢'o, cf. (3.19. In these two sampling sequences, we have 6¢'OO = —6¢'01,
which alows us to cancd the eror by averaging the results. But for this to function, we must modify the

secondformulatoyield ¢'c instead of ¢'o+90°

|2—|1_Sin¢'o__&
l3=1, cos¢'c D’ (359

¢'01. mod 27T = arctan

where we have used

sin¢ = —cos(d) +90°)

cos ¢ = sin(¢ +90°) (359

Then, when constructing the phase average, it is better to average the N, and D,, terms before exeauting
the actangent operation, as oppased to averaging ¢'o, and ¢'o, after separate actangent operations. This
can bejustified theoreticdly and has been dorein [Hun97; to understand the basic idea it is very helpful
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to think of adding weighted and urweighted phesors, respedively, as detailed in [Stroe96]. Therefore, the
N and D terms are averaged acording to [ Schwi83, Har87, Schwi93]

N0+N1
'A Mod2rmr = arctan ———,
9o D + Dy (3.55)
which resultsin
2sin ¢' 2l15 =1
$'o mod 27 :arctan—d),ozarctan ( 2 1) ; (3.56)
2COS¢O |0—|1—|2+|3

and thisis the formula given in [Schwi93], subsequently referred to as 3+3 averaging formula. Its transfer
properties are shown in Fig. 3.15
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Fig. 3.15: Filter spedrum for 3+3-step-90° phase-sampling formula (3.56); left: amplitudes, right: phases.

As in (3.19, the offset of the reconstructed phese is —45° but the phases of S(v,) and C(v,)
are in quedrature for al v, and also the gradients of S(v,) and C(v,) are matched:

d§(Vx)/de|va = dC(vx)/de|VOX . This asaures gable performance for a larger range of deviations,

becaise S(v,) and C(v,) are nealy equal for abroader range of vy . In [Ser97H], an iterative search for
smallest miscdibration sensitivity showed that (3.56 is an amost optimal solution. The offset-free
version d the 3+3 formula, also givenin [Schwi93], is

_|0+3|1_|2_|3_
|0+|1—3|2+|3 ' (357)

#o mod 2T = arctan

this formula shows equal amplitudes for S(v) and C(v), similar to (3.19, bu much better quadrature
stability than (3.19), asto be seenin Fig. 3.16
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Fig. 3.16: Filter spedrum for 3+3-step-90° phase-sampling formula (3.57); left: amplitudes, right: phases.
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It is also passble to average two 4-step formulae [Schwi83, Har87], which yields a 4+1 formula, or to
extend the averaging approac to even more samples [ Schmi95a, Zha99]. Particularly the 4+1 formulais
very frequently used in ESH; but we ignore it here because it requires 5 samples arealy; we will briefly
discuss5-sample formulaein Appendix D.

While formulaewith a=90° are most effedive against detuning due to the aror frequency having twice
the signal frequency, it is also passble to design compensating formulaewith a=120°. A reape to doso
has been given in [Lar92h); it is based onarranging the a, and by, (anti)symmetricaly over the sampling
sequence (which results in frequency-independent quadrature) and matching the gradients of S(v) and
C(V) at vp. (At this paint, we note that also (3.56) fulfilsthese aiteria; in fad, al the formulaewith stable
quadrature presented thus far have (anti)symmetricdly arranged coefficients. This -cdled Hermitian
symmetry of the wefficientsis anecessary and sufficient condtion for the frequency independence of the
guadrature, and it has been shown in [Sur98a, Hib9g how to symmetrise phase-shifting formulae)

The eror-compensating symmetrica 3+1-sample formulafor a=120°reads [Lar99]

lg+3(I1—-12) -~ 13
\/é(_|0+|1+|2_|3), (358)
its pedra charaderistics, shown in Fig. 3.17, demonstrate that (3.58 aso has reduced sensitivity to
linea phase-shift miscdibration.

®o mod 21T = arctan
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Fig. 3.17: Filter spedrum for 3+1-step-120° phase-sampling formula (3.58); left: amplitudes, right: phases.

Since we have been deding with dff erent off sets of the reconstructed phese in (3.56) and (3.57), we will
again make use of bsc(vy) to find ou more genera properties of the methods. Fig. 3.18 presents the
correspondng plots for (3.56-(3.58.

1.57 1.57 \
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0.785 -0.785
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Fig. 3.18: Left: bsc(v) for phase-sampling formulae(3.56) and (3.57); right: bsc(v) for formula (3.59.
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Again, we find errors increasing symmetricdly on bdh sides of vox when a is nominaly 90° the key to
error suppresson is the vanishing slope of bsc(voyx). The same is true for a=120° but as abowve in Fig.
3.13 we find a stegp increase of errors for vy >vok, SMply because vy is not centred between v =0 and
Vox =2Vn and hencethe bsc(vy) curve caana be symmetricd.

Generdly, the eror compensation cancds the oscill ating error only; the zero-order error (phase off set)
persists, as can aso be seen from the phase spedra of (3.56 and (3.58: while the difference of

arg(S(vy)) and arg(C(vy)) remains constant, the reconstructed phese will depend onthe phase-shift
deviation, as gets obvious from the progresson o arg(§(vx)) and arg(é(vx)) with vx. Hence, in ESH

the corred absolute phase difference A¢ is only obtained when the phase-shift error is the same in bah
sets of samples. In TPS this is generaly not the cae, bu as long as the aror is gatialy uniform, the
determination d phase gradients will not suffer: a fringe offset in the sawtooth image is irrelevant. In
SPS the off sets fluctuate locdly with the spedle phase gradients; but since the spedle field is suppacsed
to remain correlated during the measurement, the arors cancd on subtradion d the spedkle phase maps.

As mentioned above, these theoreticd considerations do nd acourt for the spatial coherence present or
not present within the sampling pixel window. For instance, a 3+3 formula need na automaticaly reduce
the measurement errors, becaise its error compensation might be superseded by low spatia correlation d
the sampling poaints. Therefore we will subjed also the compensating formulaeto an experimental chedk
in3.4.5

3.3 Temporal phase shifting

Many of the peauliarities of TPShave drealy been treded implicitly in 3.2.1.7 so that we now address
only two more subjeds: first, we mnsider the lossof moduation associated with phase ramping instead of
stepping, and seaond, we take alook at the power spedrum of a spedkle interferogram and consider avery
simple methodto determine the average spedle size.

Whil e the phase-shifted interferograms are recorded sequentialy in time, the different a,, are ajusted by
means of a phase shifter such as a mirror on a piezoeledric aysta in the reference am. While it is
possble to set the a, staticdly, i.e. no change takes placeduring the exposure of ead frame, it is more
convenient and has beaome popudar to shift the phase linealy during the recording sequence, so that ead
measurement becomes an integral over a phase interval. This changes (3.12 to

a
an+—
1.2 o

In :EDIIb + M, [kos(¢p +0a, +0a )da
an—% (3.59)
2sin(5) .
=|b+M|E’TEOS(¢o+0’n) ’
the alditional fador is 0.9 when a=90°, and 0.83for a=120°, so that the overall effed of the ramping
approad is a slight deaease in the moduation d the data; however, the measured ¢o remains the same
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whenever the integration interval is ymmetricd. The static method is referred to as the step method and
the dynamicdly phase shifting approach is known as integrating-bucket or simply bucket method
[Wya75].

The euation system (3.12 or (3.59 is st up undr the assumption that the unknavns do nd change
from frame to frame, i.e. are temporally constant. While thisis very likely to be @rred for I, and M, , it is
difficult to asare for ¢o, which is why vibration-isolating opticd tables, phase stabili sation faaliti es
and/or short exposure times are very common with this method. The interferograms I,(x,y,tn) must be
recorded as quickly as possble to dminish influences by objed changes or phase fluctuations in the
interferometer, and the posshiliti es to cary out TPS measurements of rapidly moving objeds or under
external disturbances are limited. Fig. 3.19 presents sawtooth phase maps from experiments under various
condtions. While TPSdelivers good plase measurements under temporally stable condtions, a vibrating
interferometer (here: table withou air cushion) can cause wrong phase shifts and thus loss of diredion
information. With locdly different phase shifts, as caused by turbulent air in the beam paths, aso the
gualitative correanessof the image may get lost.

[

Fig. 3.19: Sawtooth phese maps as results of deformation measurement with TPS under: stable experimental
condtions (left), vibrations (centre), and air turbulences (right).

Much work has been dore to cope with the various error sources. phase-shift miscdibrations [M0080,
Schwi83, Che85, Joed4, Slad5, Och9g, vibrations [dGro96, De®6, De®8, Hun9g, urequal and/or
uncdibrated phese steps [Gre84, Okad1l, Far94, Ryu97, Wei99], norsinusoidal intensity profile [Hib95,
andin awider context, variable bias intensity [On096,Sur97l], or variable fringe visibility [Lar96]. There
have dso been attempts to reduce the data a@uisition time by 2+1-frame methods [Ker90, Col92, Fa93,
Ng 96] or high-speeal devices [Cog99, Hun99. Many of these dforts are mncerned with the sensitivity of
TPSto time-dependent phase fluctuations, which shows that these ae indead a major obstade.

3.3.1 Speckle "size" in interferograms

The eperimenta determination o the mean spedkle size is usuadly dore by cdculating the
autocorrelation function d the spedkle intensity field and determining the full or half width of its central
pedk. Asthe spedles get smaller, this digital method grows impredse because the pe&k is then orly afew
pixels wide and requires fitting a aurve to it to estimate its width with subpxel acaracy. When deding
with spedkle interferograms however, there is a simpler method one can conveniently determine the
spedle size from the power spedrum of an interferogram, in which the spedle size is "doulded” by



3.3 Temporal phase shifting 77

adding areference wave [Enn75,Ma&8]. To understand haw this is meant, we first consider briefly the
power spedrum of a spedkle pattern. The situationis depicted in Fig. 3.20

L < z > -V 0 w VN

Fig. 3.20: Left: Imaging of a spedkle pattern: L, lens; S, spedkle field; AS, aperture stop; z, distance of AS from
CCD sensor. Right: power spedrum of spedkle pattern in log display; v=w=0 is in the ceitre of the
image and the pasitive and regative vy at its borders.

The goerture stop AS has atransmisson function Tas (here a drcle of diameter D) with which the spedle
pattern Sis multiplied on @ssng the gerture plane. For simplicity, we aume that z=f, whereby we
have the far field o S-Tas in the image plane. The field on the CCD chip is therefore

FT(S,s)=S*T,s, where FT stands for the Fourier transform, * for convdution, tilde denctes the

transformed variables, and we omit propationality constants. The spedkle intensity deteded by the CCD

is given by ‘5* 'ITAS‘Z, and wing the Wiener-Khintchine theorem, we can write its Fourier transform as
I—‘F(‘§* ﬂs‘z):ACF(SD'AS) — ACF denating the autocorrelation function — which is smply a spedle

halo, as hown in Fig. 3.20in logarithmic scding. The size of this gedkle halo in the frequency planeis
propartional to D and therefore inversely propartional to d.

The maximal spatial frequency in the spedkle pattern onthe CCD is determined by the interference of the
outermost rays that passthe gerture, i.e.

D
Vimax,s = (3.60)

which is of course only valid if Tas redly reates zero at the elges of the gerture. This is the "band

limit" mentioned in Chapter 2.3.2 For circular apertures, the spedle sizeis, cf. (2.43),

Af
dg = 1223 , (361

which linksto (3.60) to yield the simple formula
122
dg =

Vmax;s

’ (3.62)
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so that e.g. a spedkle halo just fitting in the DFT's frequency plane, with Vpaxs=+Un=+1/(2 dy), is ®en to
come from a spedkle pattern with ds=2.44d,. In Fig. 3.20 we have ds=3 d;, .

If we asume that areferencewave R of amplitude Ris added as a point sourcein the centre of AS, which
is drawn in Fig. 3.21, the field onthe CCD chip will be FT(S[T,¢ + R3(0,0))=S* T, + R. The intensity

onthe sensor is [S* Tyg + ﬁ‘z, and its Fourier spedrum is I—‘F(‘§* Tho + ﬁ‘z) = ACF(S,¢) + |IR?5(0,0) +

(S Tag)* R3(0,0) + (S[as)* R'S(0,0). The first term is again the spedkle halo, the second term is a
central pesk due to the uniform reference wave; these ae often cdled the self-interference terms. On
inspeding the mixed o crossinterference terms, we find that they reproduce the spedkle field's
amplitudes, with an envelope that is the gerture function again. The mnvdution with the ¢ function d
the reference wave reproduces this distribution and multiplies it with R. The power spedrum of a spedkle
interferogram therefore looks asin Fig. 3.21onthe right; again, the scdeislogarithmic and ds=3 d.

R
|\\g|aSSfibrein tube
“Nas
L <€ Z > 'VN O v VN

Fig. 3.21: Left: Imaging geometry for ESH: R, reference wave; other abbreviations as above in Fig. 3.20 Right:
power spedrum of spedkle interferogram in log display; frequency plane & above.

The interference terms overlap in the cantre and are point-symmetricd with resped to ead aher; hence
the shadow of the fibre guide, being an undesired bu here instructive part of Tas, is visible in ead of
them. The spedkle hao is gill the same & in Fig. 3.21, bu the extent of the spedra or "bands" of the
interference terms, (S’ [M5) * R(0,0) + (S[M,s)* R'6(0,0), in the frequency plane is exadly half that
of the spedckle halo. Thisisthe "douHing of spedle size" mentioned abowe. It occurs only when Rislarge
enough to suppressthe spedkle halo; the influence of Rwill play an important role later on.

AsFig. 3.21indicaes, the maximal spatial frequencies of the interference bands are given by interference
of R with the outermost rays passng the gerture. With
_ D
Ymaxi =55t (3.63)

where the subscript i stands for interference, we arive &

061
dg =

Vmax,i

; (3.64)
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which allows for a very convenient determination d the spedle size from the power spedrum of the
interferogram. When the interference bands are centred onead aher (i.e. the source paint of R is placel
in the exad centre of AS), the edges of the frequency plane ae readed when ds=1.22d,, bu using its
corners, we can acarately determine spedle sizes down to 0.86d.

The alvantage of using interferogram power spedra gets clea when we consider Fig. 3.22 determining
the spedle size from this image is very easy, while it is problematic to apply the autocorrelation
tedhnique for so small aspedle size.

Fig. 3.22: Power spedrum of interferogram with ds=1 d,,; spatial frequency axesasin Fig. 3.20

Finally, if the source point of R is nat in the plane of AS, the & function above will broaden; then, on
convdution with S- Tas, the sharp edges of the aossinterference spedra will smea out. This behaviour
provides us with avery acarate means to match the arvatures of the two wave fields.

3.4 Spatial phase shifting

An elegant way to get rid o the problems associated with inter-frame temporal parameter fluctuations is
to aquire the phase-shifted data simultaneously. Since the phase shift then has to take placein space
instead of time, this approacd is quite generally cdled spatia phase shifting (SPS [Schwi90, Tak90b,
Kuj93, VIa94]; the underlying principle has been known for a long time [Lei62]. With SPS phase-
measuring methods gain accessto urstable environments and transient events. For very rapid phenomena,
the use of pulsed illumination represents an effedive way to suppress even the intra-frame fluctuations
and freeze virtually anything. In principle, it gets possble to tradk the objed phase & the frame rate of the
camera, with the alditional benefit that any frame of the series can be gopanted the new referenceimage.

The increased temporal resolution d this approach has, however, to be pad for in terms of spatia
resolution, sinceit is of course necessary to spatially separate the I,,. In analogy to TPS we can distinguish
between phase stepping and phase ramping. The former is implemented by generating several images of
the same objed and recording them simultaneously on several sensors, or different parts of the same
sensor. The necessary phase shift between the images can be generated by pdarisation ogics [Smy84,
Kuj93, \Haa4], diffradion gratings [Kwo84, Kuj88], CGHs [Bar99] or combinations of these [Krad8,
Kem99, Het0Q]. For the phase retrieval to work properly, the I, must be digned with subpxel acairacy
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and all have the same I, and M, which is difficult to achieve [Kuj91a, Het0Q]. If parts of one and the same
sensor are used for the sub-images, resolution is lost; if severa full-chip images are taken, they will have
to share the light energy available. High expense on the comporents, grea adjustment effort and hgh
sensiti vity to misalignment are to be expeded when working with set-ups of this type.

The phase-ramping or bucket method d SPSworks with ore detedor, onwhich a dense alditional fringe
pattern is generated to function as a so-cdled spatial phase bias or, in the Fourier terminology, carier
frequency. The — low-frequency — signal of interest distorts the carier pattern and can be retrieved from it
by a number of methods [Wom84]. This approach has first been implemented with verticd carier fringes
in [Ich72, Mer83] as analogue red-time processng of TV line signals. (Note here that only SPSlends
itself to this technique: TPSrequires digital processng since separate TV frames are invaved.) The first
studies were soon followed by digital implementations [Toy84, Toy86, Sho90, Fre90bg, Kiich90,
Kich91, Kuj91h, alowing for arbitrary diredions of the carier fringes. Also, it was demonstrated in
[Tak82] that the signa can conveniently be retrieved in the frequency plane by a Fourier-transform
method we defer details to Chapter 6.5 Other methods to retrieve phase from images with a spatia
carier are the phase-locked-loop method [ Ser93] and the frequency demoduation technique [Ara96].

Later it was redised that this approach could be gplied to spedle interferometry as well [Ste91, Wil91,
Gut93]. A standard ESH set-up is very easily changed to an SPSsystem; it is sufficient to lateraly
displacethe focus, or source paoint, of the reference wave to introduce the fringe carier. Fig. 3.23 shows
the modification, with a magnified pation d a spedle interferogram: the fine fringes on the spedles are
clealy discernible.
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Fig. 3.23: ESH set-up slightly modified (cf. standard configurationin Fig. 3.1) for spatial phase shifting.

In the following subsedions, we will go through some detail s pertaining espeaally to SPSto get an
overview of the quality criteriafor interferograms with a spatial carier.
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3.4.1 Geometrical description of spatial phase shift

The latera offset Ax of the reference wave's origin generates a quasi-linea geometric path and hence
phase diff erence between the objed wave O and the reference wave R over the sensor. Fig. 3.24 sketches
the principle.

Fig. 3.24: Left: incidence of two sphericd waves with aigins displaced by Ax; right: construction o
correspondng pathlength differences Ar =|ro|—|rg|.

While aphase shift in the sensor's y-diredion may be alded by a displacenent Ay, this case is gill one-
dimensional in the gpropriate m-ordinate system. Henceit is sufficient to consider the phase difference

a(x), given by

o |n  Ax Ax 0
ool bl =2 E R T v vaz - BT vansl e

where x =0 is defined to be the y axis in the middle between the waves source points. This is not
generally the central sensor column: sincethe centre of the goerture shoud lie on the opticd axis over the
centre of the sensor, the objed wave's origin canna be shifted from there. However, y = 0 does lie onthe
central row of the sensor. The crrespondng phase gradient in x-diredion,

O O
O AX AX O
O

ax(xy) =50 - O, (3.66)
O Ax 2 2 Ax 2 o
§<+2 +y“+Az @(—2 +y“+Az

IS quasi-constant when Az is much larger than everything el'se, which is quite reasonable to assume when

using common imaging optics. Then Az will be onthe an scde, whil st the other quantiti es are onthe mm
scde. It turns out that the y co-ordinate dso has a wedk influence on ay; hence the carier fringes are not
exadly straight. In fad, they have hyperbdli c shape, which also foll ows from the definition d a hyperbola
as the set of paints for which [ro|—|rgr| is constant. Fig. 3.25 depicts the situation for an average nominal
phase gradient of ay(x,y) = 120° per sensor column and the opticd configuration d Fig. 5.1 The spatial
dimensions refer to sensor of the camera that was used throughou the work to follow, ADIMEC MX12P
with 1024<768 pixels of size (7.5pum)>.
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Fig. 3.25: Spatial distribution d ay(x,y) onthe CCD sensor areafor z=10.2cm and AXx =2.9mm.

Clealy, the continuous phase progresson ower the sensor leals to an integration ower the pixels, so that
thisis an integrating-bucket method. When the phase runs along columns or rows only, the recorded I, are
described by (3.59, since dso the canera pixels are redangular integration windows, only in space
instead of time. The fadors given in 3.3for the deaease of M, remain valid in this case.

If, howvever, the carier fringes are slanted with resped to the Cartesian sensor axes, the situation is
different: for instance, if Ax=Ay, the dant is 45° and the function ower which the phase progresson is
"windowved" bemmes a triangle; for values below 45°, it aaquires trapezoidal shape. Fortunately, the
windows remain symmetrica in any case, from which it follows that the deteded phase angles will
remain corred [Wom84]. To determine the loss of M, due to a "composite” phase ramp (i.e. for phase
shift in x andy diredion), it is easiest to integrate over its comporents sparately, which gives

. ,a . a
2sin(*X) 2sin(-2
l,=1p,+M, 3 (2)[! )

(& +0a,);

a, a, os(¢o +ap) (3.67)
not surprisingly, this refleds the theoreticd 2D-MTF for square pixels. For a,=ay, and hence atriangular
envelope of the phase integration, the fador becmes 4 sin?(ay /2)/a,? and is indeed the transfer function
of atriangle. We will be concerned with such a cae in Chapter 6.3.

The dhoiceof the carier frequency isinfluenced by contradictory requirements: on the one hand, it shoud
be & high as possble to alow a broad range of signal frequencies to be measured. On the other hand,
aliasing of too high frequencies must be avoided. In general, ay must have the same sign in the whole
measuring field to keep the phase extradion urambiguous: areversed, a aliased, phase shift leads to the
wrong sign o the cdculated phese, cf. 3.2.2 In clasdcd interferometry, this means that closed
interferometric fringes are nat alowed, and the complete fringe pattern must be properly sampled; in
spedkle interferometry, the requirements are diff erent and we will discussthem in 3.4.4

Sincethe |, are aranged as adjacent pixels on the sensor, it is clea that the spedkles must be enlarged to
obtain sufficient spatial correlation d spedkle intensity and phase within the sampling pixel cluster, so
that the moduation deteded by a phase-extradion formula cmes more from the phase shift than from
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crossng spedkle "boundries’. The ided case is ketched in Fig. 3.26 for ds=3 d,. Depending on the
orientation and density of the carier fringe pattern, various phase-extradion formulae ca be gplied.

Fig. 3.26: Acquisition d threeintensity samples o, 11, I, for SPS Small squares: sensor pixels, irregular outli nes:
spedles. Diredion and spadng of the carier fringes are indicaed by the verticd bladk bars; left:
a=90°/d,, right: a=120°/d,.

The spedkles, and also the sampling pixel cluster, shoud be a snall as possble for the sake of spatial

resolution; on the other hand, a somewhat larger pixel cluster can lead to more reliable phase

measurements even when the spedle sizeis not increased. We will consider this paint in detail i n Chapter
6.2.2

In any case, the gerture must be smaller than in TPS afirst guessfor the minimal spedle size would be
ds=3 dp, becausein (3.12), we nead n=3. So small an aperture entails sme drawbadks: first, significantly
lessobjed light is available; and second, Ax can usually nat be chasen fredy, since for R to read the
sensor, Ax must nat exceead D/2 (cf. Fig. 3.21). The latter problem can be solved with customised imaging
optics: anarrow dlit beside the digphragm hale, allowing the focus of R to pass will broaden the posshble
range of Ax (cf. Fig. Fig. 5.1). Finally, when the test surface undergoes a tilt, the decorrelation o the
spedlefield proceals faster with narrow than with wide gertures: that portion d the spedle field which
iscolleded by the gerture is being panned "out of view" soorner when D is gnall.

Once these problems are overcome, it bemmes possble to study dynamic phenomena; using
(doude-)pulsed illumination, even very rapid transients can be frozen [Ped93, Ped94, Sched97, Ped97c,
Pet98, Pet99]. Moreover, the deaease in spatia resolutionisin pradice more than off set by the low data
storage requirements, since mostly the sawtoath images are smoothed anyway during data processng.

3.4.2 Evaluation of SPS interferograms

The intensity samples for the phase cdculation are picked from an interferogram in analogy to (3.12
which we rewrite & a spatial version (restricting ourselves to a=a(x), i.e. the phase danges from column
to column o theimage):

In (Xk+ns Yo 1) =1 (X ¥) + My (X V) 180S(0 0 (X +n» Yo l) + 0 (X4 ¥)) (3.68)

this is, to find the phase & a pixel in column k of the image, some neighbouing pixels are neeled to
provide the phase-shifted interference data. The equation system expressed by (3.68 then impases the
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restriction that go(X,Y) = @o(Xk+n,y) for al n, and the same goplies to 1p(X,y) and M,(x,y); thisis, spatia
fluctuations of these quantities houd be & snal as possble. The time dependence of ¢o can be
negleded uress ¢o fluctuates substantially within the integration time for the canera frames; a,, has no
time dependence 4 all, because the phase shift is determined by the stable geometry depicted in Fig. 3.24

The I, are then processed as described in 3.2 however, when working spatially, it is reasonable to use
evauation formulaewith n {1, 0, 1} or n 0{-1, 0, 1, 2} kecause, as Fig. 3.26 shows, the central pixel
of the duster will be the one that has best spatial correlation with its neighbous and to which the resulting
¢o shoud be assgned. From thisit follows that 1<k<M or 1<k<M-1, i.e. no \alues for ¢ can be obtained
for the first and the last, or the last two, image @mlumns; but considering the large numbers of pixels on
modern sensors (here: 1024columns X 768rows), thisrestrictionis negligible.

The natural way to determine deformations from a pair of interferograms, li(x,y) and l«(x)y), is the
diff erence-of-phases method, since two frames, eat ore subjeded to (3.68, suffice to generate two
spedle phase maps. However, with three sample methods one can also oltain correlation fringes from
SPSinterferograms acerding to

Lnc (X Y1) = |1 (Keens V1) = 1 (5, W) (3.69)

where the subscript ¢ denaotes correlation fringes and n J {1, 0, 1}; thisis, we shift |; by one column to
the right and subtrad |, then subtrad the unshifted images, and finally shift I+ one @wlumn to the left and
subtrad |; [Ped93,Ped94]. But the lateral image shift of course causes lower spedle arrelation between
It (Xk=1,Y) and li(x,y) than between It (xy) and I;(X,Y), resulting in nonconstant fringe @ntrast within the
set of the I,¢c (X.Yy), and consequently, unrecessary errors in the phase cdculation. Hence it is easy to
understand why apparently this method has nat been used with four-sample formulae aad n ({1, O, 1, 2}
an offset of two columns would lead to very faint correlation fringes in |Is (Xe2,Y)—li(XYy)|, urlessthe
spedkles are larger than 3 d,,. Therefore, correlation fringes from SPSare even less siitable for the phase-
of-diff erences methodthan are those from TPS

When SPSis tested under the same disturbances as the TPS measurements shown abowve in Fig. 3.19 the
diff erence-of-phases method leads to the example results presented in Fig. 3.27. While the experiment
under good condtions yields dightly higher noise than for TPS vibrations do nd ater the phase shift,
since it is determined geometricdly here, and the quality of the measurement is preserved. Of course,
when the frequency and/or amplitude of the vibrations gets too hgh, the moduation in the spedie
interferogram may be washed ou; but as mentioned, pused illumination solves this problem. Under
turbulences, there is no simple way to avoid warping of the phase front; but the image from SPSis far
easier to interpret than that from TPS Aslong as the sawtoath fringes remain resolvable, they shoud lead
to ausable result, and pessbly reved the nature of the turbulencein addition.
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Fig. 3.27: Sawtooth phase maps as results of deformation measurement with SPSunder: stable experimental
condtions (left), vibrations (centre), and air turbulences (right).

3.4.3 Relation of speckle size and magnification

For usua imaging optics, f# = f/D is confined to a maximum of 22 a 32, which may prevent reading the
desired dsin some caes. Considering

ds = 122A(|V| +Df# (3.70)

where M is the magnificaion (image size : objed size), we can immediately seethat the maximum objed
size that can be imaged gets smaller when ds is to be increased, and vice versa. Fig. 3.28 gives an
overview of the necessary f-numbers when a cetain magnificaionisrequired. The plots are scded for the
pixel size of 7.5um of the MX12P camera.

0.01
0.1
M // /
1 A
‘ o /::/ "/d 05d
T~ s= U.o0p
10 /4// / ds: 1 dp
~ ” _ _
= ds=2 d
/ / P
_— —ds= 3 d,
=ds=10 d,
100
1 10 f# 100

Fig. 3.28: Doule-logarithmic plot of magnificaion M vs. f-number for various pre-set spedkle sizes.

Let us consider a pradicd example: with a sensor of 1024x1024 pxels, we would need M=0.02in order
to image (37.5cm)? onthe chip; for ds=1 pixel, f#=10; but for d=3 dp, f#=28, which may not be possble
with standard imaging optics. It also follows from (3.70 that the spedkles tend to get very large when
M>1, even for low f# [L@k97, Aebi97]. This is the reason why SPSis applicable & no expense in
microscopic ESH [ElJa99]: the spedkles are large enough in any case.
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3.4.4 Spatial phase shifting on speckle fields

We have seen in Fig. 3.21and Fig. 3.22that the positive and regative interference bands overlap exadly
in the spatial frequency plane when the source paint of the reference wave wincides with the centre of the
aperture. Asthe origin of the referencewave is lateraly displaced, the overlap of the interference spedra
gets sndler; idedly they can be fully separated in the frequency plane, as shown in Fig. 3.29 for two
diff erent settings of phase shift and spedle size. In the Fourier formalism, the carier frequency manifests
itself as a @nstant phase fador, which shifts the interference spedra by +v., with v, being the spatial
carier frequency, and thus turns them into the so-cdled signal sidebands. We defer a more detail ed
discussonto Chapter 6.5.

-y 0 Vx VN N 0 Vx VN

Fig. 3.29: Power spedra (log scde) of spedle interferograms with carier frequency; left: a,=120°/column
(Vex=1/(3 dp)), ds=3.5 dp; right: a,=90°/column (Ve,=1/(4 dy)), d=2.5 d,. To alow for sufficient Ax to
obtain a,=12C°/column, the fibre end is in a dlit beside the goerture (cf. Fig. 5.1); to the right, Ax=D/2,
and the fibre guide obscures part of the gerture. The @ntrast of the images has been enhanced to make
the spedkle halo visible.

The width of the side bands in an interferogram’s power spedrum indicaes the range of spedle phase
gradients that distort the carier fringes. As arealy hinted in 2.2.3.2 these distortions are equivalent to
locd miscdibrations of the phase shift, which makes grea demands on the miscdi bration tolerance of the
phase-recnstruction formula. Also, its gedral respornse shoud uili se & much o the signal as possble;
but aswe have seenin 3.2.2 neither is easy to be had.

Complete separation d the interference bands is desirable because then al frequency comporents of the
signa will be unambiguous. If ay is to have the same sign throughou the interferogram, ore has to
demand that the positive/negative signal frequencies occupy no more than the positive/negative half-
plane, (vx+,Wy) and (v, W), in the frequency spedrum. If these boundries are aossed, the signal bands
will overlap around v, = 0, a with aiasing (see below) around v =+vy , o bath. We will consider
examples of such power spedrain Chapter 5.5.3

However, it is possble to permit sidebands larger than in Fig. 3.29 on the right and still avoid their
mixing when we record information in the v, co-ordinates as well and thus truly utili se the 2-D nature of
the measurement. Depending on the spedkle size and shape, there may then be various lutions to
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arrange the signal bands advantageously in the spatia frequency plane. An example of how to oltain very
large, "clean” (i.e. nonoverlapping) sidebands will be given in Chapter 6.5.

The spedkle size is determined from power spedrawith a spatial phase shift by

L. 122 _ o6t
= vl =]

(3.72)

where |v.| isthe largest and | v.| the smallest spatial frequency of asideband and | vc|=(|vs|+|V.])/2. This
of course neads to be modified when | v.|>|vy|: dueto adliasing, +(Vn+Vs), where subscript a denotes the
aliased contributions above vy, will appea in the Fourier plane & F(vn —Va). To find the minimum
permissble spedkle size when | v|is given and noaliasing isto occur, we find

061
| < |ve| + R (3.72)

considering the eamples of Fig. 3.29 we have v=1/(3 dy,) for a,=120%column; therefore,
0.61/ds<1/(6 dp), which gives the mndtion that ds>3.66d,. Smilarly, for v=1/(2 dp), ds>2.44d,.

For red sensors, the merely geometricd nation d v isamore or lessacarate gproximation: the higher
gpatial frequencies will usually be d@tenuated by the falli ng pixel MTF and the read-out eledronics. Thisis
not visible in Fig. 3.29 due to the logarithmic display; examples may be foundin Fig. 3.31and Fig. 3.34
This "low-pass' behaviour shifts the atua (v.), or the "centre of gravity" of the sidebands' deteded
power, below their geometricd centre, Vegeom . This raises the question whether an advantage can be
gained hy cdibrating the phase shift on {v;), which minimises the at¢ual phase-shift deviations. However
we retain the geometricd definition for threereasons: (i) With resped to the high spatial frequencies, it is
indispensable to operate the camera with its pixel clock adivated. Unfortunately, this damps v, much
more strongly than vy (for the camera used, the pixels are read ou in x diredion at arate of 20 MHz as
independent video lines, whose frequency is only 15.625 IHz), which would grealy complicate the
treament of composite x-y-phase shiftsif we used {v.x) and {v.y) for cdibration. (ii) Shifting a sideband
outward, urtil the measured (v.x) readies its nomina value, is a waste of signal energy, becaise more
and more of the sideband then comes to lie in the low-MTF regions of the frequency plane. (iii) The
problem affeds the methods for v.x =1/(3 d,) more than those with vcx =1/(4 dy); but we have seen from
Fig. 3.13 and Fig. 3.18 that phase-shifting errors are less ®vere for w<1/(3 d), so that one may even
obtain aslightly increased performancewhen {v¢x)<1/(3 dp).

Despite these mnsiderations, an overlap of the sidebands at the alges or in the centre of the frequency
plane may be permissble and even advisable from the standpant of light econamy (remember that thisis
asciated with smaller spedkles and larger apertures). This need na upset the phase cdculation: as e
before, any phase-extradion formula has its charaderistic frequency resporse and will therefore seled
only a part of the interferogram's gatia frequency content anyway. One culd therefore say that phase
maps from SPSare being smocthed intrinsicdly by convdution with the phase-cdculation pxel cluster.
Hence, the spatial resolution d SPSis nat governed by the spedkle size done.
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3.4.5 Spectral side-effects of spatial phase calculation

As mentioned abowe, the findings of 3.2.2 require some experimental inspedion becaise they were
derived, so to sped, in the asence of spedkle. In particular, the spatia phase cdculation in SPSis
influenced by the spatial correlation d the pixels sleded for processng, as demonstrated in Fig. 3.30for
intensity sampling by (3.18 and (3.19), respedively.

Fig. 3.30: Processng of intensity samples by (3.18 (left) and (3.19 (right), where the smaller ouitlines in white
and Had indicate the small er coherence aeas required for S(x) and C'(x) alone.

In (3.18), the first and last intensity sample ae used for S(x) and al three samples for C'(xy); the terms
are balanced with resped to the central pixel, being the target pixel of bath cdculations. In (3.19, bah
S(x) and C'(x) are constructed from only two conseautive samples; hence they make lower demands on
the spatial coherence of the pixels. Of course, the complete sampling window is dill three pixels wide,
and S(x) and C'(x) are associated with slightly different portions of the spedkle field, so that their spatial
correlation may suffer. The same line of argument applies to al other phase-shifting formulag where
different a, and/or b, arelarge, small, or vanish, in different representations of the formulae

To find ou the significance of this consideration, we study §(vx,vy) and C(VX,vy) experimentally.

First, we generate two separate arays |(x,y)® S(n) and I(x,y)® Cy(n), thisis, we use (3.68 to process2-D
images with a 1-D phase shift. The results, when visualised as images, shoud yield two fringe patterns
that look very much like the spedkle interferogram, bu have aphase lag of 90° and hence deserve the
names of "sine" and "cosine" image. This processng method has been used in [Sin94] in the context of
phase demoduation.

~ ~ 2
’ and ‘I (Vy,Vy) [C(vy)| , can be

The power spedra of the "sine" and "cosine" images, ‘r(vx,vy) S(v,)

~ 2 *
compared with that of the origina interferogram, ‘I (vx,vy)‘ , to reved the dhanges. This yields

" Redising that the phase-shift is one-dimensional, it would suffice to investigate the v, only; but since we will be mncerned
with full 2-D information in Chapter 6.3, we include the v, here drealy, beaing in mind that they contribute littl e information
now.
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information abou the adual manipulation d the interferogram's frequency content by the phase
cdculation.

The phase lag between the "sine" and "cosine" fringe patterns may be estimated when we determine their
phases as if they were interferograms and then subtrad these phase maps as if we wanted to measure a
deformation. The "doulle" phase determination d course leads to a arcular argument, which we must
avoid by using the Fourier-transform method (cf. Chapter 6.5).

To valuate the spedral transfer charaderistics of phase-shifting formulag we could simply choase white
noise, e.g. a randam distribution d grey values, as a dummy interferogram for inpu; but since our
objedive here is an experimental chedk of the findings in 3.2.2 we use adua interferograms. Starting
with a=90°, we dhocse the interferogram with the spedrum of Fig. 3.29 (right side) as inpu, which
indeed acourts for the whole range of interest, =0 upto v=vy. The power spedrathat we mmpare ae
scded linealy thistimeto fit the expeded deviations; the low-frequency part of the spedrathen hasto be
masked ou. The first example is the phase cdculation by (3.18, whaose outputs are compiled in Fig. 3.31
The images of the power spedra have been spatially smoothed to make differences more eaily
discernible.

- 2 |~ ~ 2 ~ ~ 2
Fig. 3.31: From left to right: ‘I (vx,vy)‘ ; ‘I (Vi Vy) BB(Vy )| of (3.18; |I (vy,Vy)[C(vy)| of (3.18); pixel

histogram of phase lag between I(x,y)® S(n) and I (x,y) ® Cx(n) of (3.18); the range of the @scissais 0—2rt
The gpatial frequency axes of the power spedra ae asin Fig. 3.29

As discus=d in 3.4.4 the measured power spedrum shows sgnificant attenuation d high v, alrealy in
the interferogram, which is now clealy visible onthe linea scde. This appeas to be quite common with
pixel-clocked CCD cameras, cf. the power spedra reproduced in [Sal96, Ped97a,b]; hence when looking

~ ~ 2 ~ ~ 2
a |l (v,,v,)B(v,)| and |I (Vy, W) [C(vy)| , we must bea in mind that even a maximal resporse & vy

will fail to produce ahigh ouput when the correspondng frequencies are drealy wed in the inpu data;
but differences of the two spedra will remain dscernible. Comparing now the spedra of 1(x,y) modified

~ ~ 2
by S(n) and C«(n) with what Fig. 3.9 predicts, we seethat indeed |l (v,,v,) [B(vy)| peeks at w=W/2,

? is difted towards vy. Hence the values 1(xy)®S(n) and

while the maximum of |I~(vx,vy) [C(v,)

[(X,y)®Cy(n) will not generally represent sin go(x,y) and cos go(X,y). This aff eds the quadrature properties
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predicted by Fig. 3.9, as the histogram of the phase lag demonstrates: the pe&k is centred at 89.6° bu is
broadened considerably (o =19°).

On the other hand, we can exped from Fig. 3.10 that (3.19 will filter the interferogram’s frequencies
equally by S(v,) and C(vy), and indea this is what we find in Fig. 3.32 with the same inpu

interferogram as above.

- ~ 2
Fig. 3.32 From left toright: |1 (v, vy ) EB(Vy) of (3.19; pixel histogram of phase

® o (319 T, v) (W)

lag between I(X,y)® S(n) and 1(X,y) ® C«(n) of (3.19.
In contrast to what Fig. 3.10suggests, the mean phase lag shows reasonable stability: the pe is at 83.4°.
Thanks to the matching resporses of S(n) and Cy(n), the pe&k is mewhat narrower than in Fig. 3.31
(0=17.39. From these findings, we may exped that both formulae shoud be dmost equally suitable to
evaluate SPSinterferograms with vo,=1/(4 dy).

To verify this, we @nsider the Fourier spedra I (v,,v,) (5(v,) and I (v,,v,) [C(v,), from which we can

obtain bsc(vy,Vy) experimentally by (cf. 3.2.1.3

bso(v,.,vy) = arg(T (v, vy ) LB, ) + T (v, v,) BB(v,)) - arg(T (v, v, ) (V)
0 S(v,)0 (3739

which isagain —45°when (3.41) isvalid. This gives us an ideaof how well the "sine" and "cosine" images
correspond to their theoreticd descriptions. Applying the &owve cdculations to these images, we
eventualy obtain a phasor map in the frequency plane that shoud range from —172 to 172. As usuad in
DFT, we can use the equivalence [-vn,0] = [vn,2Wn] to come from the image to ou familiar plot of
bsc(vy). A first example of thisis presented in Fig. 3.33 the power spedrum of the inpu interferogram is
again that of Fig. 3.29

On the left, we find the distribution d bsc(vy,vy) for (3.18); the one for (3.19 would be indistinguishable
from it in this sze, which confirms that the performance of (3.18 and (3.19 is dmost equal despite the
differences explained abowe. It is only at first glance surprising that the signal sidebands are dmost
invisible in bsc(vy ,Vy): the phase cdculation o (3.73 does nat distinguish between signal and nase
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frequencies. The difference is lely that those regions of the frequency plane where there is no signal,
and hencerelatively littl e spedra power, are quite abit more noisy.
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Fig. 3.33: Left: bsc(vy,w) for (3.18 as cdculated from (3.73, with 02bladk and 22 white; note that v,=w=01is
in the cantre of the image. Right: bsc(v,) for (3.18 (blad) and (3.19 (white); average of 50 rows from
the small bladk frame onthe left.

To the right, the plot of bsc(vy) as output by (3.18 (bladk) and (3.19 (white) does indeed show that both
compare quite well with the correspondng graphin Fig. 3.13 The high ndse aound v,= 0 and = 2wy
refleds the suppresson d Iy, i.e. the fadt that S(0) = C(0) = 0. It is interesting to ncte that, in agreement
with the larger absolute filter output of (3.18), the susceptibility to nase is indeed somewhat lower than
for (3.19; but this affeds a frequency range that produces large erors anyway, so that the differencein
performance will be very small. For this case of a=90°, we therefore conclude that the utili sation d
different sets of pixels for different representations of the 3-sample 90° formula does nat invalidate the
theoretica considerationsin 3.2.2.3

For a=120°, we use a interferogram with a power spedrum as in Fig. 3.29 on the left; this time, the
signal sidebands cover a smaller part of the frequency plane. When this interferogram is processed with
(3.17), we can exped a qualitative behaviour resembling that in Fig. 3.31 becaise the sampling formulae
are both derived from (3.195. As to be seen from Fig. 3.34 this is indeed the cae; again the high-
frequency preference of 6(vx) isclealy visible. The distribution d the phase lag has amean of 89.6°and

astandard deviation o 22.0°.

° of 317: ‘r(vx,vy)mf(vx)zof (3.17); pixel

~ 2 |~ ~
Fig. 3.34: From left to right: ‘I (VX,Vy)‘ ; ‘I (Vi vy) BB(vy)

histogram of phase lag between | (X,y) ® S(n) and I(X,y) ® C(n) of (3.17).
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Investigating (3.50 with its equal spedral resporses of S(n) and Cy(n), the output spedra from
processng the same interferogram as above aeindeal equal, asto be compared in Fig. 3.35 but thistime
the phase quadrature is disturbed (centre & 104.9°,and 0=26.49).

2 ~ ~ 2
of (3.50; [T (v,..v,) EE(v,)| of (3.50; pixel histogram of phese

Fig. 3.35; From l€ft to right: r(vx,vy) [S?(vx)
lag between 1(x,y)® S(n) and I (x,y) ® C«(n) of (3.50.

From Fig. 3.13 we shoud exped equal performancefrom (3.17) and (3.50, but the quadrature deficiency
of (3.50 raises doulds in this resped. Therefore we use the help of bsc(vy) again; Fig. 3.36 gives a
comparison d the two methods.
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Fig. 3.36: Left: bsc(v,,v) for (3.17); right: bsc(vy) for (3.17) (bladk) and (3.50 (white); average caculated from
same imageregionasin Fig. 3.33

Again, we find good agreament with the theoreticd curve of Fig. 3.13 except for the slightly higher noise

of (3.50 as we leave the signal sideband. However, this difference does nat lead to a detedable

performance loss since there is comparatively little power outside the sidebands, which in addition is

gredly attenuated by the filter functions.

Since (3.17) isa DFT formula, it was possble to ched the performance of 120 dfferent 120° formulae
where the phase offsets of the sine aad cosine weighting functions were varied in 3° steps, with
coefficients acording to (3.14); two ou of these ae (3.17) and (3.50. A pair of interferograms from an
objed tilt was procesed to a sawtooth image with the 120 dfferent formulag and eat of them was
evaluated for gy ; the result was that indeed al the formulae gave performances equal to within 0.4%.
Therefore, when a=120°, it is best to chocse the representation with the simplest coefficients;, and
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although such atest isnat posgble with the threestep 90°formulag the findings thus far strongly indicae
asimilar behaviour.

In the eror-compensating formula (3.56), S(n) requires only two samples but C(n) uses four, whilst in
(3.57, bah terms include four samples; but adso for these methods, the performances are virtualy
identicd. Therefore we will not compare these in detail, bu we do investigate the performance of (3.56)
against that of (3.58); theseresults are shown in Fig. 3.37.
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Fig. 3.37: Top row: bsc(w,v,) for (3.56 (left) and (3.58 (right); bottom row: bsc(v,) for (3.56 (left) and (3.58
(right).

From the images as well as from the plots, we can seethat (3.56) operates with greder stability in the
whole spatial frequency range, including the signal regions. Also for the 3-sample formulae investigated
before, the tendency was reagnisable that a=90° gives dightly safer phase determination than a=120°.
For the reasons mentioned abowve in 3.2.2.4 this difference is even more pronourced when we d@tempt to
corred phase-shifting errors. After our numerous considerations of spatia frequencies, the reasons for this
are deda: setting Vcgeom 10 Un/2 asaures best utilisation o the frequency plane and best suppresson o
detuning errors.

Our scrutiny of the dfed of different sampling pixel clusters yields the interesting result that the
representation d the used formula can be chosen at convenience This fadlit ates a simple general strategy
for plaang the signal sidebands optimally: given the invariant course of bsc(w), or bsc(vx ,vy) for
composite x- and y-phase shift, one can refer to that representation d the phase-extradion formula which
gives equal frequency resporses of §n) and C(n), and maximise the signa utili sation (in which the
system MTF will also play arole) while minimising the phase-shifting errors. Once this is dore, ore can
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go bad to asimple representation d the formula, which, as we have seen, will naot affed its performance
For the cae of ds=3 d, it was indeed foundthat the best v geom for, say, (3.19 was a=75%sample, and
for, e.g., (3.17), the minimal error occurred around a=1007sample. But the difference in performance
was only 2-3%; and since aso these values may change with the sensor and eledronics used, we do nd
further pursue this detalil .

3.4.6 Distorted phase distributions due to miscalibrated phase shift

None of the formulae investigated, including the eror-compensating ones, will perfedly suppress the
oscill ating phase arors ketched in Fig. 3.14 This has important consequences for the statistics of the
measured pheses. In the presence of a systematic phase-shift deviation, the uniform distribution o the
spedkle phases (cf. (2.6)) will be modified by the faulty measurements, as pointed ou in [Kad91]. The
arrows in Fig. 3.14indicate the diredion to which the true ¢o values are biased by measuring ¢o+o¢o
under excessve phase shift: phase readings of 0<¢o<172 areincreased by d¢o, and thaose of TV2<¢o<tare
deaeased. The same thing happens between 1t and 2, so that the measured values will be more or less
concentrated at =172 and =3172. Hence, the histograms of measured spedle phases will show
charaderistic fluctuations. For phase shifts that are too small, d¢o changes its sgn, whereby phase
measurements cumulate & =0 and =1t Thisis demonstrated by Fig. 3.38 where histograms of measured
spedkle phases are compared for diff erent phase shifts.

Fig. 3.38: Influence of red phase shift on measured spedkle phase pdf when remnstructed by (3.19
(Aigea=90°/sample) with d=3 dj,. Left, {Qrea) <90°; centre, {drea)=90°, right, {area)>90°. Abscissaerange
from O to 2rg ordinates give relative frequencies.

This effed has been used in [Kad91, Bot97, Dob97 to cdibrate the phase shift. In SPShowever, this
cdibrationis different from the Fourier method kecause it optimises the centre of gravity of the sideband
instead of its geometricd centre. As explained abowe, this invalves the sensor MTF and the transfer
spedrum of the phase-extradion formula. Therefore ageom Will rarely coincide with {a); | judge the
cdibration onageom to be more reliable, acarate and advisable from the standpant of signal utili sation,
and in what foll ows, a will denote ageom.

Moreover, Fig. 3.38teades us that even with the wrred {a), the deviations will nat vanish. This is of
course owing to the spedkle phase gradients that inevitably cause locd detuning; the smaller the spedkles,
the larger the deviations will get. Thisis partly due to increasing phase gradients on the canera pixels as
the spedkles get smaller, and for smaller spedles, the I, will not even lie within ore statistica
coherence aea aymore. Hence, we have an oscill ating measurement error regardless of the aljusted
phase shift. Since the phase offset k- a in a spatially phase-shifted interferogram varies by a from sample
to sample, aso d¢o will vary cyclicdly. This effed has been given the name "high-frequency fringe
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error”; in classcd interferometry, it causes a fine ripple in the measured phase map [CreQ6]. In spedle
interferometry, where sawtooth images A¢(x,y) are generated by subtrading spedkle phases ¢o;(x,y) and
doi(Xy), Opo dternately cancds and doulbes, depending on Ag(x,y). Independent of the miscdibration's
sgn, AP, =g+ =-AP,+102) (cf. Fig. 3.14); therefore oo cancels when Ag(x,y) is 0 or T, and

doulesin between. Thisisin contrast to (3.55, where d¢o is averaged ou by addition d two sampling
sequences offset by 172; the A¢(x,y) maps however are formed by subtradion. The dfed of this can be
sean in Fig. 3.39for ds=3 d,: the phase-measurement error depends on the phase to be found. The eror
images on the right are the @solute differences between the adual phase maps and their least-squares-
fitted nase-free ounerparts (see Chapter 4.2). The inserted white eror curves alow a quantitative
comparison d d@o vs. AP(X,y).

S¢ol°

D)
Fig. 3.39: Fringe profiles (left) and correspondng d¢o (right) from a displacenent measurement with

a=90°/column and various phase-extradion formulae top, (3.19; bottom, (3.57). All i mages come from

the same region d interest and have 256X 64 [xels; the eror curves ontheright are verticdly averaged.
When the phaseis cdculated by (3.19 (upper row), asignificant rippleis produced aroundA¢(x)=1v2 and
AP(X)=3172 that also leads to a higher average aror. In the lower row, the aror compensation d (3.57)
does not remove the ripple mmpletely, bu is good enough to suppressit to approximately the level of the
spedle naise: amost no high-frequency oscill ations can be seen in the sawtooth image. The remaining
profile of d¢, is dill periodicd but the frequency is halved to 1/(2m). The importance of phase-shift
deviations and their corredionis clealy emphasised by Fig. 3.39

Moreover, we observe that in bah of the aror graphs, d¢o is higher for Ag(x)=Tt than for A¢(x)=0. This
reminds of correlation fringes, which also have low noise for A¢=0, and also the reasonis smilar: a phase
difference of zero is aways measured reliably because both interferograms smply look the same in this
case. It is then unimportant what formula is used: the aror minima ae dmost identicd in bah o¢o
images. At A¢g =11, the carier fringe pattern is "inverted” from the first to the secondinterferogram, so that
phase-cdculation errors with a period d 2rt will change their sign and introduce the largest deviations
uponsubtradion d the spedle phase maps.

It is now interesting to see what fringe profiles we can oltain with ou 120° formulae The earor
suppresson by (3.59 is theoreticdly somewhat inferior to (3.57); the ratio of remaining errors of the
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methods houd be 4/3 [Lar99]. For Fig. 3.40 a pair of interferograms with ds=3 d, and a=120° was
processed with various correspondng formulae

4 i g p it

Fig. 3.40: Fringe profiles (left) and correspondng phase erors (right) from a displacenent measurement with
a=120°/column and various phase-extradion methods: top, (3.17); midde, (3.58; bottom, Fourier
method. Scdes are ain Fig. 3.39

The @aror profile produced by (3.17) is very similar to that from (3.19 (Fig. 3.39 upper row) baoth

quditatively and guantitatively. From the graphs presented here, it is hard to tell which is better, so that

we defer the answer to Chapters 5 and 5. As could be presumed, (3.58 leaves a faint ripple that is only
just discernible in Fig. 3.4Q in this case, only the Fourier transform approad (cf. Chapter 6.5) is capable
of suppressng the oscill ations below the spedle noise.

There is yet ancther consequence of this phase-dependent error: in a similar way as abowve for
miscdibrated a, the measurements of A¢ tend to concentrate & 0 and 1t they "le&" most strongly from
A¢ =172 and 372, which are therefore the least frequent values in the sawtooth image, bu also from all
A¢ other than 0 a 1t When detuning corredionis present, the relative frequency of A¢=0 will i ncresse &
the expense of A¢ =11, where the largest errors occur and which is consequently the rarest entry in the map
of A¢ (x,y). Therelative frequencies of A¢ valuesin ou full-size (1024x768 pxels) test sawtooth images,
not just the portions shown before, are summarised in Fig. 3.41

T
o

Fig. 3.41 Pixel histograms of phase values in sawtooth images cdculated by various phase-sampling formulae
Upper row refersto Fig. 3.39 left: result from (3.19); right: results from (3.57). Lower row refersto Fig.
3.40Q left, (3.17); centre, (3.58; right, Fourier method. The éscissaerange from O to 2rg the ordinates
give relative frequencies.
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Since the displacement's phase gradient is constant in the test images and the histograms were generated
from an integer number of fringes (5.0), the true phase distribution is uniform as in Fig. 3.7, but
depending on the anourt and type of d¢,, various distortions are present. For a=90%sample, (3.57)
(upper row, right histogram) yields the most redistic phase statistics with orly a small preference for
A¢ =0. In the centre of the lower row of Fig. 3.41, ore can recognise the residual ripple in the phase map
from (3.58 by a small increase of the distribution at A¢ =11, generally speaking, the anourt of detuning
sensitivity may be seen from the height of that pe. Finally, the Fourier method (lower row, right
histogram) suppresses this deviation as well and leals to amost uniform phase statistics.

Whil e these dfeds exert a smaller influence on the measuring acairacy than the histograms may suggest,
they are cdharaderistic of SPS As e abowve in Fig. 3.7, TPSyields perfedly uniform distributions when
the phase shift is well cdibrated; but in SPSthe spedkle phase gradients always cause systematic
distortions. These even allow one to tell from the histogram of a sawtooth image whether it is from TPS
or SPS andin the latter case, what type of phase-extradion formulawas used.
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4 Quantification of displacement-measurement errors

Since amagjor part of this work deds with the "quality" of displacenent phase maps, it is vital to have a
numericd figure of merit at hand that allows to compare measurements acarately enough. While the
human brain's image processng alowsto tell a"bad" sawtooth image A¢(x,y) from a"good' one & just a
glance it runs into problems when small quality differences have to be found @ even quantified.
Therefore, we must find areliable and standardised methodto determine noise levels numericdly.

The general problem when determining the noise in measured dsplacanent phase maps A@meas(X,y) is:
what does the noise-freereference phase map A¢ «(X,y) look like, and hav can ore oltain it? In pradice
unless excdlently cdibrated dsplacanents are available, ore has to fal badk upon the adua
measurement. One mmmon approad is to generate Ag «(X,y) by spatially smoathing the noisy phase map
APmeas(X,y) @ much as possble and to oltain an average displacanent phase-measurement error
(B0)={ | APrmeas(XY)-AP (Xy)|) or a so-cdled root-mean-square (r.m.s) displacement phase-

measurement error JM,:\/<(A¢rrms(x,y)—Aqbref (x,y))2> from a mmparison d the "raw" and the

smoacthed data. Such approaches are widely used and give reasonable results, bu the best way to reduce
the noise in a sawtooth image will most likely depend onthe inpu image; this is, the smoathing filter's
parameters and/or the number of iterations remain a matter of user judgement. Since we intend to
compare TPS and SPS and to find improved phese-extradion methods for SPSlater on, we nedl
comparable performance data throughou a very wide range of fringe densities and nase levels, so that
smoothing images "by hand" does not seem to be universal and acarrate enough. Therefore, to generaise
the process of finding the best-matching A¢ («(X,y), | felt the need to develop an dmost fully automatic
procedure.

4.1 Previous methods

We start with a brief survey of some existing noise reduction methods; whil e their objedive has ssldom
been an acarate quantification d experimental errors, their purpose is certainly to improve the reli ability
of experimental data, which happens by approximating A¢«(Xy), the true phase map, as closely as
possble. Although we ae aming at a method to evaluate sawtooth images, we dso include some
adhievements of naise handing in secondary interferograms. We will, however, pu some enphasis onthe
procesgng of sawtooth images and pant out spedfic difficulties with various filt ering schemes.

4.1.1 Processing of correlation fringes

There is a wedth of smocthing and filtering methods to generate deaer fringes from ESH subtradion
images that can then be used for the phase-of-diff erence method, o possbly for dired evaluation. It is
important to redise that the design o filters for correlation fringes must take into acourt that the spedle
noise is multiplicaive in secondary interferograms. This is nat a generic property of the spedle dfed
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[Tur82]; however when correlation fringes are formed as described in Chapter 3.1, this is valid, as can
instantly be seen from (3.4) and related expressons.

The general problem is to smoath the @rrelation fringes as much as passble whil e preserving detail s of
the image, which is a demanding task in image processng. A helpful tod to quantify spedle noiseis the
so-cdled spedkle index [Cri85], here defined for a3x3 neighbouhood d pixel (k,l)as

1 N A

i (N - 2)2 k:gzlm

1 1
AkI::maX(|k+i‘|+j)_min(|k+i,l+j)1 <|k|>::%z z|k+i.l+i’
i=—1j=—1

with

(4.2)

where -1<i, j<1 in an image of N?pixels, and the normali sation ac@urts for the exclusion d the image
edges. Depending on the spedfic goplicaion, alarger neighbouhood(|imex|,|jmex| >1) may be chasen. The
quantity s can be regarded as a measure of the noise-to-signal ratio and is useful to assessthe performance
of spedally designed filters.

When the reference data ae known (typicdly in computer simulations), it is passble to employ a quantity
cdled image fidelity, defined as [Dav94]

(4.2)

and indicding the simil arity of ared image to the ided one; asin (4.1), the aror is weighted by the bias
intensity to oktain a noise-to-signal figure.

Many types of spedalised routines, partly involving considerable computational or experimental effort,
have been developed. These ae, inter alia, low-pass filtering with contrast enhancement, pdynomial
fitting [Var82], binarising and xor processng [Nak83], geometric filtering [Cri85], image segmentation,
fringe thinning with phase interpolation [Yat82, Ost87, Eich8§, variance dgorithm [Cre87], averaging
over different spedkle pattern redisations, ether in the image plane [Cre85¢c, Fre92] or in the Fourier-
transform plane [Hun92,Hun934, scde-spacefilter [Dav96], wavelet analysis [Kau96,Ber97] and dred
correlations [ Schmi97].

The simple gproach of discarding the high spatial frequencies of the spedles in the Fourier plane has
been shown to require mnsiderable user interadion [Ker89], unessthe fringe patterns are very simple, or
to blur image detail s, e.g. hdes or edges [Dav96]. This can be drcumvented by recording the frequency
content of the spedkle pattern separately and dviding it out from that of the correlation fringe image
[Bie89]. Equivaently, it can be subtraded ona logarithmic scde, which acourts for the multi pli cative
nature of the noise.



4.1 Previous methods 101

All of these methods have led to substantial improvement in the fringe evaluation while simultaneously
minimising interadion and arbitrariness but the alvent of phase-shifting in ESA has grealy superseded
their applicaion. However, phase shifting is gill not fully available in doubbe-pulse aldition fringes
[Kau94, Pou9], so that the need continues to analyse @rrelation fringes. Today there ae spedalised
fringe-fitting procedures [Yu 98, Schmi9g] that rely on a priori information such as the sign of
deformation and the power spedra of signal and nase, which leads to results that can easily compete with
the acaragy of standard phese shifting. Also, the use of Bayesian inference[Mar97, Schmi97, Lir99] has
proven helpful to restore low-noise data from correlation fringes. A promising class of fringe filters is
known as regularisation functionals [Ser97a, Mar97], which are essntially narrow bandpessfilters that
adapt automaticdly to the locd fringe frequency and thus evade the problems associated with fixed filter
sizes. While the listed methods are very powerful, their main drawbadk remains that they require the
operator's careful choiceof filter parametersto oltain the "best” results.

4.1.2 Processing of sawtooth fringes

In Chapter 3.2.1, we have seen that the diff erence-of-phases method is more suitable for our purpose, so
that we need na prepare perfed correlation fringes for the phase cdculation, na even try to oltain phese
data from only one sewmndary interferogram. Unfortunately, the figures of merit (4.1) and (4.2),
normalised by the locd spedle intensity, fall in ou intended applicaion to phese maps becaise in
APrmeas(Xy), the information about the underlying spedkle intensities is discarded.” In what follows, we
will therefore simply regard the phase noise & additive [Cap97] and investigate some standard filtering
procedures for phase maps.

Generaly, low-passfiltering of sawtooth images is very efficient to suppressthe "sat-and-pepper” noise
spikes, and consequently, even afilter size of 3x3 pixels effeds a significant reduction d the residual
noise. The isaue of image blurring is very much the same & above, however the alditiona difficulty
arises that the 0 21t phase jumps or, equivaently, the 0— 255 grey-level jumps, need to be preserved as
faithfully as possble by the smoathing operation.

4.1.2.1 Smoothing the arctangent

The alge-preserving property of the median filter has made it the common choice for smoathing sawtooth
images for along time. However, this type of filter does not perfedly retain the 0—255jumps. If the ided
grey value for apixe is 0 o 255, the median filter will not be &le to reproduce it becaise it will never
find values below 0 o abowve 255, which would be necessary if 0 or 255 were to be the median of a

" However, it has been shown that the reliability of Ages(Xy) is propartional to M, i(x,y) - M+ (xy) [Hun97, Leh9g], where i
denotes the first and f the final objed state; this has been used for optimised filtering [Hun97, Cog99] and could also serve s a
normali sation to oltain a signal-to-noise figure for phase maps. Whil e this way of generating Ag,«(X,y) leals to good results, it
would of course not eli minate the noise.
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particular pixel array. Fig. 4.1 illustrates the dfed of median filtering by data from a measurement of a
mere out-of-plane tilt that shoud give alinea phase profile.

224 /
192 -
3 160 +
g
2 128 +
o
O 96 +
64 +
raw data
32 + :
— 9x9 median L_//
O T T T T T
0 50 100 150 200 250

X -position/pixel

Fig. 4.1: Effea of image smoacthing by a median window. A single image row is displayed for both raw and
filtered data, bu the median filtering was dore, as usual, in 2D.

Whil e the spikes in the raw data could be removed with a 3x3 pixel filter, the distortions of the fringe
profile continued to distinctly cam down urtil the filter kernel size of 9x9 was readed. Even with so
large afilter window, there ae significant deviations from the expeded linea course of the phase. The
0255 trangitions where the phase is "wrapped" (white-bladk edges in the image) remain sharp, bu the
fringe profile neaby gets rounded dff. Hence the raw data set will in fad be more acarate in those
regions despite the higher naise. With fringe densities as low as in the figure (some 5 fringes over 1024
pixels), it would be possble and desirable to use very large median windows; but due to the alge
falsificaion, thismust be ruled ou.

There have been successul attempts to eliminate the edge falsificaion by generating a second sawtoaoth
image Admeas(X,Y)+TT, Where the wrap edges are shifted a posteriori by half a fringe width. Then bah
APrmeas(X,Y) and Admeas(X,y)+TT are filtered and oy the wrap-freeregions from both images resssembled,
where, of course, the phase shift by 1T must be undore in the second image [Vik90Q]; this is perfedly
permissble becaise the fringe offset in sawtooth images is arbitrary. It was found that the edge
degradationis very efficiently suppressed by thistechnique.

The so-cdled clasdficaion filtering method described in [Own91c] exceels the performance of the
median filter: it is edge-preserving, much faster than the median processng — that amost always involves
pixel sorting —and also yields the best noise tolerance of al filtering routines gudied in [Own91c].

Anather high-performance sawtoath-image filter is the partially reaursive window described in [Pfi93]; it
proceals line by line ad stores the smoothed data bad to their original addresses, so that the filter
window will operate on bah smoothed and raw data in subsequent image lines. The performance of this
filter has been compared with aher filters recently in [Aebi99].
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4.1.2.2 Smoothing sine and cosine

To cope with the problem of edges, it has also been adopted to work on, in the mathematicd sense,
continuous data: the sawtooth image (signifying the opticd phase) can be decompaosed a pasteriori into
the sine and the @sine part from which it was originaly generated [LUh93 (cf. 3.4.9; this 4ep has
recantly been given the name of "trigonametric transform” [Se&d8]. This gives two edge-free fringe
profiles that can be filtered with considerably larger filter windows, withou affeding the 0—2m
transitions that appea again when the phase is re-cdculated. However, too large afilter will attenuate the
contrast of the sine/cosine patterns or eliminate them completely, depending on their spatia frequency;
therefore the proper choice of filter size requires sme cae & well. Fig. 4.2 shows the improvement
brought abou by this grategy when the samefilter size e aboveis used.
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Fig. 4.2: Effed of image smoathing by decompaosing into sine and cosine part, low-passfiltering ead of them and
re-cdculating the phase. As above, single image lines are shawn, and the filtering was done in 2D.

Obvioudly, the edges and their heights are preserved in this case; but the fringe shape till remains noisy.
It improves a littl e when a median filter is used for the sine and cosine images. unlike the low-passfilter
that is smply an average formation, the median filter redly eliminates outliers. Yet it is clea that the
ided fringe profile will still not be restored hy this type of filtering operation. Moreover, it is definitely
inappropriate for the case of deterministic large-scde distortions of the fringe profile, as Fig. 4.3 shows.

In this case, a severe phase-shift miscdibration resulted in a cncentration o cdculated phase values
around Oand 180°(seeChapter 3.4.6, and the filtering does nat even approximately restore the expeded
fringe profile. While this is cetainly an extreme example, it shows that filtering does not automaticdly
generate an ided reference phase map A (X,y) where bath randam and deterministic erors ought to be
small or absent. Therefore, oy Will be underestimated when caculated with the black curvein Fig. 4.3 as
areference
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Fig. 4.3: Deterministicdly distorted fringe profile due to wrong phase shift; filtering in 2D by the sine-cosine
methodwith 9x9-median windows.

From this, it gets clea that filtering sawtooth images to oliain reference data is aways only an
approximation. This houd perform well enough in most cases but seams inappropriate for us sncethere
are some extreme fringe densities and nase levels to be explored. And finally, the filter size caana be
standardised, the best choicewould change from image to image and still remain a matter of judgement.

4.1.2.3 Composite method

Recently it has been demonstrated that a very good filter can be implemented by using the sine-cosine
method with a small filter size together with a large number of iterations [Aebi99]; the peauliarity of this
algorithm is that the phase is aways re-cdculated between the iterations. Once aain, the phasor
interpretation asgsts in understanding this qualitatively: by determining the phases and re-deriving sine
and cosine from them, the length of the phasors is re-set to unty in ead iteration, which cournterads the
contrast attenuation mentioned above and preserves any phase detail in the image that survives a single
run d thefilter kernel. Hence, ore can in principle use abitrarily many iterations and therefore diminate
the spedkle noise dmost completely. This ems to be a promising method to generate nea-ided
reference data from whatever input fringe pattern. But still the restriction is that the filter size must be
optimised by the operator; and also, depending on the acairacy required, the number of iterations may
bewmme very large. It was also olserved that at the borders of the image and/or at phase discontinuities in
the image, the phase profil e gets more and more distorted with increasing number of iterations.

4.1.2.4 Comparing unwrapped data

The problem of white-blac edges in the image can also be drcumvented by unwrapping the phase before
comparing raw and smocthed data. Clealy, the raw image must not be filtered before unwrapping, which
restricts the goplication d this method to rather good results with low to medium noise axd moderate
fringe density. Even then, the result will not be adired conversion d phase to displacanent, since dmost
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all unwrapping algorithms substitute "bad" pixels by some "better" estimate and hence tend to suppress
errors without the user's request.

The atradive feaure of this method is that, if the — continuows — theoreticd displacement function is
qualitatively known, ore can generate cmpletely noise-free reference data, e.g. a best-fit plane. The
parameters for the displacanent function are aljusted to match the measured values best, which will be
dore by an iterative fitting process An example of this is presented in Fig. 4.4 the sawtooth image
Ag(x,y) whose fringe profile has been shown in Fig. 4.1 and Fig. 4.2 was unwrapped — withou prior
filtering —, and a best-fit plane was subtraded from the resulting height data Ad(x,y). Hence, the residual
displacement deviations dd(x,y) — scded bad to grey levels to alow a comparison with the previous
figures— could be diredly evaluated for their rms, gx.
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Fig. 4.4: Deviation &d between unwrapped sawtooth image and best-fit plane (dd=0). "1/4 data": average of 4 lines
of input image; "1/8 data": average of 8 lines of inpu image; seetext.

Comparing the deviations &d in Fig. 4.4 with the deviations of the white aurvesin Fig. 4.1-Fig. 4.3 from
the expeded linea fringe profile, it is evident that a substantial unintentional smoothing has occurred: the
spikes have been removed. This is in part due to the &ovementioned pixel replacenent during the
conversion d A¢ to Ad by the unwrapping algorithm; but the more important contribution comes from the
data reduction that could na be switched off [Ett97]: on urwrapping with the highest choosable
resolution, an image with, e.g., 1024x768 pxels will be shrunk to 256x192 averaged height values,
which, as known, reduces the spatia resolution and the noise. On testing a two times lower output
resolution, ore finds however that the values for oy are dmost the same for the correspondng image
lines out of a 256x192 entry field (denoted by "1/4 data' in Fig. 4.4) and ou of a 128%x96 entry field
(dencted by "1/8 data’ in Fig. 4.4), respedively; thisis, littl e further data smoacthing takes place dter the
unwrapping step. While the aitomatic noise suppresson duing unwrapping is certainly useful for
pradicd tasks, it runs courter to ou intentions of quantitative aror determination, and is therefore nat
considered further.
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4.2 Noise quantification in this work

For a quantitative comparison d TPS and SPS we will have to test different spedkle sizes, fringe
densities, and experimental set-ups, which means that a universal method is needed to find the reference
data from which to cdculate gy. From the precealing discusson, it appeas desirable to avoid estimating
A@ «(Xy) from the experiment, which means that the theoreticd displacement function shoud be known.
Furthermore, urwrapping shoud be avoided becaise it involves additional, and sometimes unknown,
image processng by the unwrapping algorithm.

A concept fulfilli ng these requirements is fitting a synthetic, nase-free sawtooth image to the mmpletely
unprocesed ariginal one. This of course requires that we know very well what type of fringe pattern the
experiment shoud generate. We chocse alinea phase @murse in x- and/or y-diredion as displacanent
function, which gives draight and equidistant sawtoaoth fringes with arbitrary density and dredion. This
approad is sufficiently general for our purpose: provided the field of sensitivity is quasi-uniform, it
adapts to ou-of-planettilts, and in-plane rotations.

Sincethe global phaseis nat controlled in most of the experiments, the pasiti ons of the white-bladk edges
can vary considerably for otherwise identicd displacanents; therefore the synthetic fringe pattern has to
be given the corred phase off set as well .

Together, we have threeparameters to ogtimise in arder to oltain the best-matching synthetic image: (i) the
number of fringes per image width (1024 pxes) in x-diredion, Ny; (ii) the number of fringes per image
height (768 pxels) in y-diredion, N'y; and (jii) the phase offset Np a some abitrary paint. For the latter, a
pradicd chaiceisthe upper left corner of theimagesthat isinterpreted as (0,0) by computer graphics.

In the plots that follow in Chapters 5 and 5, N'y is multiplied by 4/3 to yield Ny2"fringes per 1024 pxels’,
so that the fringe densities, na the adua fringe numbers in the image, are eual when Ny=N,. Since we
are evaluating phase maps, the signs of Ny and Ny must match the respedive phase gradient in the image.
Every triple (Ny, Ny, No) isapaint in IR® from which a noise-freesawtooth image can be generated. Since
we ae interested in the rms of the displacenent-measurement error, oy, first a least-squares fit must be
run to find that A¢«(x)y) which minimises gpg , and then ogpy must be mnverted to oy via the
interferometric sensiti vity vedor. The quantity actually used for the fit are the pixels’ grey valuesin the 8-
bit phase map representations.

In multidimensional parameter spaces, it is generally not essy to implement fitting algorithms; most of
them are extensions of one-dimensiona strategies. They tend to be mathematicdly complicaed and
require some cae to make them reasonably fail-safe. Apparently, there is only one genuinely
multidimensional fitting strategy, namely the "downhill simplex method' that is described in detail in
[Pre88]. It is easy to code and extend to more degrees of freedom, which is presumably why several
mathematics programs also include a"simplex" modue. Although the smplex method is comparatively
slow, it has a high inherent robustness (indeed, it never failed to terminate rredly in thousands of runs
for thiswork).



4.2 Noise quantificaion in this work 107

A simplex in IR" is a (hyper-)body set up by n+1 vertices; it is the smplest body one can creae in the
respedive dimensiondlity. In IR®, a simplex is a tetrahedron. Because this is the parameter spacethat we
are in with ou type of sawtooth images, we ansider this example to clarify how the strategy works.
Initially, the routine is passed a starting vertex, which is the user guessfor (Ny, Ny, No). From this, the
noise-free fringe system A¢ «(Xy) is cadculated to compare it with A meas(X)y). The resulting opg is
assgned to the first vertex. Then, the three other vertices are established by simply varying ead ore of
the parameter co-ordinates a littl e; this 3-bein ensures that a volume is generated instead of a plane or a
line. Each of the vertices defines adightly different Ag (x,y) and thus leals to its correspondng dag , SO
that we have aset of four different gps . The vertex that has generated Opgmax IS the worst-fitting point,
and hencethe one to move through the IR® to find alocation closer to the minimum for it. (There ae many
locd minima, bu with an acaracy of % fringe for the starting values, the asolute minimum is sfely
found) Thisisdone by means of the geometricd operations ketched in Fig. 4.5.

Fig. 4.5: Downhill simplex datafitting strategy in 3 dmensions (seetext). Figure taken from [Pre88].

During the fitting process the simplex must remain nondegenerate, i.e. truly 3-dimensional, which is
guaranteed by the shown sequence of trials. Asaumed the "worst" and "best” vertices are asin Fig. 4.5at
the beginning — or any other stage — of the fitting process the first trial is 4ep a), arefledion d the worst
point through its oppasite — here shaded — surface (generaly, through the centre of gravity of all other
vertices). If the new gjy is then foundto have deaeased, an expansion as in step b) will be tested. If Opy
deaeases further, this larger step toward the minimum is dore. If noimprovement comes abou by step a),
step ) is exeauted: the tetrahedron just shrinks away from the worst point. If this does not reduce oy
either, the tetrahedron is smply contraded towards the best-fit point, as in step d): only the "best" vertex
is fixed, and al three other points are moved towards it, so that the resulting tetrahedron will be the
dashed ouline. Then the processrepeds with a new worst point, and if we ae lucky, the former worst
point could be the new best ore. In ead iteration, the aurrently worst estimate of (Ny, Ny, No) is subjeded
to the trial sequence, whereby the tetrahedron cregos through the IR® to enclose the minimum, and then to
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contrad until the desired relative acairacy of the rms valuesisreaded. As an example, Fig. 4.6 presents a
comparison d ided and measured phase map at the final iteration d the fitting procedure. In this case, the

iterations terminated a (Onpmax —Ong.min)/Onpmin = 10°. The ided data have been dgitised for
visualisation only, bu the fitti ng routine uses the C language's| ong doubl e numericd format.

Fig. 4.6: Downhill simplex algorithm at work, just exeauting the last iteration. Upper half, best-fit Ag «(X,y), laid
over Admeas(X,y) still visible in lower half.

The disadvantage of the method is that every iteration involves the generation d 1024x768 synthetic
phase values and the cmparison to their measured courterparts. This took = 4 s on the Pentium-233
system used. Consequently, one determination d gxg¢ with 40to 50iterations took some 3 minutes, so that
most of the results of Chapters 5 and 5 come from batch-fit sequences that ran owvernight. An advantage of
this expensive gproad is that the output is an average over the whole image and therefore statisticdly
very reliable.

The method was tested by synthetic fringe patterns with various known amourts of randam noise, and it
was verified that with the termination thresnold given abowve, the pre-set Ny, Ny and Ny could be found
with an acarracy of 0.01fringes even at very high g4 . Re-starts of the routine dways led to the same
results within this acaracy.

The least possble gpy for non-constant phases is (by digitisation d measured data) 0.29 grey values or
0.41° the largest detedable oy (trying to find a fringe system in random noise, e.g. a spedkle phase map)
amouns to 73.9grey values or 103.9° (see &so [Own91c]). This is the rms of a uniform distribution
within the range [-128,128, correspondng to pheses in the range [-180°,180j. The eror is confined to
[-180°,180) because phase arors larger than 180°,i.e. of £(180°%¢), 0<e<180°, are wrapped badk onto
F(180°-¢) due to the gyclic nature of the phase. As an example, consider Fig. 4.1 and Fig. 4.2 the noise
spikes are highest nea the bladk-white edges, but this of course does not mean that the noise dso is. The
pronourced "salt-and-pepper” noise nea the sawtooth edges is only a charaderistic of the visua phase
representation. These merely visual problems with the representation d a nonunique phase have dso
been dscussed in Chapter 2.3.2
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As mentioned before, the fitting method can be eaily extended to greaer dimensiondlity. If, for instance,
a arrelation fringe pattern is to be evaluated, two degrees of freedom, namely I, and M,, are alded and
the dgorithm can determine the fringe visibility in IR>. More omplicated fringe structures could also be
treded. But every new variable increases the number of iteration steps as well as the time for a single
iteration, so that the issue of speed gainsimportancein such applications.

Since the resulting measurements of gpy Will mostly appea converted to graphs of gy in the foll owing
chapters, it may be helpful at this point to provide the reader with a pictorial representation d the various
amouns of noise. The image parts grouped in Fig. 4.7 are taken from an ou-of-plane TPS measurement
serieswith deaeasing objed illumination.

Fig. 4.7: Image segments from results of deformation measurements using TPS with varying, and rather weék,
objed illumination. oxg as grey values: 13.3, 21.2, 28.0, 40.3, 51a8d 63.1 as phase: 18.8°, 30.0, 39.5,
56.9, 73.3 and 89.0, in obvious order.

The last sawtoath image in the figure is hardly discernible & such and therefore raises the question
whether results like this are of any use & all. It turned ou, however, that the filtering procedure described
in sedion 4.1.2.2still im proved the image sufficiently to enable wrred unwrapping; but as explained
abowe, the phase aror could be determined withou doing so. Other examples of sawtooth images sverely
degraded by synthetic Gaussan ndse have been presented in [Kad97].

From the preceading overview of methods, it is clea that the gproach to ndse quantificaion pesented
here is new only in that it avoids unwrapping before the best-plane fit; however, it is the only strategy
known to me that can generate noise-free data with no user interadion —except for the inpu of starting
parameters — even from the worst of results, and is hence freeof arbitrariness While this may not aways
be necessary, it is desirable from amethoddogicd point of view.
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5 Comparison of noise in phase maps from TPS and SPS

Over the yeas, TPS has bemme a well-established tedhnique that is confidently used in many
applications; SPSis far lessfrequently used in ESA and seldom considered as an alternative despite its
ease of use and immunity to instabiliti es. And there ae indeed reasons to doult whether SPScan compete
with TPSin ESR: the small aperture needed to generate spedkles large enough for SPSlealsto deaeased
light efficiency, reduced spatial resolution, and also accéerates aperture-plane spedkle decorrelation.
Moreover, the spatial intensity and plese variations of the spedle field olstruct an acarate phase
cdculation, al the more & the number of avail able phase samplesis very limited.

But aso in TPS where dmost any error-compensating phase extradion with any number of intensity
readings could be employed, it is customary to use Carré's [Car66] or Schwider's [Schwi83] formula. This
is because not even the most sophisticaed o formulaewill help against speckle decorrelation and pxels
with too low moduation M,. Therefore, the uncertainty estimates have not changed much ower the yeas;
they range from A/15 [Nak85] to A/30 [Rob86, Ker88] or even A/50 [Vik91, WHae4], depending on
whether correlation fringes or specdkle phase maps are evaluated, and in the latter case, a'so onthe fringe
density.

As yet, there ae no correspondng data available for SPS so that the dedsion which method to use
remains a matter of presumptions. The present chapter is intended as an attempt to fill this gap [BurOQg].
Although it must be borne in mind that the data presented here ae, strictly speging, only valid for the
interferometer and test objed used, they do allow a comparison d TPSand SPS

There ae many parameters to be tested in such astudy. The most essential ones are the phase shift and the
referenceto-objed intensity ratio to use. Spedkle size and shape can be expeded to pay a speda role for
the fringe quality in SPS and by varying the fringe densities, we will get an ideawhether the reduced
gpatial resolution d SPSmatters in pradice Moreover, we will test the performance of TPS and SPS
under very low ill umination levels to lean what restrictions the small er aperture for SPSeffeds.

Although we will of course use imaging optics, we will determine the spedle size & if we were deding
with oljedive spedles; this is owing to the dslightly modified oljedive shown in Fig. 5.1 When we take
D as the diameter of the gerture and z as its distance to the camera dip, (2.43 remains perfedly valid,
although there is no "fre€' scatering after the lens anymore; but z is large enough for this smple
geometricd formulato function corredly, as was also confirmed by acairate measurements of the spedkle
size asdescribed in 3.3.1

Whil e the out-of-plane measurements can be caried ou with the same interferometer geometry for both
methods, the symmetricd-ill umination in-plane layout for TPS[Le€r0] canna be reproduced for SPS
Therefore we will test two dfferent approades of in-plane displacanent measurements with SPSto gain
a"threedimensiona” insight.
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In order to oltain comparable data, it is essential to cary out both TPS and SPSmeasurements under
experimental condtions as smilar as possble. Therefore | built a spedle interferometer suitable for TPS
and SPSmeasurements; espedally for the out-of-plane set-up, oy a minor change is necessary to switch
from one method to the other. For the other configurations, changes of rather different extent are
necessary. While it was possble to maintain the imaging geometry for the mixed in-plane/out-of-plane
configurations and also for the pure in-plane TPS set-up, the pure in-plane SPSasembly has littl e in
common with the "standard" set-up.

5.1 The experimental set-up

The out-of-plane arangement is iown in Fig. 5.1 The basic layout is Smilar throughou Chapters 5 and
5, and the front-end changes of the set-up for the other geometries are described later in the wntext of the
correspondng measurements.
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Fig. 5.1: Opticd set-up wsed for TPS and SPS Abbreviations: M, mirrors, BS, beam splitters, L, lenses, MO,
microscope objedives, PF, pdarisation filter, PZT, piezo aduator, A, aperture stop; upper left: detailed
view of A as :en from the diredion d the canera

The light from a 50-mW HeNe laser (A=633 m) is lit by BS1. The objed light is expanded by MO1
and collimated by alarge lens of 250 mm focd length, L1. This srves to oltain an aimost uniform field
of sensitivity [dVeu97]. The mirror M3 dreds the light onto the objed a an angle of = 11.5°to the
surfacenormal, which gives a quasi-out-of-plane sensitivity. The light spat onthe objed has a diameter of
some 10 cm, of which orly 28.5x21.5mn? are imaged orto 1024x768 pxels of the CCD sensor by L2
(f=100mm) with a magnificaion d M = 0.26. For a perfedly uniform field of sensitivity, the objed
would have to be imaged telecantricdly; but thanks to the small field of view, the aror introduced by the
conventional imaging geometry is negligible.

The objed, aflat auminium plate, can be tilted abou al threespatial axes, however the x and y rotation
axes lie 4.5 cm behind the plate's surface which gives rise to lateral spedkle displacement during
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ou-of-plane tilts. The ais of in-plane rotation coincides with the opticd axis. The duminium plate is
coated with awhite chalk spray that causes complete depalarisation. Thereby an incoherent badkgroundis
present in all of the measurements, which is aredistic scenario.

A second keansplitter BS2 together with mirror M2 guides the reference light path close to the one of the
objed. The mirror M2 can be displaced by means of the piezo-eledric trandator PZT (PI-170) and thus
adds the posghility to use TPS The pdarisation filter PF attenuates the reference light to the extent
required. By MO2 the reference wave is couded into a single-mode fibre that is held in paceby a bent
syringe neadle. The referencewavefront that leaves the fibre end (cut with blunt scissors) is very smoath.

The gerture stops A are laser-cut aluminium plates of 0.2 mm thicknesswith circular or €lli ptic holes of
various diameters to generate diff erent spedkle sizes. The distance Ax of the fibre end relative to the centre
of the gerture stop determines the spatial phase shift ay(Ax). It is st to zero (Ax=0) for the TPS
measurements and to the desired ay(Ax) for SPS and cdibrated by the Fourier method [Bot97]. Sincethe
necessry Ax is frequently larger than the radius of the gerture, there ae dits adjacent to the hdes
through which the referencelight can pass which is also depicted in Fig. 5.1 as sen from the diredion o
the canera. To oltain "clean” power spedra of the interferograms, the rest of the dlit is covered again
once the fibre end is corredly paositioned, which becomes very important for the smaller apertures. The
aperture shape for elli pticd spedklesisindicaed by the broken line; thus the spedles will be dongated in
x diredion.

For TPS the dlits are amvered completely and the fibre end is brought to the centre of the goerture. The
syringe neelle then obscures a part of the goerture, which becomes the more important the smaller the
aperture is. To remove the spatia phase shift, the Fourier method can asdst as well: the interference
sidebands in the frequency plane ae shifted into ead ather (seeChapter 3.3.1).

To shift the phase temporally, a cntrol bit from the PC triggers a digital sawtooth waveform generator
(HP 3312Q) that drives the PZT via an HV amplifier (built in-house). The voltage ramp is chosen so as
to generate anominal phase shift of a;, matching ay(Ax) to okltain comparable data. While the temporal
phase shifting is in progress a sequence of conseautive canera frames is gored, o which the first and
the last one ae subtraded. They have anominal phase diff erence of 2mand shoud look exadly the same.
If their mean brightness difference exceals a cetain threshold, an external mechanicd or thermal
disturbance is presumably present, the frames are discarded and the sequence is repeaed. Otherwise the
phase shift of al recorded frames is assumed to be rred; additional tests” confirmed a; to be acarate

"It turned out that the frame grabber was not capable of recording a full-format sequence of 1024 pixel frames (frame
frequency: 12.5 Hz) reliably, which iswhy only 1024x768 pxels were used.

™ These rely on exeauting a temporal phase-shift sequence withou removing the spatial phase shift. The global phase offsets
between the recorded interferograms can then be determined by caculating their phase maps with SPS and subtrading them. In
principle, the same was done in 5.3; see &so [Lai91, Kiich94, Win95].
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within + 5% when this technique was used. The subtradion methodis known as ,,dark frame* cdibration
method[Che85]. Note here that bath SPSand TPSare implemented as integrating-bucket versions.

5.2 Preliminary investigations

To oltain the best performance for bath of the methods, some experimental parameters have to be fixed.
These ae the phase shift to work with and the optimal reference-to-objed intensity ratio. The latter will
be treaed in Chapter 6.1.1in awider context; for now, let us retain that the standard beam ratio B=R/{O)
is10:1in this chapter. Also, it isimportant to get to know the test objed and to assessthe reli ability of the
results. The preliminary steps are briefly described below.

5.2.1 Choice of phase shift

Since it is essentia for light efficiency to keep the spedkles as snall as possble, the number of phase
sampling points for SPSis restricted to the minimum, which is three (see Chapter 3.2). Therefore, we use
athreephase formula dso in TPS For this number of samples, the two common values for the phase shift
to choaose from are a=90° a a=120°. Theoreticd results [Cre88, Sur97a] suggest that for TPS 120°
shoud be the better choice For SPShowever, the findings of Chapter 3.2.2indicae an advantage for
a=90°. The eror quantification established in Chapter 4.2 now alows us to ched these presumptions
experimentally. For this purpose, | recorded a series of out-of-plane tilts with various swtooth fringe
densities for eat o the phase shiftsin question, by both TPSand SPS The resulting g4 in the sawtoath
fringes was conwverted into gg and dotted over the number of fringes in the sawtoath image. This graphis
Fig.5.2
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Fig. 5.2: Test of phase shifting angles for TPSand SPS gy in wavelengths over fringe court N,. For TPS di=d,,
andfor SPS ds=3d,.

The g4 measurements show that a phase shift of 120°is clealy the better aternative for TPS particularly
in the region d low fringe densities, the 120° method yields distinctly the lowest error. Apart from the
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generally higher noise level, the acarracy of the SPSmeasurements shows alesspronourced dependence
on the phase shift. Moreover, the 90° formula performs dightly better, in contrast to the theoreticd
findings in [Bot97], bu in agreament with the more spedkle-spedfic investigations in Chapter 3.2.2 The
dlight difference in performance does however not appea to dscourage using 120° also for SPSin this
study, and we will do so to maintain comparability, bu will come badk to a=90°in SPSin Chapter 6.1.2

For higher fringe densities, TPS and SPS deliver similar performance this is partly due to the
aforementioned fad that significant spedkle displacanent occurs for larger tilts, which contributes the
larger part to spedkle decorrelation when the spedkles are small.

5.2.2 Reproducibility of the gy values

Whil e the fitting algorithm described in Chapter 4.2 yields a very reliable average of phase erorsin ore
sawtooth image, this tells us nothing abou whether we will get the same aror in a secnd experiment.
This deserves particular attention becaise the test objed had na been spedaly made: it was a large
mirror mourt onto which arotation stage was fitted with the duminium plate on it. The out-of-plane tilts
were generated by manual setting via the fine-thread screws of the mirror mourt, and the in-plane
rotations by manual setting of the rotation stage via areduction gea. While the latter yielded excdlent
reproducibility of the measured displacement errors, the former showed some fluctuations, which had to
be investigated in more detail to lean how reliable the oy measurements are. Fig. 5.3 shows the results for
aset of SPSexperiments. For ead of the spedle sizes 1.5, 3,and 6d,, the tilt sequence was repeaed 10

times; the averages (ay) with their respedive standard deviations og, are given in the figure. This was
dore for both verticd and haizontal sawtoaoth fringes.
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Fig. 5.3: Reproduwcibility of measurements of gy vs. N, and N, for out-of-plane tilts. Left: tilt abou y-axis, vertica
fringes; right: tilt abou x-axis, harizontal fringes. Note that the ordinates begin at gy = 0.04 A to expand
the eror bars.

For a spedkle size of 6 d,, the reproducibility is excdlent. At low fringe densities, the spatial phase
measurement works well because of the low intensity and plese gradients in the spedles; but as the tilt
increases, aperture-plane decorrelation impairs the acaracy. For ds=6 d, , the oy curves are very similar
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for Ny and N,. At lower spedkle sizes, ahigher bias noise is present (the aurves gart from higher values of
adINX,Nfo), bu in turn, {gq) increases more slowly with the fringe density. Apparently, a reduction d ds

effeds an increase of ggy particularly for tilts abou the x axis. Hence, there ae most likely randam in-

plane objed shifts of some um, and subsequent spedkle pattern shifts on the sensor, when the objed is
tilted so asto produce horizontal fringes.

Therefore we will consider verticd fringes in most of the out-of-plane investigations, athough the
performance was aso cheded with haizonta fringes and foundto essentially agree with Fig. 5.3 we
would lean littl e from displaying those aurves aswell.

Sincethe tilts were adjusted by hand, there was aso some fluctuation in the fringe densities given onthe
abscissaeof the plots. The aror amountsto + Yafringe for ead "basic" displacanent step of 5, 10,20, 30
and 40fringes; and for compositions of several of these (e.g. 100fringes 2 10+20+30+40 fringes), the
deviation sometimes acaimulated to + 1 fringe, which still seems negligible for plotting. Also, there was
dight interadion between the aes, i.e. the fringes were rarely exadly verticd or horizontal; this deviation
remained within + ¥ fringe per step as well and was nat systematic. Although ead curve for {(agy)

consists of only 12 chta paints, i.e. 12 dfferent fringe densities, the values are linked to "curves' for the
sake of abetter overview. This applies likewise to the gy plotsto foll ow, and will prove useful there.

Finally, in the TPS experiments, aso the stability of the interferometer plays a role for the acaracy of
measurements. As mentioned before, | applied rather stringent a aiterion to accept a phase-shifted frame
sequence. Since the laboratory was in the 1% floor, with a rail road and a motorway neaby, it saved much
time to dothese experiments with the least possble building vibration —whose maxima power was at
=4.3Hz —,i.e. between midnight and 4a.m.

5.3 Zero-displacement-gradient measurements

Of the results of phase measurements that will be presented here, those with zero dsplaceanent gradient
are the most general ones, since they do nd depend onthe spedfic assembly’s parameters but shoud be
comparable for any set-up with ony the spedle size @ the relevant quantity. The way to oltain such
measurements is to leave the objed untouched and to compare two naminally identicd objed states,
differing only by a cntrolled o randam global phase offset A¢. Unfortunately, in SPSthe measured gy
depends drongly on A¢ , which is due to the anple intensity and plese gradients in the objed spedle
field; this has been dscussed in detail in Chapter 3.4.4

Therefore, the evaluation o zero-displacement measurement errors in SPSis quite a elaborate
procedure: one has to colled a set of phase maps with various A¢ that suffices to reconstruct the
underlying continuows curve of oy vs. A¢ and then determine the mean of the erors. Since the
interferometer was fortunately too stable to produce phase drifts and fluctuations uniform in [0,2r), the
piezo-driven mirror asssted in generating the phase offsets. Of course, it has to move very slowly to
generate quasi-stable interferograms, | used an amplitude-moduated triangle waveform that was
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theoreticdly suitable to distribute the global phases uniformly over [0,2m) when the interferograms were
captured and stored at a fixed rate of 1/3 Hz. Fig. 5.4 shows results from this procedure for threediff erent
spedkle sizes and 120measurements of gy for ead of them.
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Fig. 5.4: Dependency of gy as determined by SPSon the phase off set A¢ for various pedkle sizes and N,=N,=0, cf.
the aror fringe profiles given in Fig. 3.39and Fig. 3.40

As in Chapter 3.4.6 the qualitative gpeaance of the graphs in Fig. 5.4 suggests that the underlying
phenomenon could mainly be alinea miscdibration d the phase shift: when we subtrad one phase map
from ancther, the arors thus produced theoreticdly cancd at phase differences of A¢ =0 and 11, and add
up in between these values. In particular, this explanation seans reasonable becaise the smaller the
spedkles, the higher their phase gradients in urits of d, and thus the larger gy. At A¢ = 11, however, gy
does nat read the minimum at ¢y = 0 again, which tell s us that there ae other error sources than wrong
phase shift alone; this has been interpreted in Chapter 3.4.6

The dependence of gy on A¢ is aso found within dsplacenent fringes (in which A¢ progresses
deterministicdly from —1tto 1), so that the oy which we asgn to sawtooth images is in itself an average
over all A¢. Examples of this behaviour are the white aurvesin Fig. 3.39and Fig. 3.40

As can be seen from Fig. 5.4, the distribution d the A¢ is gill tooirregular to permit adired cadculation
of the average; this effed does come from randam phase fluctuations in the interferometer. Therefore it
was necessary to fit suitable functions (given in the figure a well) to the data points and to determine the
mean values of these instead. The values finally obtained constitute the entries for Nx=N,=0 appeaing in
the foll owing plots.

With TPS nore of the described detoursis necessary; the phase aror does nat depend onthe global phase
offset, provided the phase shift is cdibrated exadly enough. Consequently, ore measurement with
N,=N,=0 sufficesto determine the wrrespondng gy. Furthermore, gy is uniformly distributed in sawtooth
fringes from TPS and there is no such thing as an error fringe profil e in this case.
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5.4 Out-of-plane displacements

The sequence of tilts described in 5.2.2was caried ou for both phase-shifting methods; the results for
verticd fringes (varying Ny) are graphed in Fig. 5.5. The @mnwversion fador from phase to dsplacement is
Al713°, o equivaently, A/(507 grey levels); this means that one wavelength o displacement givesrise to
amost two fringes in the sawtoath image. Hence, the maximal detedable 0y max in the sawtooth images
(cf. Chapter 4.2) correspondsto 104- A/713=74- A/507=0.146A for the out-of- plane geometry.
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Fig. 5.5: gq for ESH displacement measurements with SPS(left) and TPS(right) as a function o spedkle size for
out-of-plane displacaments. The parameter for ead curve is N, the number of verticd fringes per 1024
pixels, asindicated in the legend boes.

In the interpretation d these plots, we will again have to bea in mind that we encourter both types of
spedle deorrelation here: (i), aperture-plane decorrelation, which progresses faster for small apertures
(large spedles) as we increase the tilt; (ii), sensor-plane decorrelation a spedle pattern dsplacanent
due to oljed tilt, which leads to an increasing pixel pasition mismatch between initial and final spedle
pattern and affeds the fringe quality more strongly for small spedkles. It is true that the fringe quality
could be partly restored by re-pasitioning the images to compensate the shift of the spedle pattern, as
suggested in [Leh9g; but as this would frequently invalve noninteger pixel shifts, we do nd further
pursue this approach. Despite this minor flaw in the set-up, we will be &le to cary out the intended
comparison.

Not surprisingly, the zero-displacement measurements with SPSturn ou best with very large spedles,
since this minimises the problems for the phase cdculation. But the high sensitivity to aperture-plane
deaorrelation leads to a fast deterioration d the fringe quality as the tilt increases. Also, at N,=100, ore
fringe would consist of only one spedle & ds= 10 d,, and this is clealy below the limit of 4 spedles
givenin [Tan6§. For ds = 5 d,, which corresponds to 2 spedkles per fringe when Ny=100,we can arealy
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observe adistinctly reduced error. Further reduction d the spedkle size does nat grealy improve the
performancefor this and aher high Ny.

On the other end d the scde, at ds = 1.5d,, 0q from SPSconsists chiefly of bias noise (i.e. gy isaready at
=0.08A for Ny=0) unrtil decorrelation setsin. At moderate fringe densities, i.e. upto some 30 fringes over
the image width, we observe gy to increase steeply for a spedle size below some 2.5 d,, which shows that
the SPSmethod is not very tolerant of low spatial coherence of the data points. In general, the SPS
experiments confirm a spedkle size of abou 3 d, to be most suitable. Sincethe avail able anourt of objed
light grows as 1/d, we will not stop here and try to further reduce ds withou increasing gy in Chapter 6.4.

In the TPS experiments, a spedcle size aound 1d, turns out to yield the best results for low fringe
densities; yet at larger tilts, we obtain better measurements with larger spedkles. This is due to image-
plane spedkle displacanent: the same lateral spedkle displacement introduces lessnoise when the spedles
are larger, dthowgh the pattern in itself decorrel ates faster.

With large spedles, the TPS measurements are worse than those from SPSas on as the obed is
moved. For high fringe densities and ds =10 d, , some atries are missng from the arves becaise
decoorrelation had advanced in such a way that no traceof fringes was left (of course, the fitting algorithm
did find a minimum in the arse random phase map; but it always does). In this case, reducing the
spedkle size brings abou alarger improvement of performance

For Ny =40, SPSperforms better than TPSfor any spedle size. This demonstrates a peauliarity of SPS
because of the spatially extended phase-sampling window (see3.4.4), some smoathing of the phase values
takes place & they are determined. The sampling window has an extent of 3 pixelsin the x diredion orly,
which could introduce anisotropy; but the arors from the Ny measurements agreewith Fig. 5.5 quite well,
so that the one-dimensional phase sampling has no detedable dfed.

Thedrastic increase of gy for the spedkle size of 0.5d, is mewhat surprising, sinceit has been proven in
[Leh9§ that very good TPSmeasurements remain posshle even with much smaller spedkles. In ou case
however, there ae dso dlight randam in-plane shifts of the objed that accompany the tilts. They do nd
show upin the left-hand graph o Fig. 5.3 because of the larger spedkles used there; but at ds = 0.5d,, the
acaragy suffers naticedly from this minor effed.

To get an impresson d what the obtained sawtoath images look like, Fig. 5.6 provides sme example
results; the mrrespondng oy values may be foundfrom Fig. 5.5.
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Fig. 5.6: Some examples of maps of A¢(x,y) that have been evaluated for oy. Upper row, N,=5; lower row, N, =50;
left, SPSwith ds=3 dy; right, TPSwith d=1.5d,.

Summarising this subsedion, ore can state that TPSis sgnificantly more acarate than SPSat low fringe
densities. For SPS the best range of ds is 2.5to 3.5d,, with 0g=A/15 for moderate fringe densities; for
TPS we find ds=dj, to give atypicd oy of =A/20. Imperfedions of the test objed prevented an extension
of the TPS study towards smaller ds. It turns out that in the presence of spedle decrrelation, SPS
benefits from larger ds and spatial phase sampling, so that the advantage of TPS fades quickly with
increasing objed displacanent.

5.5 In-plane displacements

When carying out in-plane displacanent measurements using SPSand assssng its performance, the
reference is the ingenious gymmetricd pure-in-plane TPS configuration [LeerQ] with its excdlent
sengitivity. A pure-in-plane SPSconfiguration wsing a doulde goerture has been established [Sir97a], and
we will investigate its merits, but it also seams worthwhile to modify the set-up o Fig. 5.1 for more
oblique objed illumination and to gain in-plane sensitivity in this way, since this arrangement is by far
easier to hande.

Therefore we start the investigation d in-plane measurement acaracy with a set-up that has a mixed in-
plane/out-of-plane sensitivity (henceforth abbreviated by "mixed sensitivity") and again dfers a
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posshility to compare TPS and SPSunder the same experimental parameters. As on as pure in-plane
sensitivity is demanded, the interferometer assemblies are rather different, also from ead ather; we will
discussthese in the second part of this subsedion.

5.5.1 Mixed-sensitivity interferometer

As mentioned ealier, the set-up o Fig. 5.1 need only be dlightly changed to aaquire anon-negligible in-
plane sensiti vity componrent, which is shownin Fig. 5.7.

HeNe Laser
N

=/
, o

1 0
H
K
O

H
MN————

PZT < > 1 > I D-
M2 BS2 MO2
PC
HV Waveform generator frame memory
amplifir o _—1 -] trigger bit CCD

Fig. 5.7: Mixed-sensitivity set-up for detedion d in-plane objed displacanents by TPSor SPS

To oltain in-plane displacement sensitivity, the objed is ill uminated oHiquely by means of the alditi onal
mirror M4, whose centre is placed at co-ordinates (-Xu4, 0, 2v4). The geometry is chosen to give an angle
of incidence of =53° to the surfacenormal for the objed illumination. Thus the sensitivity vedor S is
inclined by 26.6°to the normal, and the in-plane sensitivity is half the out-of-plane sensitivity. The latter
is not grealy reduced in comparison to the quasi-out-of-plane @nfiguration, bu of no concern here. The
collimated illumination is particularly important for in-plane geometries, as was own in [Kun97,
Alb99.

M3 has to be rotated to ill uminate M4, and since this lengthens the light path in the objed arm, M2 is
appropriately displacead to bring the temporal coherence bad to its maximum. This is rather important
because the laser is being operated withou an etalon and its coherence length is therefore only =10 cm.
This configuration deteds in-plane displaceanents along the x axis; for y-sensitivity, there is another
mirror M5 above the objed (not shown here) with its centre & (0, Xwa, Zuwa), SO that the in-plane
comporents of S, and S, are of equal moduus and athogonal on the x-y-plane. A rotation d the objed
abou the z axis then yields horizontal (with S;) or verticd (with S)) fringe patterns that fulfil the
condtions listed in Chapter 4.2 Thanks to the expensive beaing, the reproducibility of the measured gy
was excdlent for this type of displacenent, also with smaller ds.
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The @mnversion fador from phase to dsplacement is A/288° a A/(205 grey levels), which means that one
wavelength o in-plane displacenent generates 0.8 sawtoath fringes. This has an important consequence
even "good' sawtooth images with low phase ops error yield a large displacement error gy after the
conversion. Indedd, as Fig. 5.8 shows, the ordinate scde of previously 0.146 A for the out-of-plane

measurements changes to gg max=0.36A.
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Fig. 5.8: gy for ESH displacement measurements with SPS(left) and TPS(right) as a function o spedkle size for
in-plane displacements. The parameter for ead curve is Ny, the number of verticd fringes per 1024
pixels, asindicated in the legend box.

Since no ohed tilts are invaved here, the image decorrelation is exclusively of type (ii). Evidently, this
does not change the qualitative murse of the plots: they strongly resemble those of Fig. 5.5. Again, a
spedle size between 2.5and 4 d, is foundto be agood choice for SPSand abou 1 d, for TPS The
evaluation d gy with TPSand SPS respedively, for various Ny, led to similar performance & for N,.

On comparing the gy oltained here with thase from Chapter 5.4, it turns out that here the oy are @ou 2.5
times as large & in 5.4, particularly for the SPSmeasurements, where the fador is nealy exad. Thisisa
dired consequence of the reduced sensitivity (=40% that of the out-of-plane configuration) and tells us
that the gpg in the underlying sawtooth images are very similar in bah cases. The displacement
information is encoded in the interferograms in the same way, bu by different displacanents, for the out-
of-plane and in-plane anfigurations. Hence it is not surprising that also the gy are on a cmparable
level. This result confirms that we now have reasonable performance data for smooth-reference ESH set-
ups with TPSand SPSat our disposal.
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5.5.2 Purely in-plane sensitive interferometer for TPS

In the previous subsedion we have seen the disadvantageous effeds of a low sensitivity on the gy of
displacement measurements. Besides, it is desirable from a pradicd point of view to measure the
Cartesian comporents of displacement separately becaise this smplifies the evaluation gredly. The way
to cary out pure in-plane displacanent measurements is known since along time [Le€’0] and hes
beawmme the common choice because of its ease of use and its high sensitivity that is hard to surpass
[Sir93, Joe9y.

The basic interferometer is modified for symmetricd oblique objed illumination as sketched in Fig. 5.9.
Comporent numbers Kipped, a not starting from one, indicate that the "original™ comporents are still in
place which helps restoring the former set-up acairately. In particular, the fibre essembly is disabled, bu
not removed.
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Fig. 5.9: Opticd set-up wsed for pure in-plane TPSmeasurements. Abbreviations: M, mirrors, BS, beam splitter, L,
lenses, MO, microscope objedives, PZT, piezo aduator, A, aperture stop.

By BS1, the light is divided into two beams of aimost equal power; the "reference’ beam is direded into
MO4 viaM2 and M5. Although there is no dstinction d objed and reference bean in spedkle-reference
set-ups, we dedare this bean the reference becaise it is the one to undergo the temporal phase shift by
means of the PZT that moves M2. Since M2 refleds the beam at 45°, the phase shift must be re-
cdibrated. Theoreticdly, the voltage ramp used for normal incidence shoud be augmented by +/2; due to
imperfedions of the PZT, the true value was 1.33.

The "objed" beam readies M4 and then MO3, which is of the same type a MO4. Also the llimating
lenses L3 and L4 are of the same type (f =140 mm), and va several other mirrors eat beam illuminates
the objed at an angle of 45°.In this configuration, B is very close to unty to maximise M, .

The layout seans smewhat complicaed, bu is necessary to attain equal paths for both beans, and also
fadlit ates leaving the imaging unit with L2 and A completely unchanged.
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The sensitivity vedor lies in the objed's plane in haizonta diredion; in this case, ony x-displacements
can be measured. The objed rotation generates 1.4 haizontal sawtocth fringes per wavelength of in-plane
displacement. Consequently, the mnversion fador from phase to displacanent is A/509° a A/(362 grey
levels), which is approximately halfway between the out-of-plane and the in-plane sensitivity that we have
previously been deding with. (It would however be eay to increase this value: if both incidence angles
were =53°, as in 5.5.1, we would get 1.6 sawtooth fringes per wavelength of displacenent.) The

measured oy are shown in Fig. 5.10
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Fig. 5.10: gy for ESA displaceanent measurements with pue in-plane TPSas a function d spedle size for in-
plane displacanents. The parameter for ead curve is Ny, the number of horizontal fringes per 1024
pixels, asindicated in the legend box.

Again, the ordinate refleds the change in sensitivity: gqmax=0.20A for this geometry. But sinceonly 57%
of the displacement of 5.5.1are necessary to generate the same number of fringes, there is less pedle
dearrelation pgesent than in Fig. 5.8 This improves the performance significantly for higher fringe
densities, athough the optimum of the spedle size till wanders towards two o more pixels for larger
rotations. Over the whole range of fringe densities, the acaracy is comparable to that obtained in the out-
of-plane TPSstudy. Apart from the comparison with SPSthat we ae to continue, this $hows that spedcle-
reference ESAH is not very much inferior to the smoath-reference ®nfigurations and that a 3-D TPS
system with Cartesian sensiti vities would have well -balanced systematic gy in ead of the diredions.

5.5.3 Purely in-plane sensitive interferometer for SPS

A set-up that fadlit ates exclusive in-plane displacament detedion also with SPShas been described in
[Sir97a]. Because the sensitivity of this configurationis also adjustable, we ae ale to compare the merits
of SPSand TPSaso with pue in-plane interferometers of equal sensitivity. Fig. 5.11shows a schematic
of the interferometer.
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Fig. 5.11: Opticd set-up wsed for pure in-plane SPSmeasurements. Abbreviations: M, mirrors, MP, mirror prism,
L, lenses, MO, microscope objedive, DA, doube gerture; lower left: detailed view of DA as en from
thediredion d the canera

The laser beam is expanded, collimated and dreded namally onto the objed by M4, which is located so
as to be out of the viewing paths. By M5 and M6, some of the scatered light is direded towards the
aluminium coated prism MP. It is attached diredly in front of the doude gerture DA so that ead "objed
beam" finds its own aperture to read the sensor. In this case, the imaging lens (f=140 mm) is locaed
immediately behind the gertures, bu till we can use the (equal) diameters of the goertures D for the
determination d spedkle sizes by means of (2.43. Like the set-up d 5.5.2 this in-plane @nfiguration
generates horizontal fringes only.

By means of the distance Ax between the cantres of the goertures, ead of diameter D, the two spedle
fields interfere & an angle on the sensor, which introduces the spatial phase shift. Due to the spatial extent
D of bath the sources of "reference' and "objed” light, the power spedrum of the interference sideband
that carriesthe signal istwice & broad for agiven spedle size @it isfor the interferogram of one spedkle
field and a paint source In ather words, there will be twice the phase shift miscdibrations and realy
twice the number of phase singulariti es disturbing the interferogram. Moreover, B is fixed to unty, which
makes al the improvements for smooth-reference SPS(see Chapter 5) inapplicable. It is quite instructive
to compare the power spedra of interferograms from the set-up in Fig. 5.11 with thase from a smooth-
reference onfiguration (see Chapter 3.4.4). Fig. 5.12 shows the spatial frequency content of spedkle-
reference SPSinterferograms for two dff erent spedkle sizes.

The doulde gerture generates sgnal sidebands that are of the same extent as the spedkle halo itself, and at
least 50% of the spedral power isinevitably contained in the spedle halo, in contrast to smooth-reference
interferograms. Hence, if the signal frequencies are to be well separated from the spedkle noise and to
remain below the Nyqgvist limit, the spedkle size must be twice that which was derived for a point-source
referencein Chapter 3.4.4
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Fig. 5.12: Power spedra of interferograms from pure in-plane SPSset-up; left, d= 3.6 d, ; right, de= 6.0d,. The
scding islogarithmic and contrast-enhanced.

In contrast to the TPS set-up, where the in-plane sensitivity is obtained by symmetricd oblique
illumination, the SPSin-plane methodrelies on obi que viewing of the objed. Unfortunately, the imaging
geometry is now quite different from al the assmblies presented before, and also, the viewing under
+45°introduces a cnsiderable perspedive aror. In principle, this could be crreded by use of prisms as
described in [Sir97h], bu in order to valuate the configurationin its basic version, this was not dore here.

Owing to the perspedive and the dtered imaging geometry, the field o view is 68.5<36.5mm?; we will
have to take the greaer image height into account when comparing fringe densities. (We @ntinue
working with the familiar fringe munts because this keeps the quantity of "pixels per fringe" comparable.)
Moreover, the gpparent height of the objed (size in y-diredion) changes with the x co-ordinate: it ranges
from 35to 38 mm, so that the height statement is necessarily an average. Since the height changes have
oppaite sign for the two viewing diredions, there is aso a pasition mismatch between the superposed
spedkle images that is largest at the left and right edges of the field of view, and can vanish oy on a
verticd line in its centre. This causes a dlight sensitivity to dsplacenent gradients, as in sheaing ESH,
but fortunately these do nd affed displacements in x-diredion. Furthermore, the quality of the mirror
prism beas ome relevancy: a pyramida shape aror (i.e. the prism is a segment of a high three sided
pyramid) will cause arotation d the images against ead aher. Indead, such an image rotation, d =2°,
was present, that added to the pasition mismatch caused by perspedive.

The perspedive eror playsarole in so far as the fringes are not exadly locdised onthe objed surface In
white light-images of the objed however, no significant defocusing was present over the width (size in x-
diredion) of the image, which is dueto the large depth of focus by the small apertures.

Sincethe goerture sizes D can be nolarger than the separation d their centres, Ax, we have
d;, Az _ Az 360

=—>—=
122" D A a,

D<Ax 0O : (5.1)

where z=f is the distance of the gerture to the camera sensor. Hence if we ajust ax to 1209column
again, the smallest spedle size we can get is ds=3.7 d,. This can be seen in Fig. 5.13 where thisentry is
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the first one on the ascissa. Nevertheless the plots are scded as in Fig. 5.10 to make the visua
comparison easier. Because we have asymmetricd 45° set-up aso here, the mnversion fadors and g max
arethesame &in5.5.2
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Fig. 5.13: g4 for ESR displacement measurements with pure in-plane SPSas afunction o spedle size for in-plane
displacenents. The parameter for eat curve is Ny, the number of horizontal fringes per 1024 pxels, as
indicated in the legend box.

The first thing to ndiceis the large diff erence between the gy for zero and norzero dsplacements, which
shows that the imaging imperfedions described above mme into play as on as the objed is moved.
From then on, havever, the gq depend orly weakly on the fringe density. This weg dependency has three
reasons: (i) Due to the larger field of view, we neal oy 59% of the rotation used in 5.5.2to generate
equal fringe curts, so that there is lessdearrelation owing to spedle displacenent aone; (ii) the noise
level generaly rises more slowly as it approadies gy mx , 8 careful inspedion d the preceding plots
reveds. Hence, because we drealy start from arelatively poa fringe quality, there is lessposshbility for
the measurements to deteriorate. And (iii ), the long paths for the objed beams and the obli que observation
lead to problems with light efficiency, so that a cetain nase floor is arealy due to the canera, espedally
for the larger spedkle sizes.

Acoording to the figure, the best spedle size is around 6dj; in this case, the spedral width o the signal
sideband, a the extent of apparent phase-shift miscdibrations, corresponds to the cae of ds=3 d, and a
smoath reference We have seen before that this was a reasonable dhoice, oy now there is no way to
suppressthe spedle dharader of the interferogram by a bright reference wave, so that the signal canna be
made to stand ou against the spedkle noise. This leads to a displacement error that is much larger than in
the cae of purein-plane TPS
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5.5.4 Direct comparison of the in-plane geometries

To summarise the findings from the in-plane experimentsin a useful form, we shall re-consider them in a
direa confrontation; this is dore in Fig. 5.14 with some seleded N, for ead set-up. The TPS mixed-
sensitivity configuration daes not appea here sincethe pure in-plane onfiguration ouperformsit clealy;
the 0y max fOr the pure in-plane set-ups are still at =0.204, which isindicaed by the dashed white grid line.
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Fig. 5.14: Confrontation d gy for the different in-plane measurements. SPSmixed-sensitivity set-up: al blad;
pure in-plane symmetrica set-up for TPS all white, bdd lines; and for SPS blad bald lines, white fill ed
symbals. The seleded N, are indicated in the legend box.

For N, =0, the gy for both of the SPSmethods are very similar. With increasing displacement, the pure in-
plane configuration gains an advantage thanks to its high sensitivity, bu aso because the field of view is
larger; the discusgon given in 5.5.3 applies likewise here. But since the displacanent data ae output as
sawtooth images first, it is also important how co-operative asawtooth image will be in unvrapping. To
understand this, Fig. 5.15provides a visual demonstration d the best sawtooth images from ead method
for Ny=10 (which corresponds to 7.5fringes/768 pxels, cf. Chapter 4.2).

Fig. 5.15: Visual comparison d sawtooth images with N,=10 from the various pure in-plane set-ups. Left: TPS
purein-plane, d=1.5d,; centre: SPSmixed-sensitivity, ds=3 dy; right: SPSpure in-plane, ds=6 d,.
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The images confirm that TPS delivers good plase maps (0ay=25.79 with good sensitivity. The result
from the mixed-sensitivity SPSconfiguration hes reasonable quality in terms of gy (=43.09; but on
converting to dsplacements, the gy value (cf. Fig. 5.14 suffers from the relatively low in-plane
sengitivity. For the pure in-plane measurement by SPS the gy value is lower; but as to be seen, gy has
the highest value of all the examples (=64.39. While this example does not present images that are
difficult to unwrap, it does ow that the gy figure of merit alone can be misleading when the quadlity of
images is to be judged. In terms of g4 , the mixed-sensitivity methodis preferable for SPS for N,=0 its
Opg IS around ore-half that of the pure in-plane SPSmethod,and it is dill by some 14% better at N,=100,
which may then all ow to skip some filtering before unwrapping can take place

Moreover, the mixed-sensitivity SPSset-up has a grea advantage in light efficiency over the pure in-
plane SPSconfiguration; and in Chapter 5, we will explore methods to improve measurements with a
smoath reference wave, so that the deficiency in gy is reduced. Finaly, a 3-D SPSsystem with two pue
in-plane asembliesis difficult to implement, while — at the saaifice of orthogona sensitivity vedors — it
would nd be difficult to use layouts with oHdique ill umination.

On the whale, the results presented here show an advantage for TPS when in-plane displacanent
measurements are wncerned. For moderate fringe densities, g = A/20 is redistic, while both of the SPS
approachesyield A/6 to A/7.

5.6 Impact of light efficiency

In the precealing subsedions we have drealy mentioned the potential influence of the gerture size onthe
measurement in terms of light econamy. During the investigations presented thus far, it was easy to
colled sufficient objed light: the laser was powerful and the image field was rather small. But it is not
unwsual in pradice to have very little objed light available. In these caes, TPS shoud be in favour
because it will function with very small spedkles, which in turn alows for large gertures to colled a
greaer amount of the scatered light. It is even stated that under condtions difficult in this resped, the
aperture shoud be opened upas wide a posshle [Leh97a, Leh9§. Thereis noway to doso in SPS for
phase shifting to make sense, a cetain minimum spedle size in the diredion d the phase shift, and hence
sufficient spatial coherence over the spatial sampling window, is necessary.

This subsedion presents sme measurements of gy under shortage of objed light for TPS and SPS
caried ou with the out-of-plane @nfiguration d Fig. 5.1 Aiming at getting an ideaof the difference
between the methods, we simply consider ds=1 d, for TPS and ds=3 d, for SPS athough bah values
could still be deaeased. With this stting, the usable objed wave intensity in SPSis snall er by almost an
order of magnitude than in TPSwhen circular apertures are used.

This can be partly circumvented by enlarging the spedles only in the diredion d the spatial phase shift,
which is easy to achieve by using an dlli pticd or redangular imaging aperture [Pfi93, Ped93,Sal96]. The
ideais Ketched in Fig. 5.16for the example of a,=120%column (of course, the relevant parameter is the
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number of samples and nd ay). The crrespondng elli pticd aperture shape was indicaed in Fig. 5.1; its
areg and hencethe objed intensity it transmits, is threetimes that of the drcular aperture.

Fig. 5.16: Adjustment of spedkle width suitable for SPSwith opimal light econamy. Blad bars. orientation and
spadng of carier fringes, small squares. sensor pixels, irregular filled shapes: mean spedle size and
orientation; grey values of the shading on the spedlesindicae their relative brightness

The situation depicted onthe left is the result of using a drcular aperture: 2/3 o the wherence aea ae
superfluous for the phase cdculation and the spedle field appeas rather dark. But one can reduce the
spedle size from dgxdgy=3%3 dy” to dsXds,=3% 1 dy’ , Where d is the spedkle width and ds, the speckle
height, to produce abrighter spedkle image. On the right, an €lli ptica aperture generates gedles that are
just large enowgh to alow for phase cdculation; the spedkle intensity is greaer by a fador of three
indicated by the spedkle outline in lighter grey. The question arises what improvement the change to
elli ptic speckles will bring abou: the plusin ojed light gives better M, or, optionally, allows to reduce
the gain of the canera anplifier; on the other hand, the noncircular average specle shape caises the
measurement to become anisotropic with resped to dsplacement fringe orientations.

For TPSand SPSwith circular and €lli ptic gperture, the behaviour of gy was dudied with the out-of-plane
set-upasin 5.1 To control the objed illumination, | used a series of neutral density filters (D [0[1.0,5.Q0)
direaly behind MO1. The basic laser power density of O, =1.1 mW/cm? onthe objed was thus attenuated
to values between 110and 0.01uW/cm?. The asolute value of sensor ill umination could na be measured
acarately enough, bu since we ae still deding with the comparison d TPSand SPS the given power
scdewill be sufficient for our purpase.

For ead series, the dhosen oljed intensities ranged from the first turning up o signal to the optimum
where further increase of the illumination paver did nd improve the measurements anymore. At the
lowest light level the interference was only just detedable in the spedkle interferograms,” whereas the
spedle pattern alone was completely immersed in eledronic noise. The reference light was always
adjusted so asto oltain ahigh average brightnessof the interferograms, which deaeases the contrast M/l
but maximises M, and thus reduces the noise somewhat. Even so, we have high ndase and low M, due to
bean ratios excealing 100Q1. This corresponds to R= 190grey levels and (O) =0.2 grey levels, which of
course cannd be reliably measured; therefore the opticd densities of the filter set served to determine

" Also, the light scatered from the objea was detedable only by dark-acoommodated eyes.
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(O), andfrom this, R/{O)=B, by extrapadation from measurable values. Fig. 5.17 shows the improvement
attainable by switching to elli pticd apertures.
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Fig. 5.17: o4 for ESA displacenent measurements with SPSat low levels of O,. "Dark" 2black: dsxds,=3%3 d;’ ;
"bright" 2white: dyxds, =3X1 dpz. Fringe densities N, (left) and N, (right) as indicated in the legend
boxes.

At very low O, (left-hand regions of the plots), eledronic and dgitisation nase ae indeed the most
significant error sources: the fringe density influences oy only wealy. With incressing O, however, the
familiar relationship o fringe density and error appeas again. To the left, gy is plotted for various Ny as a
function d O,. The slope of the graphsislargest aroundB=1000(marked by the arows for either aperture
shape); the use of an dlli pticd aperture reduces gq by as much as 15% in these regions of O,.

The og measurements for various Ny are plotted onthe right-hand side of Fig. 5.17. The blad graphs for
the drcular aperture look very much like thase on the left, which confirms the expedation that the values
of gyg vs. Ny and Ny are very similar when the drcular aperture is used. The white airves reved the
drawbadk of switching to an elliptica aperture: gy rises more rapidly with Ny than with N, , so that the
advantage initially gained vanishes for N, >50. Again, this comes from the spedkle pattern dsplacanent
which results in alarger oy for smaller ds. Thus for objea tilts resulting in haizonta fringes (associated
with verticd spedkle displacanents and small spedkle height d), this error sourceis more important than
for tilts that generate verticd fringes, which are assciated with haizontal spedle displacanents and
large speckle width d.

Whil e the quantitative impad of the goerture shape is of course spedfic of the interferometer, Fig. 5.17
does $how that the anisotropy by an elli pticd aperture is not negligible. On the whale, the greaer amourt
of light is e to be helpful; but of course, the improved SPSmeasurement must be set in relation to the
performance of TPSat low O,, of which Fig. 5.18gives an owverview.
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Fig. 5.18: g4 for ESH displacement measurements using SPSvs. TPSat low levels of O,. "Dark" 2bladk: SPSwith
dsxXds,=3x1 d,” ; "bright" 2white: TPSwith dsxds, =1x 1 d,,”. Fringe densities N, (left) and N, (right) as
indicaed in the legend boes.

The results from TPSare distinctly better, and O, can even be lowered to 0.01pW/cm?. The improvement

by using TPSamountsto =30% for low densities of bath haizontal and verticd fringes over quite alarge

range of O,. This confirmsthat TPSislessproblematic under criticd ill umination conditions, al the more
since ds can —and shoud — be further reduced in order to maximise the anourt of light colleded. The

occasional crossng of the aurves for Ny is due to the greder gy, for tilts abou the x axis that was
described in5.2.2

Surprisingly little power is necessary to read the plateau of nealy constant errors; it turns out that a
0.5mW laser would have been powerful enough for the out-of-plane experiments. Also, this experiment
demonstrates impressvely the alvantage of the phase-shifting technique: even with 2-3 hits of signal
resolution, it is possble to oltain usable results [D6r82, Ker88, Vro91, Hadd(]. It may aso be worth
nating that both TPSand SPSread their best performance d the same level of O, which is =10 pW/cm?
inthis case.

From the results in this subsedion, it follows that the dedsion for or against elliptic spedle is not a
genera one: it depends onthe expeded result of the experiment, as well as onthe anount of light acually
avail able. We will briefly return to thisissue in Chapter 6.1.3
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6 Improvements on SPS

The comparison d TPSand SPShas $iown that TPSyields lower measurement errors espedally in the
region d low fringe densities. Since it is generally more preferable to record several sawtooth images
with few fringes than ore image with many fringes [Fl093, Her96], we shall therefore explore some ways
to reduce the oy associated with SPSin this chapter. First of all, the bean ratio in the interferograms is
shown to be of grea importance but there ae dso passhiliti es to reduce the measurement error by phase
cdculation formulaetailored for SPS And lastly, we enploy the "single-frame" measurement cgpability
of SPSto introduce some improvements.

6.1 Optimisation of experimental parameters

6.1.1 Beam ratio

Although the best intensity ratio of referenceto oljed wave, B, has been thoroughly investigated [Sle86,
Leh95,Maa7] in arder to maximise the interferometric moduation, it has also been stated that the least
permissble M, can be set quite low, e.g. a some 8 grey levels or even less[D6r82, Ker88, Vro91,Had(Q].
Consequently, phese shifting in ESH yields reasonable results for quite alarge range of B. In what
concans TPS we can exped the arors to remain approximately constant as long as M, is beyond its
lower threshald. With growing intensity of the reference wave, the moduation dops and eledronic noise
and dgitisation errors graduall y gain the upper hand ower the signal.

For SPShowever, the spedkle charader of the objed wave nstitutes an error source that depends on the
objed intensity: the intensity readous I, (cf. (3.12) from a set of adjacent pixels sroud have equa |, and
M, if the phase cdculation is to function corredly; but the brighter the spedkles are, the greder become
their intensity gradients and the worse is the mismatch o the interferometric parameters on adjacent
pixels. It is clea that the absolute intensity errors drop when the beam ratio is increased; but thisis of no
consequence for the measurement, becaise the moduation goes down as well. An improvement comes
abou only by a deaease of the relative intensity errors, and it has been shown in a simple form in
[Bur994] that thisisindeeal the mnsequence of a brighter reference wave.

To describe the phenomenon,wefirst need to know how statisticd intensity fluctuations are propagated to
phase arors gy, by the phase cdculation. Assuming a standard deviation d o for the intensity readings,
this relationship is described by Eq. (12) of [Bot97] in a general form for 3-bucket formulae For
a,=120%sample, it reads

_ 0 8
Opo = 2M, 3’ (6.1)

where gy, is the standard deviation d the cdculated phese averaged ower al ¢o, and o; that of the

interferogram intensities. In a simple gproximation, g; is composed mainly of the standard deviation d
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intensity on adjacent pixels (x,y) and (xx1y), 0 o4,0.,, ad d that of the imaging system's eledronic

noise, d..- Hencewe rewrite (6.1) as

VU 000+1+0 q/7

Opo U (6.2)

In aspedle field, ooy0., depends on the degreeof spatial coherence [Goo79, pa(Xo, X+1), of the paints
(kl) and (k+1)). For a drcular aperture and ds= 3d,, we find pa(xo, X-.1) = 0.81.Moreover, 0oy0,, IS

condtioned onOyp, which relationship is analyticdly known [Don79. We can generalise (2.52) to read

02 o, = ((0)A-112)) +200/2 2 (1~ us?), 63)

and inserting (6.3 into (6.2, we can cdculate gy, which is the same for both ohjed States:
Op0=040;=0sc; - For the phase difference A¢ =¢o @0, we therefore get onp = /204, and from this the

correspondng quantity for the displacement, gy, as afunction d the beam ratio B = R/[OL] These data can
be compared with the experimental results.

Fig. 6.1 shows the performance of various evaluation methods for sawtooth images with Nx=10, N,=0,
ds=3 d, and a,=120%column from an ou-of-plane configuration with SPS for TPS ds was st to 1 dp.
Curvesin Fig. 6.1that are not addressed here will be discussed later on.

The theoreticd curve of gy vs. B for SPSis the bad white line and matches the measured data reasonably
if we shift it verticaly by adding a constant displacement deviation d gy, = 0.05A. Thisisnot an arbitrary

adjustment of data: since (6.2) does not acourt for spatial fluctuations of the phase ¢o between adjacent
pixels, the predicted values of gy will be too small. Of course, adding a wnstant gy, relies on the simple

asumption that the influence of spedkle phase gradients on gy does not depend onB.

From the figure we seethat TPSworks well from B=1 on,and gy only starts to increase from B=100 on,
where (O) is already wedker than the dedronic noise. The quasi-constancy of gy vs. B in TPShas also
been reported in [Hun97 for a beam ratio between 0.1<B<10. For SPS 0y first deaeases as the
reference wave gets gronger, and hes its minimum around 30.With fading M;, the influence of eledronic
noise grows and so daes gy . This behaviour agrees reasonably with ou theoreticd prediction.

Hence in SPSa proper choice of the beam ratio is far more important than it isin TPS Fortunately the
best SPSresults turn up in a region d high bean ratio, which aleviates the problem of poa light
efficiency somewhat. Based onthese results, for most of the investigationsin Chapter 5 B was <t to 10,at
which setting bath SPSand TPSoperate with nea-optimum performance

" With the imaging system used, a redistic value for o, was = 2.5 grey levels; this corresponds to a resolution of only 6-7 true
bits. With optimum intensity resolution, the usable beam ratios would have been even higher.
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Fig. 6.1: g4 for various ESH measurements of out-of-plane displacanents by SPSand TPSas afunction d B. All
measurements were dore with N, =10 and N,=0.

Besides the variation d the beam ratio, there is ancther posshility of reducing oy : the individual spedle
intensities can be acouned for in a modified phese cdculation formula. This approad is described in
detail in 6.2.1, where dso the aurves for "SPSwith (modified) intensity corredion” in Fig. 6.1 will be
explained. For adiscusson d the Fourier transform method (FTM), see6.5.

6.1.2 Phase shift

In Chapter 3.2.2 we have mnsidered the spedral transfer properties of phase-shifting formulae ad
discussed some points that are relevant for their applicaion to signals with a broad spedrum. In Chapter
5.2.1, we mlleded some preliminary evidencethat ay, =90°%sample shoud be the better choice Sinceit is
now our aim to get the best possble performance from SPS we investigate this issue in more detail by
experiment and cary out the same kind o comparison that we did for SPSand TPS The results are
shownin Fig. 6.2, where the left part isthe same plot asFig. 5.5.
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Fig. 6.2: g4 for ESH displacanent measurements by SPSwith a, =12C°/column (left) and a, =90°/column (right)
as a function d spedle size for out-of-plane displacements. The parameter for eat curve is Ny, the
number of verticd fringes per 1024 pxels, asindicated in the legend boses.

The figure shows clealy that a, =90%column yields indeed better performance over the whale range of
fringe densities. The differenceis snall at low fringe densities, whereas it gets sgnificant over Ny = 30; it
is most pronourced at the optimum spedkle size of 3 dp.

In the faceof these findings, it seams more gpropriate to set a,=90°%sample. As arealy hinted in 3.2.2.3
it was found ou that the phase cdculation with the 90° formula (e.g. (3.19) tolerates large
miscdibrations of ay; there is pradicdly no loss in performance for deviations of ax of up to
+15%sample. Moreover, the eror-compensating 90° formulae a&e more suitable than those with a=120°
for the averaging procedures described in 3.2.2.4

The phase determination with a,=120%9sample quickly loses acaracy when a,>120%9sample and functions
even dightly better when a,=100Ysample. This can be dtributed to the fads that (i) the sidebands of the
interferogram's power spedrum dready contain aliased super-Nyqvist frequencies | w|>| | a v =1/(3 dy)
and d=3 d, (cf. 3.4.9, and (ii) aso the horizontal MTF of the canera that | used drops considerably for
higher spatial frequencies. Hence, the signal power is utili sed more dficiently by the 90° method, where the

Sidebands are nedly centred in the (fx.,fy) half-planes, as depicted in Fig. 6.3
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Fig. 6.3: Interferogram power spedra (log scae). Upper row, ds= 3 d, ; lower row, ds= 2 dy; left, o,=90°/column;
right, a,=12C/column. Irregularities in the spedra ae due to the fibre guide obscuring part of the
aperture. The contrast of the images has bean enhanced to make the spedkle halo visible.

It isalso clea that adeaease of the spedkle size, as rown in the lower row, will shift the advantage even
more towards a,=90%sample becaise this minimises "crosdak" of the sidebands around bah v=0 and
V=Vy, as discussd in Chapter 3.4.4 On the other hand, the sidebands have lessoverlap with the spedle
halo for larger phase shifts; but evidently, the issue of spedle sizeis more important.

6.1.3 Speckle aspect ratio

In Chapter 5.6, we saw what improvement a change to an ellipticd aperture can bring abou when the
available illumination paver is criticd. However it is by no means necessary to choase a l1:3-llipticd
aperture. For instance an asped ratio dof, say, 1.2 means less anisotropy, a the ast of light, while an
asped ratio of, say, 1.4 improves the light gain bu generates elongated spedles, and acordingly, a
distinct anisotropy of measurement. The dhange in performance need na be restricted to the spatial
diredion in which the specle size is reduced: the finer overall phase structure of the spedle pattern
could increase the noise in the whole measurement, which would dminish the advantage gained by the
larger aperture.

This subsedion attempts to answer the question what spedle asped ratios can be used and at what gain or
expense. Since the urse of gy as a function d objed illumination is smilar for TPSand SPS(cf. Fig.
5.18, wejust retain here that the gain in acarracy may be related to the gain in light as before, ony now



138 Improvements on SPS

we ae mncerned particularly with the geometricd side-effeds due to the anisotropy of the measurement.
To find ou their nature and extent, we cary out the experiments with sufficient objed light in an ou-of-
plane cnfiguration.

The "overal" effed of deaeasing the spedkle height ds,, while keguing the width ds constant, can be
studied by a series of tilts abou the y axis, giving rise to verticd sawtocoth fringes. The spedle
deaorrelation with increasing Ny is then governed by ds and is therefore the same for al dy. Fig. 6.4
presents ome results from these series.
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Fig. 6.4: o4 for ESH displacanent measurements by SPSwith various gedle aped ratios as a function d
spedle width dy for out-of-plane displacanents. The parameters for the aurves are N, and the respedive
asped ratio, asindicaed in the legend box.

This figure shoud be interpreted as follows: given a cetain spedkle width ds, the asped ratio ds/ds
indicaes the respedive spedle height ds, indiredly; e.g. at a spedkle width dg of 3 d, and an asped ratio
of 1:2, the correspondng spedle height dy, is 1.5d,. Consequently, ds > ds, in this gudy.

For zero displacanent, oy is virtually independent of the spedkle asped ratio. For the other curves,
correspondng to Nx= 20, 50, and 100,there is indeed a very dlight systematic dependence of gy on the
asped ratio from dg =4 d, downwards. This corresponds to dyy < 2 d, and shows that the finer phase
structure does reduce the acaracy; but compared to the performance gain that a wider aperture offers
under criticd light condtions, the dfed is negligible.
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Things are diff erent when we consider a series of tilts abou the x axis; in this case we test the dfead of the
varying spedle heights and investigate the measurement anisotropy. Fig. 6.5 shows the results for the
same fringe densiti es as above.
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Fig. 6.5: g4 for ESH displacanent measurements by SPSwith various gedkle aped ratios as a function o
spedkle width ds for out-of-plane displacements. The parameters for the aurves are N, and the respedive
asped ratio, asindicaed in the legend box.

The order in this graph is best understood if the data ae first read verticdly: for small spedle widths, a
reduction d dy,, and therefore the asped ratio, is acompanied by alarger gq. This effed increases with
the fringe density, for reasons alreadly discussed in Chapter 5.4. However for larger ds, smaller ds, tend to
yield lower gy than for an asped ratio of 1:1 becaise the fringes are better resolved and decorrelate more
slowly, as aso described in Chapter 5.4.

No general recmmendations can be derived from this behaviour becaise the anisotropy effeds are
spedfic of the used interferometer. The dedsion for or against elli pticd spedkle depends on the expeded
result of the experiment, as well as on the anourt of light adually avail able, and there may also be cases
where an elli pticd apertureis very helpful in suppressng aperture-plane decrrelation.

For moderate fringe densities, it is always possble to gain twice the objed light by using a 1:2 aperture
withou saaificing too much of the isotropy. In this work however, there is no shortage of objed light;
and later on, we will also use aphase shift in x- and y-diredion to make use of the 2-D extent of circular
spedles. Hencewe will ke using circular apertures.
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6.2 Modified phase reconstruction formulae

Besides the optimisation d opticd parameters, it is of course desirable to uilise some of today's
knowledge aou phase-sampling methods to tailor phase cdculation methods fedally for SPS As
mentioned before, the most stringent restriction for error suppresson is the small number of sampling
points available in the spedles that we even wish to make & small as possble. In the following
paragraphs, we explore posshiliti es to construct few-sample formulaewith reasonable rejedion d errors
due to spedkle intensity and phase gradients, and eventually we test the mmbination d these gproades
in ou-of-plane ESH deformation measurements.

6.2.1 Consideration of speckle intensity gradients

One possble way to reduce the phase arors induced by the fluctuations of the objed wave's intensity has
arealy been shown in 6.1.1 Aswe have seen in Chapter 2.2.3.1 it would be very difficult to acourt for
the I statistics of aspedlefield in SPS the asumptions that we amuld model by a modified threesample
formulawould betoo crudein the cae of spedkle intensity.

There is however an exad method d compensating the arors due to intensity fluctuations; it relies on an
additional measurement of the spedkle intensity alone before or during the displacement observation. In
the linea equation system constituted by (3.68), we usualy assume O, and hencel, and M, , to be mnstant
in al the euations. If however eat equation gets its own O, from a spedle intensity image stored
beforehand, it is gill posgble to solve for ¢o, aslong as we use threephase steps of (-a, 0, a). Detail s of
this procedure ae outlined in Appendix C; with D, := 1,-O,,, we arive & [Bot97]

VO, (D; - D—1)+COSO’(\/O_—1(D0_ Dy) +4/0; (D - Do))

¢, mod 27T = arctan - , 6.4
° Sma(\/q(Dq_Do)_\/o—1(Do_D1)) ©4
whichisfor a = 90°
\/UO(Dl - D—1)
mod 277 = arctan
¢O \/61( D—1 - Do) Ry O—1(Do - Dl) (65)

andfor a = 120¢

2\/O_O(D1_D—1)_\/O_—1(D0_D1)_\/61(D—1_D0) 66
V3(/Or (D, ~Dy) - O (D, -Dy) 60

Of course, these formulae ©ll apse to their standard versions (3.18 and (3.17) when O_;=0y=0:.

$o mod 27T = arctan

A disadvantage of this method is the necessty to record spedkle images before and, if decorrelation
ocaurs, aso duing the measurement. This will rule out highly dynamic phenomena and reduce the
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tempora resolution in ather measurements. Moreover, (6.4) assumes R and O to be fully interferent,
which is nat the cae when depdarising objeds are being tested. In this case, one must accet that the
tregment overestimates M, (which isrelated to the square roats), or re-paolarise the waves appropriately.

A comparison d (3.19 and (6.6) with stable spedkle patterns is given in Fig. 6.1, which shows gy from
phase cdculations withou (bladk sgquares) and with intensity corredion (bladk squares fill ed white) as a
function d B. The data lealing to the airves were the very same set of interferograms in bah cases. For
the intensity corredion, | used bah the initial and final spedkle patterns for the respedive objed states.
The figure shows that (6.6) isindeed able to kegy g4 aimost constant for 1<B<10. When we compare the
best gy of either evaluation series, the improvement by the intensity corredion amourts to = 3%. Thisis
quite small adifference and it may seldom be worthwhil e to record extra spedkle images to make use of it.
Moreover, it will not help against the most likely problem in SPS namely too low spedkle intensity.

With increasing B, i.e. fading (O), the performance of (6.6) quickly worsens. This is becaise speckle
intensity readings of zero are obviously nat permissblein (6.4): the phase cdculationwill not functionfor
points of the spedkle image that are digiti sed to zero. But as B is increased, as desirable from a pradicd
point of view, exadly this will occur more and more frequently. Then (6.4) bregks down onafradion d
image pixelsthat grows larger as the spedkle pattern gets darker.

In pradice ore can circumvent this by simply replaang the zeros under the square roots by a nonzero
value (for simplicity, afador of one); thisintroduces sme abitrarinessin the cdculation and is justified
only by the observation that this ad hac remedy is better than nore in this case, and that (6.5) and (6.6)
then become their standard versions (3.18 and (3.17) aso for O_;=0,=0,=0. Therefore the alvantage
gained by the modified cdculation must vanish as the O, approach eat ather. Thisis aso shown in Fig.
6.1 the modified intensity-correding formula overriding zero readous for the O, (bladk curve, white
squares) links snoathly to the aurve withou error corredion; from B=50 on, bth curves are very nealy
the same. Therefore the gy from the intensity-correding formula ae nat plotted anymore for B= 160, all
the more a using (6.4) would orly lead to superfluous computational effort for higher B.

The data shown pertain to the depdarised spedkle patterns which the test objed generates diredly; no
substantial improvement was found when the intensity corredion was applied to spedcle patterns
exclusively co-pdarised with the reference light. This iows that the subtradion d the spedle
badground,taking placein the D,, is more important than the exad M, ; also, the badkgroundsubtradion
isjustified for any polarisation state.

To ched the preliminary results of Fig. 6.1, | caried ou severd tilt series with ay = 90%sample and
B [7{3, 10, 30, 100, 300}As e before, this quasi-geometric series of B valuesis sifficient to find the
best performance of either method.Fig. 6.6 presents an overview of the best results for ds=3 d,.
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Fig. 6.6: g4 for ESH displacement measurements by SPSwith and withou intensity corredion as a function d B.
White, phase cdculation acording to (6.5); bladk, phase cdculation by (3.19. Seleded Ny asindicated in
the legend box.

We have seen before in Fig. 6.1 that the advantage of using the intensity corredion will vanish at B=30;
therefore we look at (6.5) for B [7{3, 10, 30} orly. On the other hand, withou intensity corredion the
lowest gy occur around B=30, which is why we sedled B /{10, 30, 100} to investigate the phase
cdculation with (3.19. Fig. 6.6 confirms that the phase cdculation by (3.19 (correspondng gy: bladk
symbals) produces the lowest gq at B = 30, while (6.5 (correspondng gy : white symbals) operates most
advantageously at B=3 and B=10 and slightly worse & B=30. As familiar by now, the differences of the
two caculation methods are most pronourced at low fringe densities: initialy, areduction d gy by some
5% can be dtained by using the intensity corredion; but as Ny rises and decorrelation sets in, the
difference vanishes almost completely. Hence, in most situations it will suffice to set B = 30 and to
record interferograms only.

6.2.2 Consideration of speckle phase gradients

When the spedles are & gnall as 3 d,, the phase structure of spedkle patterns canna be measured with
sufficient sampling resolution by the pixels - and lessso with SPS-, so that there is no pasbility to go
the same way as above with the intensities and wse the spedkle phases for error compensation. Y et
remembering the findings of Chapter 2.2.5 the spedle phases san to be lessharmful for interferometry
than the intensities anyway. Therefore we will use the simple asumption that not the spedle phase ¢o,
but its gradient ¢ox be cnstant over the short sequence of pixels that we use for phase retrieval. Thisis
guite rough an approximation bu it may be seen from Fig. 2.14 that it holds reasonably for the brighter
parts of the image that we ae mainly interested in. Treaing the phase gradients in this way is equivaent
to assuming locd linea miscdibrations of the phase shift, as detailed in Chapter 3.2.2 We may then
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construct our two conseautive sets of samples needed to apply the aror compensation d (3.56 from a
sequenceof pixelsas srownin Fig. 6.7.

Fig. 6.7: Arrangement of sampling points for a simple phase-shift error compensating formula (3.56 with
a,=90°/column, indicated by the blad bars. The intensity readings I.; to |, are taken from conseautive
columns.

If ¢'o, (cf. (3.56) is constructed from I_; through |1 (indicated by the solid-line box) and ¢'o, from Io
through 1> (broken-line box) and these two phase measurements are averaged, the aror in ¢'o, will be
almost cancelled by that in ¢'o, thanksto their relative off set of =90°. (If the phase off set of ¢'o, and ¢'o,

were exadly 90°, there would be no reed for error corredion.) It is true that this method d averaging
requires four insteal of threepixels and seemingly requires gill | arger spedkles; we will discussthisisaue
shortly, in the context of the experimental findings. The improvement of phase cdculation by (3.56) is
shown in Fig. 6.8 for B=30 and ds=3d,, both curves have been caculated from the same set of
interferograms.
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Fig. 6.8: gy for ESH displacement measurements for B=30 and d=3 d, by SPS with and withou phase-shift error
compensation, as a function d N,. Triangles, phase cdculation by (3.19); squares, phase cdculation
acording to (3.56).

The modified phase cdculation reduces gy very efficiently; and again the improvement is most relevant at
low fringe densities. The substantial deaease of gy comes mewhat unexpeded in this stuation, since
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Fig. 6.7 tell s us that the complete sampling window is now definitely larger than the mean spedkle size of
d=3d,. But in addtion to the phase-error compensation, (3.56 also constitutes dronger spatial
averaging. Here, the sine and cosine functions are averaged before phase retrieval, which has been shown
to be abetter choicethan averaging phase maps after the actangent operation [Hun97.

Although the 3+3 averaging formula still cdculates the phase separately for ead pixel, there is alossof
gpatia resolution associated with the larger sampling window. But since our "resolution cdl” has already
been 3 pxels wide before, the relative dhange is not significant; and upto (at least) N,=100, the phase
gradient of the objed displacanent is well resolved and shows less noise than with the standard phase
cdculation.

6.2.3 Combined intensity and phase gradient compensation

Each of the aror-suppresson strategies proposed suffers from the drawbadk that its eff edivenessto cope
with Iy or ¢ox could be reduced by the fluctuations not acmurted for, i.e. ¢ox Or Iy. Henceit is natural to
combine bath of the gproadiesto oltain aformula that reduces the gy caused by the spedle structure of
bath oljed intensity and phase. The simplest way to construct such a phase cdculation is to establish an
averaging formula for terms as in (6.4). With a=90%sample, we rewrite (6.5) for the two "boxes" of Fig.
6.7[Bur98a]:

tan ¢ = \/Oo (D - D_y) =Ko
® " JOu(Dy = D) =01 (Dg = Dy) Ky =Ky (6.7)
J/OL(D; - Dp) Ks |

o fo, = \/O_Z(DO_Dl)_\/O_O(Dl_DZ):: Ke = Kgq

with pixel indices acording to Fig. 6.7, and numbering of the K, acording to the order of indices of the
square roats at the beginning of ead term. Now applying what we have leant in Chapter 3.2.2.4 we can
easily compose these two intensity-correded phase cdculations acerding to (3.55 and arrive &

- K+ K+ Kg ' (6.8)

o mod T =arctan

which is an averaging formula crreding for both intensity and plese fluctuations. As already indicated in
Fig. 6.6, the intensity corredion works best for B=3; the ntribution to gy coming from spedkle phase
gradients was asumed to be independent of B. Fig. 6.9 gives an owerview of the best results from all
combinations of phase-caculation methods and B values tested in this subsedion. The bladk curves are
repeded from Fig. 6.8 for comparison; for the intensity-correding formulag the underlying set of
interferograms is necessarily a diff erent one, with B=3, bu also ds=3 dp.
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Fig. 6.9: Overview of gyq from ESH displacement measurements as a function d Ny, oltained with various phase
cdculation formulae from two series of interferograms. withou intensity corredion, B=30 (bladk
symbals); with intensity corredion, B=3 (blac symbals fill ed white); 3-sample formulag triangles; 3+3-
averaging formulae sguares.

The summary presented in Fig. 6.9 alows osme @nclusions: (i) the use of a 3+3 averaging scheme done
is definitely a better choice than an intensity-error compensating formula done. (i) The combination o
bath error-reduction methods leads to the lowest overall error; at ds=3 d,, 0q remains below A/20 upto
Nx=20. (iii ) Introducing the intensity-error corredion effeds indeed a dlightly greaer improvement in gy
when a phase-shift error elimination is already present, and vice versa. (In ather words, the lower two
curves are farther apart than the upper two.) This confirms the initial presumption that motivated this
subsedion: the two methods profit from ead cther if used together. However, as mentioned before, in
most pradicd cases it will suffice to set B=30 and to do withou the small benefit of the intensity
corredion, all the more sincethis geals up the cdculations considerably and even makes them accessble
to the use of look-up tables.

Finally, it may be worth nding that a 3+3 averaging formula acording to [Bur98a)

K, + Ks
— Ky + Ky — K, + Kg (6.9)

®'c modrr =arctan

is error-compensating only by averaging, bu does nat eliminate the gyclicd errors dhown in Fig. 3.39
since it constitutes the average over ¢o and ¢o+90°. Hence, (6.9) will do little more for error reduction
than the intensity corredion withou averaging, which means that even the pure phase-shift error
compensation d (3.56 would perform better. This was in fad foundin [Bur98a], where (6.9) was used
instead o (6.8), and emphasises the relevance of an oima composition d the averaging formula.
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Finally, bah (6.5 and (6.8) were chedked for their spedral transfer properties by means of bsc(vy). With
the same inpu interferograms and averaging of the same portions of the bsc(vy ,y) maps asin 3.4.5 this
givesthe plots siownin Fig. 6.10

1.57 1.57

0.785 0.785 W

0 i \ 0 I
0 1 2 3 UVox 4 0M1 2 3 UVox 4
1 ]

-0.785 7 1 -0.785

-1.57 -1.57

Fig. 6.10: Left: bsc(vy) for (6.5); right: bsc(vy) for (6.8).

By comparison with the graphsin Fig. 3.33and Fig. 3.36 it can be seen that the noise has got higher; but
for (6.8), the region d low detuning errors is distinctly increased as compared to (6.5). However it was
foundthat the phase aror d¢o(A@) (cf. Fig. 5.4) produced by (6.8) has snall maxima & A¢=1v2 and 372
(cf. Fig. 3.39, which indicaes that d¢o due to phase-shift errors is suppressed less efficiently when the
intensity corredionis used.

6.3 Modified phase shifting geometry

If we use a @rcular aperture with a phase shift ay, only, and if the measuring points are aranged asin Fig.
3.26 we discard the phase information that would be accesble via the verticd coherence length o the
spedkles. But due to the general shortage of spatial coherencein ou small-spedle patterns, we shoud use
it as exhaustively as possble. During the cmparison d different phase retrieval approacdhes that will be
described in this subsedion, the gy refer to just two sets of interferograms, namely atilt series with B=3
when intensity corredion is invalved, and ancther with B=30 when it is nat. In bah cases, N« [0, 100
and dsc= 3 d,.

Provided a frame-transfer or line-transfer camera with progressve scan readou is available, al image
lines can be aguired simultaneously. Then it is possble to introduce an additional vertica phase shift ay
by simply shifting the origin o the reference wave to (Ax,Ay). Thisresults in a dlant of the carier fringes
and alows to choose awy desired dredion for the set of pixels to use. Examples of composite phase
shifting have been given in [Kiich91,Kich97] for classcd andin [Wil91] for spedkle interferometry.

When the spedkle shape can be fully exploited for measurement, the measurement's acaracy shoud
improve, sincetheided situation d Fig. 3.26 where dl the used pixels are inside the same bright spedkle,
is unlikely to occur. More often, spedkle "boundxries' are aossd, which results in an urreliable phase
measurement. To dminish the naoise, it shoud help to include the possbly better data of the orthogonal
diredion and to establi sh an averaged phese value.
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A phase shift of (ay, ay)=(90°, 909 yields carier fringes danted by 45° and permits arranging the
evaluated pixelsin variousways. Thisis hownin Fig. 6.11 the target pixel of the phase cdculationis|s,
with some abitrary phase of ¢o, and the surroundng pixels have nomina phase shifts of ¢o+90° as
indicaed. Note that the pixel numbering can nolonger indicate relative phase shifts (e.g., a1=a,); besides,
we will i dentify the intensities |,, simply by pixel numbers n where gpropriate for simplicity of notation.
The geometry in Fig. 6.11onthe left sufficesto use (3.19 for phase retrieval in bah x- and y-diredion; 13
will be asdgned the average of the cdculations. To the right, some alditional pixels with ¢o+180° give
the posshility to use 3+3 averaging formulae both of the methods will be explained below.

Fig. 6.11: Pixel clusters for phase cdculation from oblique carier fringes; orientation and spadng indicated by
blad bars. For simplicity, pixels are numbered conseautively. Left-hand side: pixels usable for 3-point
formulae right-hand side: pixels usable for 3+3-point formulae

At this paint it shoud be noted that the reduction in M; now needs to be determined by (3.67), since the
carier frequency has an x- and ay-comporent. Therefore, for ax =ay =90°, we get (s n(1v4)/(174))? = 0.81.,
Consequently, anather 10% of moduationislost, which will | ower the optimum value of B somewhat.

Now, using (3.19), adoulde phase determinationis possble for pixel 3, acwrding to

|4_|3_|6_|3

tan¢o=|2_|3—|l_|3, (6.10)
which corresponds to the x- and y-diredion, respedively. The phase is then determined from
tan g :(|4_|3)+(|6_|3) _la-2l5+1s
Ol m1g)+ (1 -15) =21+ 0y, (611

thisis neither a new phase-shifting formula, nar an extended averaging scheme in the sense of [ Schmi95)].
Instead we get an average that, despite being spatial, does nat reducethe resolution d the measurement. It
serves to deaease o0y , dthough the phase measurements involved are not completely statisticdly
independent, since the central pixel 3 is used twice Note dso that the other two passbilities of
cdculating the phase, with pixels {1, 3, 4} and {2, 3, 6}, would just doude the numerator and
denominator in (6.11), which has no effed.
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To use the intensity corredion, we re-define our auxili ary quantities, the Ky,

(tan ‘/’0)1: @( Ds~ D) = %
\/O_4(D2—D3)—\/O_2(D3—D4) Ke =K (6.12)
(tan ‘/’0)2 = \/O_S(DG ~Dy = %
\/O_G(Dl_Ds)_\/El(DS_DG) Ko ~Kq
and oliain
o mod T =arctan — < +KK23+—|T§4 TR, (6.13)

which method d averaging is corred for this purpose, since bath expressons soud yield the same
phase. (In this case, the inclusion d two more qudients from pixels {1, 3, 4} and {2, 3, 6} is nat
equivaent to a douling of the terms; but on dang so, the reduction d oy is minimal.) The spedral
transfer properties of (6.11) and (6.13 are now genuinely two—dmensional, so that we can rewrite (3.73 as

bso(vy vy) = g T (V) BV, ) + T (V) BB, y)) ~ arg(T (v, ) (€, 1))
0 S(v,.v,)d (6.14)

=arg +—6(VX ) %

and examine the murse of bsc(vy,Vy) experimentally by the now familiar 2-D representation. This is done
in Fig. 6.12 Both maps of bsc(vx ,vy) are cdculated from the same inpu interferogram, only (6.13
processes aso the previously stored spedkle pattern O(xy). Since ax=a,=90%sample, ore can use
ds=2.5d, (cf. 3.4.4, whereby eat signa band fill s approximately one quadrant of the spatial frequency
plane. The left-hand image in Fig. 6.12 visuali ses this arrangement.

Wy/Vo
TS

Vy/\)o v /no

SR A0 12
Vi/Vo Vx/Vo /"o
Fig. 6.12 Left: power spedrum of inpu interferogram (displayed in contrast-enhanced log scde); centre:
bsc(vy, V) for (6.11); right: bsc(v ,w) for (6.13). Bladk lines: frequency co-ordinates leading to corred

phase cdculation, bsc(vy,v)=+45°; white outlines: aress of —-10°<d¢<10°.

In these images, the behaviour of bsc(vx ,v) on the line given by v, =v, corresponds to the one-
dimensional cases we have nsidered before. The bladk lines indicae mrred phase cdculation
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(bsc(vy,W)=£45°), and d course, ore point ontheselinesis vx=v,=Vv,. But aso for v, =v; and v, =0, and
viceversg, it is easy to seethat the phase-extradion formulaewill operate crredly, athough orly one-
dimensionally in either case. By the aldition d phasors from both dredions however, the interesting fad
results that bsc(vy,vy) has the wrred value dl along the bladk lines in Fig. 6.12 this means that
compasitions of two "wrong" frequencies can still yield the corred phase. These lines are dmost circles
for (6.11); and also (6.13 delivers a similar shape, bu only within the range of the signal frequency
bands. We will not go into detail s as to the theoreticd interpretation d these "circles of quadrature”; but
one ould argue that the signal bands shoud be re-pasitioned to oltain signal frequencies wherever there
are blak lines, which would maximise the fradion d signal frequencies yielding corred phases.
Unfortunately, thisis not true: one must bea in mind that phase-extradion formulae have weak resporse
for low spatial frequencies, and nore for zero frequency (cf. Chapter 3.2.2), so that signal energy would
be wasted if the sidebands were shifted to touch at v, =vy=0. An experimental test confirmed that this
strategy |eads to slightly worse measurements than with the nominally corred value of (vy, v).

The white outlines $how those aeas for which bsc(vy,vy) stays within =10° deviation d its nominal
value; as discussed above in Chapter 3.2.2.3 this means that the p-v phase arors d¢o are wnfined to 10°
within these regions. They are broadest in the vicinity of v,.=v,=vp, which, in analogy to Fig. 2.13 shows
that the phase cdculation is more stable when the phasors §(vx,vy) and G(VX,vy) are long, i.e. when

both vy and vy contribute to the phase determination.

The measured performance of (6.11) and (6.13 is simmarised in Fig. 6.13 where the averaging of
horizontal and verticd phase cdculations is abbreviated by "90°%90*'. The graphs for the usua 3-sample
90° formula ae repeded from Fig. 6.9 to simplify the comparison. The interferograms for the "90%/90*
error evauations have ds=3 d, as well.
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Fig. 6.13: Overview of gy from ESH displacanent measurements as a function d N, , oktained with merely
horizontal (triangles) and averaged haizontal/vertica phase determination (squares) from four series of
interferograms (two o them aready used for Fig. 6.9), al with ds=3 d, but various phase shiftsand B values.
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The improvement in gy by averaging phase measurements can be dealy seen; but a comparison with the
3+3 averaging formulaeof Fig. 6.9reveds that their performanceis not being readed. Therefore our next
step will beto apply these a well in the averaging process which can be dore by extending the sampling
pixel cluster as already shown ontheright side of Fig. 6.11

To use 3+3 averaging formulae horizontally and verticdly, we have the four different posghiliti es to use
pixels {2, 3,4,5}, {1, 3,6, 8}, being the familiar horizontal and verticd cdculations, and{1, 3, 4, 7},
{2, 3,6, 7}. The latter combinations will still work in the presence of a cnstant spedcle phase gradient
Pox, Or ¢oy; but sincethe pixelsinvolved are not onastraight line, they would additionally impaose ¢o x =
$oy , which canna reasonably be inferred from Fig. 2.14 On the other hand, pgxel 7 is Patialy closer to
pixel 3, which is again ou target point for all the caculations, and hence has greder spatial coherence
with resped to pixel 3 than pixels5 o 8. Therefore we use

20,-15)  2ie-13) 2iu-15)  2(1g-15)

tan mod27T = = = =
¢O |2_|3_|4+|5 Il_|3_|6+|8 |1_|3_|4+|7 |2_|3_|6+|7 (615)
to establish
8l.-41,-4l
mod 27T =arctan 8 "4 6 .
Po 21,421, =41, =21, +15-215+21; +g (6.16)

There is aso the possbility to inscribe four more pixel sequences in the shape of an L (plus appropriate
refledions and rotations) into the pixel cluster of Fig. 6.11; but again, this would merely doulle the terms
in (6.16 and we do nd take them into ac@urt.

Since the definitions for the @rrespondng intensity-corredion formulae ae rather lengthy, 1 do nd go
into detall here; the principle is aready indicated in (6.12) and (6.13 where only the pixel indices have to
be inserted appropriately. It may suffice to nde that again orly the pixed sets {2, 3,4, 5}, {1, 3,6, 8},
{1, 3,4,7}, and {2,3,6,7} nead be used. Also in this case, it will be interesting to examine the two-
dimensional frequency charaderistics of these gproadches experimentally with the help of bsc(vx,vy).
These ae shown in Fig. 6.14 with the same inpu interferogram (and spedkle pattern, ds=2.5 d,) as for
Fig. 6.12abowe.

In the plot for (6.16), the same drcle structure of bsc(vx ,V,)=+45° shows up as abowve; but thanks to the
corredion d improper v, and/or v, ancther line of corred phase determination appeas at higher spatial
frequencies. This enlarges the region where | d¢| <10° to cover amost the mmplete sidebands, which is
of course incidental for this particular specle size. While the shape of bsc(vy,vy)=+45° looks
qualitatively different for the intensity—correding formula, the stabili sation effed on the phase extradion
isamost the same.
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Fig. 6.14: bsc(vy, V) for (6.16) (left) andits intensity-correding version (right). Blad lines: frequency co-ordinates
leading to corred phase cdculation, bsc(vy,Vy)==45°; white outlines: areas of -10°<d¢p<10°.

A summary of the results from (6.16) and from its intensity-correding versionis given in Fig. 6.15 note
that the ordinate is sded to a maximum of 04=0.1A to make differences visible. The graphs for the
horizontal 3+3-sample averaging 90° formula ae repeaed from Fig. 6.9.

0.10
(o /A
0.08
0.06
0.04 -
4
/
0.02 | —* 3+3-sample averaging 90°, B=30
—— 3+3-sampl e averaging 90° with intensity correction, B=3
- —#— 3+3-sampl e averaging 90°/90°, B=30
0.00 —D-3+3-sample averagi ng 90°/90° With intensity cqredim, B=3
0 20 40 60 80 Nx 100

Fig. 6.15. Overview of gy from ESH displaceanent measurements as a function d Ny, oltained with haizontal
(triangles) and averaged haizontal/verticd phase determination (squares) by a 3+3-sample averaging
formula; withou intensity corredion, B=30 (bladk symbadls); with intensity corredion, B=3 (bladk
symbalsfill ed white). Inpu interferograms were the same four seriesasfor Fig. 6.13

In this case, the improvement obtained by switching from (ax,0) to (ayay), with pertinent phase-
evauation formulag is rather small; but its remarkable property is that it lasts up to (at least) N,=100.
Thisisin contrast to the other improvement strategies we have discussed so far (where the gy tended to
beame more or less the same for higher Ny); it indicaes that the spedle correlation remaining after
displacements that give high fringe densitiesis indeed more dficiently utili sed by the 2-D phase retrieval.
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On the whalg, it proves rewarding to use the full spedkle extent for phase cdculation, povided there is
sufficient objed light to afford a drcular aperture. For pradicd reasons, one would wish to deaease ds as
far as possble; but in SPS this has effeds that we have encourtered in Chapter 5 before: for ds<3 d,, gy
increases, regardlessof the respedive fringe density.

6.4 Reduction of speckle size

It seems worthwhile to see whether the methods to reduce gy developed so far can asdst in oltaining
"good' measurements from smaller spedles as well. Therefore we test two more spedle sizes, namely
2.5and 2 pxels. The best phase cdculation foundin 6.3 was the arerage over four 3+3-sample phase
determinations for eat pixel, where the intensity corredion contributed orly a small improvement.
Therefore we gply both (6.16 and its intensity-correding extension to cary out these alditional
measurements. The results are shown in Fig. 6.16 where the last two curves for ds=3 d, are repeaed from
Fig. 6.15for comparison.
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Fig. 6.16: g4 from ESH displacanent measurements as a function d N, as cdculated by (6.16) (bladk symbals)
and itsintensity-correding extension (white fill ed symbals), with various ds as li sted in the legend box.

The results from ds=3 and 2.5d, are very close together (except for ds= 2.5 d,, B=30 and low Ny), they
even crossead ather sometimes, which means that the mrrespondng gg match within the determination
uncertainty as explained in 5.2.2 This all ows the anclusion that we may reduce the spedkle size to 2.5d,
at virtually no herm for the measurement's acarracy. Considering the aurves for ds=2 d,, the beginning
increase of gy vs. ds is clealy naticedle, espedally at lower Ny . Hencewe can conclude that an ogimal
adjustment of ds shoud be between 2.5and 2d, for SPS which is anyhow sufficient to colled between
1.5and 2times more light than with the "standard" choiceof 3 dp.

One muld think upeven smaller evaluation clusters to ded with small spedkles and passbly enhancethe
gpatial resolution. Re-considering the arangements of Fig. 6.11, it would be possble to use pixels
{1, 2,3,4,6, 7} only, which till allows for two 3+3-sample cdculations, or even {3, 4,6, 7}, whereit is
possble to average over two sets of 3 samples, {3, 4,7} and {3, 6, 7}. But in bah cases we have no
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straight lines of pixels anymore, which leads to drawbadks already mentioned; and in the latter case, the
averaging hardly makes ense due to very poa statisticd independence of the pixel sets. Accordingly,
these goproadhes do nd deliver any improvement in the whole range of Ny values over the results aready
shown. Therefore it is aso douliful whether the formally expeded increase in spatial resolution would
adually turn up very fine fringes might just disappea in higher noise.

To continue owr quest for maxima acaragy in sawtooth images from spatialy phase shifted
interferograms, we will now put aside the phase-shifting methods in favour of the more general concept of
the spatial frequency plane.

6.5 Fourier transform method of phase determination

In the discusson d 3.2.2 we saw that the spedral transfer functions of phase-sampling formulae ae
designed to function corredly at their nomina frequency only. While considerable improvements are
posshble by simple means, all phase-shifting formulaetend the more to falsify the signal the broader the
sidebands are. So, instead of looking for a phase-evaluation window that deli vers low noise while being as
small as possble, ore @wuld switch to the other end d the scde and wse instead a very large window: the
whole image. Since the signal is encoded in a spedral sideband, it is quite natural — and convenient — to
retrieve its phase from frequency spaceby a Fourier transform method (henceforth abbreviated by FT or
FTM). It has been applied aso to interferograms withou a signa carier [Kre86]; but that approac
requires a-priori knowledge or one temporal phase shift to eliminate the sign ambiguity.

Although it would require sophisticated hard- and software even today to maintain the red-time caability
of an ESH system with carrier frequency and FT phase cdculation, we do investigate the dfed of it asa
possble means of a pasteriori data processng that still can run entirely automaticdly. It is intuitively
clea that this approach shoud offer a distinct advantage over phase sampling: while phase sampling
always works with locd information from a very short sequence of samples, the FTM, as a global method,
has accessto al the image information simultaneously.

The way to retrieve phase information moduated ona carier frequency by means of Fourier transforms
has been described in [Tak82, Rod87. The FTM lends itself to, inter alia, profilometry [Tak83], moiré
[Mor94a], hdographic [Quad6] and spedkle interferometry [Sal96]. Here, we will of course mnsider the
method with emphasis on spedkle interferometry and also generalise the origina 1-D treadment to two
frequency dimensions, asfirst suggested in [Bon8§.

There ae numerous analyses as to the dtainable acaracy [Mad83, Gre88, Kuj91c, Joz92], with the main
results that the interferogram shoud be multiplied by an appropriate window function, a extrapolated, to
minimise edge truncdion effeds; but as s1own in [Koz99], they can aso be diminated exadly. We will
not ded with such refined methods because (i) our digital resolution is rather large (1024x1024 pxels),
so that the edge dfeds play arelatively small role, and (ii) the benefit for spedkle images would hardly be
significant.
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In classcd interferometry, it is necessary to determine and remove the carier frequency for wavefront
reconstruction [Nug85, dNic98, Li 98, Fer98]; in ESH, thisis fortunately done automaticdly by the image
subtradion d theinitial from the final spedkle phase map.

Let |o(x,y) | exp(ido(x,y))=0(x,y) be the complex amplitude of the spedkle field; then the spedkle intensity
is O(x,y) = o(x,y) - 0* (x,y)= |o(x,y)|? which we awme to be unity. Adding a reference wave r(x,y), the
amplitude of the interferogram is i(x,y)=o(x,y)+r(x,y). By r(xy)= +/B- f -exp(i(2mvox X+2TVoy Y)),
f - being the complex amplitude's unit, we aljust the bean intensity ratio to B, which is ared, pasitive
and spatialy constant fador, and the spatial carier frequencies to vox andvp, . The intensities in the
interferogram are then

1(x,Y) = (0(x, ) +1 (x,y))(0(x, y) +1 (x,Y))
=0O(x,y) + Bf? (6.17)
+0" (X, y)VBF exp(i (2mvg, X + 27V, ) +0(X, Y)V BF exp(=i (2mvg, X + 21V, Y)) |

which terms represent the spedkle intensity, the reference intensity, and the cmplex representation d the
cosinusoidal interferenceterm, respedively. The spedrum of thisintensity distribution will be

FT(1(xy)) = I~(vX , vy)
= 5(vx , vy) + BFZJ(VX , vy) (6.18)
+0 (vx,vy)* x/EFé(vx ~Voy,Vy = voy) + 6(vx,vy)* @Fé(vx + Vg Vy + voy) :
where * denotes convdution. This gedrum is a superpaosition d the spedkle halo O, the cetral pesk
mostly due to the uniform reference illumination, propationa to B, and two sidebands in which o(x,y),

and therefore ¢o, is encoded. Remembering the so-cdl ed sifting property of the d-function [Bra37, p. 74,
we can acourt for the convdution by rewriting (6.18) as

M(vvy)

- 6(V"’Vl’) * BF25(VX ’ Vy) +BF O’ (VX ~Vox:Vy = Voy) +/BF 6(Vx Vo Vy + Voy) . (6.19)

As drealy explained in Chapter 3.3.1, the shape of the sidebands in the frequency plane is that of the
aperture, orly now they are shifted by (v ,v); see &so [VIa94, p. 272. The situation is depicted in Fig.

~ 2
6.17 where the measured spedral power density |I (vx,vy)| of a spedle interferogram with ds=3 dp,

0,=90%column and a,=90%row is own in a logarithmic scae; nevertheless the reference-wave peek
has been clipped to bring the detail s out more dealy.
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Fig. 6.17: Pseudo-3D plot of the spedral power density P(v,,v,) = ‘I (vx,vy)‘ in a spedkle interferogram with a

spatial carier frequency. Since the spedrum comes from the DFT of a quadratic image with NxN pixels,
the Nyqvist frequencies + vy correspondto N/2 carier fringes on the sensor.

All contributions from (6.18) are dealy discerniblein the plot. Now we enclose one of the sidebands by a
suitable frequency filter whase size follows diredly from the spedle size; its diameter in the frequency
plane shoud be half of that of the spedkle halo (cf. 3.3.1). The rest of the spedrum is discarded; the
seleded sideband is difted to the centre of the frequency plane by subtradion d the carier frequencies,
and then transformed badk to the spatial domain:”

FT'l(\/EF o(v,, vy)) =/Bf o(x,y) = /Bf

o(x, )| exp(igo (X Y); (620
finally, we obtain the spedkle phases ¢o by

Oim(VBf o(x,
bo(x.y) mod2m = arg(VBf o(x,Y)) = arCta”@Rne]%JEf Zi); i//;

gé, (6.21)

whereby the fluctuations of M;, here gppeaing as v/BF o(x, y)|, are cancdled.

By shifting bad the sidebands, ore obtains the true spedle phases ¢o . However, when two spedle
phase maps ¢o; and ¢os, belonging to two oljed states, are subtraded from ead cther, the carier
frequency will automaticaly be removed. Therefore, the signa shift in the frequency plane is not

" The filtering operations destroy the point symmetry about v,=1,=0 that r(vX ,Vy) possesses asthe FT of ared signal [Bra87,

p.14]; therefore the inverse transform will be genuinely complex.
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generdly necessry in spedkle interferometry (nevertheless it may sometimes be useful to insped the
spedle phases per se).

In clasdcd interferometry, the variations of the badkgroundintensity may reasonably be assumed to be so
low-frequent that the spedrum of the variations of 1y, is easily separated from the signal in frequency
space In spedle interferometry however, the high frequencies in O(x,y) cause asignificant deficiency of
the FTM: asis clealy seen from Fig. 6.17, 5(vx,vy) is nat separated from the sidebands. The spedle

halo owerlaps the sidebands at any pradicable spedle size, so that a considerable noise badkgroundadds
to most of the signal’s frequency content. This disturbs the phase recmnstruction in a similar way asin the
phase-shifting investigations.

But as familiar as the problems are the ways to cope with them. From (6.19), it is clea that increasing B

will again help to suppressthe spedkle noise, provided r(x,y) has a narrow spedrum and can be diminated

in the frequency plane. This can be fulfilled in an excdlent way if afibreis used to ill uminate the sensor:

then r(x,y) will be avery broad Gausgan profile, and its gedrum a very narrow Gaussan that will not

overlap with the signal sidebands. It turns out that the performance of the FTM depends on B much in the
same way as for the phase-sampling methods. To quantify this, Fig. 6.1 also contains a plot of gy as
cdculated by (6.19 -(6.21) (bladk, circle symbals) from the same interferograms as used for the SPS
tests.

Furthermore, we note that the quantity 6(vx ,Vy)in (6.19 isdiredly accessble because of

G(vy.vy) = FT(O(x.¥)) = FT(0(x,y)0" (x.¥)). (622

so that we shoud be ale to eliminate the spedle badgroundfrom the phase cdculation if we first record
the spedkle pattern alone, cdculate its gpedrum and subtrad it from (6.18). This corredion for spedkle
intensity is smilar to that in 6.2.1, and the remaining phase arors are then mainly from eledronic noise
and pxels with insufficient M. The same would be possble for the reference wave if its pedrum would
overlap the signal spedra. This approach resembles the badkground subtradion suggested in [Liu97] for
classcd interferometry.

Using the lineaity of the Fourier transform, we culd even subtrad the spedle pattern in the space
domain (6.17) before switching to the frequency domain; but the benefit is easier to seein the frequency
representation. Fig. 6.18 provides an example of how the spedle naise is removed in the Fourier plane
when ds=2 d,. The diased frequencies over vy remain usable for the FTM by pasting them badk to where
they got cut off [Bon8g. The reference wave need na be acourted for, since its gedrum is indeed
easily separated from the sidebands.
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Fig. 6.18: Interferogram power spedrafor ds=2 d, and B=3 withou (left) and with (right) spedkle subtradion. The
spedle halo is larger than the frequency plane; the dtenuation d high haizontal frequencies is mostly
dueto the pixel clock (cf. 3.4.5. Spatial frequency scdesare ain, e.g., Fig. 6.12onthe left.

This approach eliminates the problem of growing overlap of spedklie halo and signal band with deaeasing
spedle size, so that a very large part of the frequency plane can nav conveniently be utili sed. Also, the
"crosdalk” of the sidebands addressed in 6.1.2 (cf. Fig. 6.3) is avoided. The setting of w=w= % vy,
chosen for convenience of phase sampling (cf. 6.3), also appeas to be the optimum choice in frequency
space it has been used in [Kiich9]] for a high-performance interferometer, and a computer simulationin
[Che9l] showed it to yield the @ror minimum.

The vacant regions of the frequency spedrum can even be used to record further information [McLa86,
Hor90, Sim93, Pir95, Ped97a, Ped97b, Tak97a, Tak97b, Sched99, e.g. abou a semnd dformation
diredion; this approadh has become popuar under the name of spatial frequency multi plexing. Including
time & a parameter enables gatio-temporal frequency multiplexing with ore [Tak90a] or two [Tak92,
Mor94h| spatial dimensions.

The improvement of spedkle subtradion ower the non-correding FTM for varying B is aso shown in Fig.
6.1for ds=3 d, (bladk, white drcle symbals). The behaviour of the wrredionisthe same @ for the phase-
shifting method the dfed vanishes for B=30.

When the same interferograms as in Chapter 6.4 are processed by the FTM, again at B=30 withou and
B=3 with the intensity corredion, ore @mesto the results plotted in Fig. 6.19 To use a1024x1024 pxel
FFT, the standard inpu images consisting of 1024x768 pxels were padded with zeros in the last 256
rows. In a mwmparison d genuine 1024 pixel images processed entirely and partly, the differencein the
04 values remained within +£1%.
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Fig. 6.19: g4 from ESAH displacenent measurements as a function d Ny, as cdculated by (6.19-(6.21) (blad) and
its intensity-correding extension acording to (6.22 (white filled symbds), with various d; and B as
listed in the legend box.

By the intensity corredion, a pronourced improvement is attained for d<=2 d,. This could be expeded
sincethe overlap o spedle halo and sidebands is largest at the small est ds, and hence asubtradion d the
spedkle noise shoud have the largest effed. Again, there is not much dfference between the airves for
ds=2.5 a 3 d,, and the improvement by the intensity corredion is Smilar to that in Fig. 6.16 Generally,
the arrves own here ae rather similar to those of Fig. 6.16 bu a caeful comparison reveds a
qualitative difference The FTM yields lower oy for Nx<20, while from N,=20 on,the multi ple-averaging
formulae leal to better results. The airves for the FTM begin with a stegoer slope and then flatten ou
towards higher fringe densities; thase from the phase-sampling formulae ae essentialy straight. This
shows that the FTM can be very acairate but is more sensitive to spedle dewrrelation than the SPS
cdculation: the spatia extent of the sampling pixel cluster dlightly tends to smooth the cdculated phase
maps. At very small decorrelation havever, the information in the interferograms is more dficiently used
by the FTM. Both sets of curves would of course gpproach the noise limit of 0y max =0.146) (see Chapter
5) asymptoticdly if we further increased the fringe density.

On the whale, the development of phase eraluation methods gedally for interferograms with spatial
phase shift — or carrier frequency, whichever interpretation ore prefers — proves rewarding and contributes
an important part to the goplicability of the spatial fringe analysis technique in ESH. The expeded ndase
due to intensity and plese gradients in the spedkle pattern can be dficiently suppressed, and aso the
matter of spatial resolution daes not seam to constitute aserious drawbadk for SPSat pradicable fringe
densities.
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6.6 Use of depolarisation to eliminate invalid pixels

A main error source in ESH and, to a lessr extent, in hdographic interferometry, are pixels where
M(x,y) falls below the dedronic noise or even vanishes due to low or zero spedkle intensity. This occurs
quite frequently (cf. Chapter 2.2.5 and leals to a relevant fradion d uncertain o invalid ouputs of
Ag(xy) in dsplacenent measurements. This phenomenon, with the assciated discontinuities of the
spedle phase, is the origin of the "salt and pepper” noise in ESA phase maps, and its effed on plrese
unwrapping has been investigated recently [Hun9g.

On the other hand, it is known that the spedle intensity pdf described by (2.6) changes sgnificantly when
an incoherent sum of two urcorrelated spedle patternsis considered [Goo75, p.21Enn75, p.21L In that
case, the maximum of the intensity pdf is shifted away from O(x,y)=0, so that the probability of finding
"dark" pixels will deaeease. Such a cae is encourtered in the interferometric investigation d rough
objeds that give rise to multi ple scatering and thus introduce depdlarisation, i.e. generate two mutually
incoherent spedkle fields. In this subsedionit will be shown how these can be exploited to improve ESH
measurements [Bro9§.

In this context, we cdl an ojed depdarising if the state of pdarisation (SOP) of the light scatered badk
from it differs from the SOP of the incident light. In many samples, for instance natural stone, thisis a
consequence of volume scatering due to the transparency of the material under investigation. Hence, we
obtain a scattered wave field with fluctuations of intensity, phase, and pdarisation.

If the scattered light is lit into two orthogonal linealy poarised states (verticd, v, and haizontal, h),
two spedle patterns S, (x,y) and S, (x,y) are generated with a normalised correlation coefficient c. As
described in [Fre90d], the value of c is chiefly governed by a surface-spedfic constant, cdled the
depdarisation coefficient p. This quantity is defined by the ratio of cross to co-polarised scatered
spedle intensity: 0<p = (S)/{S,) < 1, where h is the SOP of the incident light and v the orthogonal onre.
Then, we can use

(1-p)°

1+ p?

c= (6.23)
as a very good approximation to determine the crrelation d the orthogonally polarised spedle patterns.
This theoreticd prediction was confirmed by measurements of depdarising natural stones [Ada97]. Such
surfaces are for example involved in ESH-based measurements of deformations and surface tanges of
historicd monuments, which application was developed in the last few yeas [GUl96].

Even moderate anourts of depadarisation cause asignificant decgy of c: for p>0.5,we find ¢<0.2, so that
in pradice there is a good chance to oltain a pair of amost uncorrelated spedcle patterns. When a
depdarising objed is investigated by spedle interferometry, the low correlation ketween S, (x,y) and
S (x,y) may be utilised to deaease gy in dsplacenent measurements. the points of phase singularities or
low objed wave intensity in the spedle fields, where the phase ¢o, (X,y) Or ¢on(Xy) is undefined or
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uncertain, frequently occur at locdions that are different in the v and h fields. This gets clea when we
expressthe probability of finding a "bad" pixel (denoted by subscript b) at (x,y) in either spedkle pattern
by Py, (X,y) and Py (x,y) and that of finding abad pixel in bah spedkle patterns by Py, (X,y). Then we have

P (X, Y) UR, (X, Y) P (X, ), (6.24)

which is exad when c=0. Provided bah Py, (X,y) and Pnp (X,y) are distinctly small er than unty, this means
that it is posgble to replacemost of the bad pixels from one spedkle pattern by valid pixels from the other
one. There ae of course dways sveral paints (even for ¢ = 0) where bad pixels in bah spedle fields
coincide. But in any case, the number of bad pants in the phase map can be minimised by suitable

merging of ¢oy (xy) and gon (XY).

The merging processis carried ou by analysing M, (x,y) in the interferograms between the reference wave
(idedly linealy polarised at 45°) andthe verticdly or horizontally pdarised oljed wave [Cre88],

M, i (X, Y) :\/3(|1vi —13i)% + 2y — Iy = 134)?
M 1 (X, Y) =\/3(|]hi - |3hi)2 + (2l = gy — |3hi)2,

(6.25)

where a=120%sample and the index i refersto the initial objed state, for reasons to become dea shortly.
It shoud be anphasised that these M, are derived from the "sine" and "cosine" terms of (3.17), which
must then be used for the subsequent phase determination; if other a, or phase-caculation formulag are
used, the respedive "sine" and "cosine” terms have to be inserted under the square root. Due to the low
correlation between the v and h spedkle patterns, the two maps of M, i (X,y) and M, 1, (X,y) will also be
different, and the higher of the two values ought to indicae the prosped of a more acacrate phase
measurement. Admittedly, (6.25 isnot asreliablein SPSasin TPS[Su 94 due to the underlying spedle
structure that may yield bagus moduation when the pixel triplet crosses gedle "boundries’; but as far
asa omparison d M, i (X,y) and M, 1, (X,y) is concerned, this approach still works rather well, as we shall
see

The interferograms are recorded by a CCD camera behind apadariser in the verticd or horizontal pasition;
setting the plane of pdarisation d the reference wave to idedly 45° asaures Py, (X,y)=Php (X,y). For eat
point (x,y) in bah interferograms we determine M;,i(x,y) and M, i(x,y) and the phase distributions
Poni (XY) and ¢oni (Xy). Then, starting with ¢o.i (X,y), we replace d phase values in this map by those
from ¢opni (x,y) a al the locaions where M, ,i(X,y) <M ni(X,y). Thus, a pixel is considered "bad" in the
sense of (6.24) when a better measurement is avail able. The locaions of replacel pixels are stored in a
binary mask B; (x,y).

Repedaing this moduation analysis for the final objed state would leal to a slightly different map Bs (X,y)
due to spedle deaorrelation by the objed deformation and statistica temporal fluctuations like canera
noise. Therefore, B; (x,y) is used for the fina objed state too. That is, the phase values in the map
do.t (Xy) are replaced by thase of the map ¢ (X,y) @ the same locaions where the replacement is done
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for the initial objed state. By this approad, two merged (index m) phase maps ¢o i (X,y) and @o mr (X,Y)
are generated, whose rrelation is maintained with resped to the pixel replacement.

Since the phase off sets No, and Ny, (cf. Chapter 4.2) shoud be the same for bath sawtooth images to
merge, they shoud be kept constant during the recording of the two interferogram pairs Iy, I and Ly, Iy
In principle, it is possble to corred a phase offset a paosteriori and make both fringe systems fit together
by subtrading a mnstant phase from one of the sawtooth images; but the eror fringe profiles (cf. Fig.
3.39 arerelated to the adual physicd phase off set, so that such a "makeshift" will produce atefads and
lead to ursatisfadory results. Therefore, a phase stabili sation system to compensate phase fluctuations by,
e.g., vibrations or temperature driftsisincorporated in the interferometer as srown in Fig. 6.2Q

Object

HeNe Laser

Fig. 6.20. ESA out-of-plane set-up with SPS and adive phase stabilisation. Dashed lines. beams for the
stabili sation system. Abbreviations: seetext.

Thelight of aHeNelaser (25 mW @ 632.8nm) is couded with a microscope objedive L1 into a standard
single mode fibre (Corning Flexcor 633). A fibre couper FC (Gould) splits the light into an ojed wave
O and areferencewave R with a couging ratio of 9:1. Both ouput fibres contain a polarisation controll er
POC [Lef80] to adjust the SOP at the fibre ends; we use linea 45° pdarisationfor O and nd 45° bu 48°
for R, which dfferencewill be justified below. Although a standard single mode fibre is used, bah SOPs
remain amost constant under the given laboratory condtions for along time. This was verified by long-
term measurements with ared-time Stokes paarimeter [Dir97]: for atime period d abou four hous, the
azimuthal SOP angle changes by lessthan 2°,and the angle of dlli pticity by lessthan 4°.
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To oltain performance data for our approacd, we use the gy values from a simple out-of-plane tilt. The
test objed is a white painted metal plate that scaters with strong depdarisation (p = 0.78+ 0.01). The
light scatered off the objed isimaged with alens L2 orto the target of the CCD camera, with 1024768
pixels. A pdariser PF in front of the camera target seleds either the verticd or horizontal SOP of the
scattered light. The measured correlation coefficient for the crrespondng spedkle fields S;i (x,y) and
Si (x)y) isc=0.02+ 0.005which is in acceptable agreament with the value of ¢ = 0.03+ 0.003expeded
for the measured depodarisation coefficient. Since (S,)/($,)=0.78, the plane of polarisation d the
referencewave is &t to 48°instead of 45° by the POC to oltain Py, (X,Y)=Php (X)), thisis, we intend to
replace some 50% of ¢o.i (XY) (Powvi(Xy)) by entries from ¢oni (XY) (dont (Xy)), whereby the best
utili sation d both spedkle patternsis assured.

The reference wave's fibre end is placed in the goerture plane A of the imaging system and pgitioned to
yield ax = 1209column onthe CCD sensor.

The phase stabili sation works as follows: part of the objed light is refleded by the small mirror M1
mounted onthe objed. It passes through the lens L2 and is then refleded by ancther small mirror M2,
close beside the CCD chip, towards the plane S. On the oppaite side of the CCD sensor, a small
beamsplitter BS refleds a part of the reference wave towards S. By proper adjustment of M1, M2 and BS,
both waves can interfere in S,forming an interference pattern of concentric fringes as siown in Fig. 6.21
Thisisfar easier to achieve than broad fringes of stable shape.

Fig. 6.21: Interference pattern in the plane S of the PID unit; the white squares indicate the locaions and areas of
the phaodiodes. The drcular boundry of the pattern is due to the imaging aperture.

A phaodiode D1 is placal in the centre of this pattern where abroad fringe occurs. Ancther one, D2, is
placal ouside the cantre, integrating the intensity distribution over some 12 fringes. Thus, the output of
D2 isinsensitive to phese variations and trads the intensity fluctuations of the laser instead. Whenever
phase changes occur between the objed and the reference wave, the intensity in the centre of the fringe
system changes. This variation is deteded by D1, whil e intensity fluctuations of the laser are deteded by
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D2 and D1. Thedifferencesignal of the detedors D1 and D2 is processed by a PID controller and then fed
into a high vdtage anplifier HV. The amplifier drives a piezo eledric ¢ylinder PZ (Ferroperm PZ 27),
onto which some turns of the reference fibre ae woundand which works as a phase shifter [Dav74]. By
this closed-loop control system, the phase diff erence between O and R is dabili sed with resped to that
point of the objea surface where M1 is mourted. The adieved cut-off frequency of the phase
compensating unit of abou 1.4 kHz is foundto be alequate for the desired pupaose. Also, the long-term
stability of this arrangement was foundto be satisfadory [Sag98].

At the beginning of the measurement, (B) = 10 and ds = 3 d, were aljusted. Unfortunately, we have to
use a1 average for R, and hence for the bean ratio, here: as can be seen in Fig. 6.20 the reference wave
was direded so asto illuminate BS sufficiently. The maximum of its intensity profil e lay beside the CCD
array, which caused the locd intensity of R to vary between 2(R) and (R)/3 from edge to edge of the
sensor. Hence, 3<B<20 ower the image, which leads to dlight spatial variations of M;, and thereby, the
fringe quality. Note, however, that rotating the polariser does not affed the profile of B, so that the
moduation criterion remains appli cable.

For theinitial objed state, spedkle interferograms were catured for the verticd and haizontal position o
the polariser, respedively. The phase map ¢onm (X)y) was cdculated from these interferograms as
described above. According to B; (X,y), ¢onm (X,y) contained 49.24 of the pixels from ¢o,i (x,y) and 50.8%6

from ¢oni (X,y).

The objea tilt was applied to generate Ny=10, which moved M1 forward (towards the canera) by some A;
the assciated phase thange was tracked and compensated by the stabili sation urit, whose bias output
voltage was therefore shifted by some 10% of its complete range. This means that the "I" part of the PID
stabili sation would have to be reset regularly if larger tilts were present. The @mnsequences of the tilt for
the shape of the fringe pattern in Fig. 6.21 are however negligible. Nevertheless some work has been
dore subsequently to get rid of the necessty to attach a mirror on the objed, and a highly sensitive
heterodyne system was built that uses the light of one or few objed spedkles for stabili sation [Bro0Q.

After the ojead deformation, I+ (x,y) and I (X,y) were recorded and a phase map @o s (X,y) for the fina
objed state was cdculated. Finally, the merged deformation phase map Agm (XY) = ¢om (XY) — do.mi (X,Y)
was determined, with g = 0.051A. For comparison, we generated Ag, (X,y) = doni (X,Y) — @o.i (X,y) with
only one SOP (here v), and found oy = 0.067 A. Hence, the noise reduction by using both SOPs is abou
24%. A visua impresson d the resulting phase maps is provided by Fig. 6.22

The eperiment demonstrates that even a simple phase-cdculation formula is sufficient to oltain an
acaracy of A/20in SPSif it is alowed to process"good' interferogram data. And as described abowe,
thereis gill spaceleft for improvements.
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Fig. 6.222 Comparison d sawtooth images from an ou-of-plane tilt; left, Ag,(x,y) measured with ore SOP,
04=0.067A; right, Adrm (X,y) by merging of measurements from two SOPs, g4=0.051A.

An attempt to use the intensity-correding formula (6.6) to derive amoduation criterion that includes
spedle intensities remained ursuccessul. While bath Ag, (x,y) and A¢n (X,y) were better than their non
correded counterparts, Agm(Xy) was dightly worse in terms of gy. Apparently, the simple moduation
analysis of (6.25 rgeds unreliable pixels well enough, and the inclusion d spedle intensities tends to
compli cate the procedure.

In the version d the system described here, the polariser is rotated manually. Of course, it could be
replacal by an eledro-opticd device so that the interferograms for both SOPs can be catured in
subsequent video frames. Furthermore, with a polarising beamsplitter and two cameras, it would even be
possble to record the two interferograms smultaneously. In that case, the phase compensating unit can be
given up, povided SPSis used.

6.7 Extensions of SPS by temporal unwrapping

Whil e the reduced spatial resolutionin ESH does not sean to constitute pradicad limitations for SPS the
temporal resolution is increased in comparison with TPSby a fador of at least 3. This has been used for
high-predsion classcd interferometry to oltain and average phase maps at a higher rate [Fre90b], and the
single-frame measuring capability has enabled succesful measurements of high-speed events [Kuj88,
Sho90, Ped93. But nat only can the phase front be monitored at video red-time: it can additionaly be
tradked and urwrapped pixelwise in time, which immediately yields displacenent and deformation cata
and pasbly eliminates the neal for a paosteriori data processng. This approad is known as temporal
phase unwrapping [Hun93] and abbreviated by TPU. It has been used for profilometry [Tak94, Sal97,
Joe98l and shearography [vBru9g and was applied to ESH deformation measurements in combination
with TPS[vBru98, Hun99 and aso with temporal FT evaluation [Joe98a]. A method uilising carier
fringes with TPU for a sheaography ESH system has recently been described in [Mar0Q]. The principle
of TPU is shownin Fig. 6.23
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Fig. 6.23: Principle sketch of spatial (top row) and temporal (bottom row) phase urwrapping; for detail s, seetext.

In spatial unwrapping, a sawtooth image (top, left), representing a tempora phase history A¢(x,y) mod 2t
= (o (XY, t) mod 2¢o(X, Y, ti) mod 21) mod 21, with i and f referring to undsformed and deformed
objed state, is converted to a antinuous displacanent phase @(x, y) (top, right) by appropriate alditions
of 21 i.e. by finding the wrred step function 2m(x,y), nLJZ. This is dore by a smple aiterion: when
the data satisfy the sampling theorem spatially, there will be no prase dhanges >t from pixel to pixe. If
such a transition is deteded nevertheless it must then be a0« 2t jump that is wrapped badk onto [0, 1)
by in- or deaementing n. This procedure dong the x diredion at an image row y is ketched in Fig. 6.23
in the centre of the upper row.

Tempora unwrapping starts from an empty displacenent map (bottom, left) and trads the phase history
of every pixe (x,y) in time by comparing it with an initial phase map ¢o(x, Y, ti). The unwrapping criterion
is applied temporally, as shown in the caitre of the bottom row for some pixel (x, y); the tempora
sampling rate must be high enough to keep differences of ¢go(x,y,t) from frame to frame smaller than 1ton
eah pxe, this is, the sampling theorem must be fulfilled temporaly. The phase differences are
unwrapped by addition d 2rm(x, y, t) as required and wsed to continuowsly update @(x, y, t), which may
conveniently be represented by grey levels as well, as on the right in the bottom row. The alvantage of
this methodis that errors due to faulty — mostly badly moduated — pgxels will not spread aaossthe image
as this may be the case for spatial unwrapping.

In longer monitoring sequences however, the alvantage of TPU can become a disadvantage: it
acawmulates data, including errors, and severely corrupted unwrapped phase maps @(x,y) canna be
restored a paosteriori. It is therefore favourable to store both the temporally unwrapped data and several
phase maps ¢o(x, vy, t). If the former are doultful, the latter may yield conventional sawtocth images
A (X, y) that can easily be unwrapped spatially when they contain few fringes.
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This procedure requires a storage interval At for the phase maps ¢o(X, y, t) which is matched to the
paossbly varying velocity of objed deformation and dsplacament. The implicit fringe courting cgpability
of TPU lendsitself for driving such a matched course of At automaticdly. Asfar as| know, thisisaue has
only once been dedt with before onthe basis of spedkle decrrelation analysis [GUI93]; here however, the
guantity of interest that we want to limit is the number of fringes in A¢(x,y) instead of the spedkle
deaorrelation [Bur00h .

In pradice, ESH often deds with oljeds consisting of several independent parts that may undergo
different displacements and deformations. However, sawtocth fringes do nd allow to determine rigid
body movements or the sign o the deformation itself, unessthe fringe orders are tradked by additional
devices like, for instance, a phase stabilisation unt [BroO(. We will see that temporal unwrapping
deliversthese datafor ead oljed part automaticadly.

6.7.1 Temporal unwrapping of speckle phases

The use of tempora unwrapping is nat entirdly straightforward in spedkle interferometry; we will
therefore briefly consider the aumulative impad of spedkle noise on dsplaceanent data.

Not surprisingly, badly moduated pixels cause problems aso in this applicaion. The statisticd
fluctuations of the cdculated phase shoud yield a displaceanent of zero when monitored over a sufficient
number of frames. It was however observed that even for longer observation sequences with hundeds of
frames, some of these pixels samed to change their phase @nstantly in ore diredion; both signs of
displacement were present. In a fringe wurting procedure, these pixels would trigger data storage even
when noadual displacenent has occurred. Therefore such ouliers have to be suppressed; and as usual in
spedkle interferometry, a low-passfilter can serve to doso. This may be objedionable in TPS because it
impairs the spatia resolution; but for larger spedkle sizes, as used in SPS the resolution will nat suffer
gredly.

There ae sophisticaed and well-founded filtering schemes [Hun97 that give excdlent regjedion d noise
in the displacanent map ower long, albeit not infinite, times of observation [Cog99]. For reasons of
processng speed, a simpler filtering scheme is used here. The acamulated phese ®(x, y, t) of a pixel at
timet is considered faulty when it differs by more than 1t from the acamulated phese of at least one out
of its neaest neighbous. In that case,

<D(x, y,t): = (dJ(x, y - 1,t) + (D(x -1 y,t) + dJ(x +1 y,t) + cD(x, y+ :Lt)) /4 (6.26)
andthe outlier is eliminated.

By the seledion criterion, filtering takes placeonly when necessary, and processng time is saved. This
helps to oktain a high frame rate, which is very important since dso temporal unwrapping relies on the
sampling theorem, as detail ed above; and due to the aumulative nature of the process errors due to missed
fringes (violation d the sampling condtion) will | ast in the map of @(x, y, t) urtil it i s cleaed. The phase
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maps were generated by alook-up table for ax=120%sample (cf. 3.2 and Appendix B). The frame rate of
the image processng system (a Data Trandlation DT3852 frame grabber conreded to an Alaaon FT200
procesor board with two 50MHz 1860 pocesrs) was =0.5Hz for an image size of 800x600 pxels.

The method d filtering was tested by runnng the temporal unwrapping for some 30000frames without
disturbing the system. At the end, the fringe courting procedure reported some 1.5 fringes; this error
suppresson is sufficient for our purpose. However, the fluctuations in @(x,y) do nd appea to be
perfedly randam, sincethey do nd vanish even in such along averaging process Their structure may be
sea in Fig. 6.24 where the displacement information correspondng to a range of 1.5 fringes has been
converted to grey values and expanded to the whole grey scde for better visibility of the dfed.

Fig. 6.24: Errors in @(x,y) related to "randam” noise, acaimulated duing =30000temporal unwrapping runs
withou adual objed displacement.

Another problem occurs in the observation d red displacements. While noisy pixels are not necessarily
deteded as such in every frame, their cdculated @(x, y, t) will nat foll ow the true @murse; instead, for most
of the noisy pixels it will hover aroundzero. If such a @(x, y, t) happens to be included in the averaging
operation (6.26) before it is re-aligned with its neighbous, its error will propagate into the surroundng
pixels. In the long run, this will 1ead to pixel clusters whose @(x, v, t) is dragged behind, i.e. will be
somewhere between zero —from where dl observations gart — and the true value. An exampleis given in
Fig. 6.25 where an ou-of-plane tilt about the y axis has been tracked. The tilt was controlled by applying
a linea voltage ramp to a PZT which rotated the objed hoder sowly enough to satisfy the temporal
sampling requirement for all pixelsin theimage.

A%

Fig. 6.25: Errorsin @(x, y) related to oljed mation; "slow" pixels due to imperfed error rejedion.

Theline of zero dsplacement is marked by the white line and the acamulated d splacanent range @(x, V)
is+5 mat the left and -5 Tt at the right edge. The bright/dark badgrounds tend to decave the eye; indedd,
the "slow" pixels on the left are brighter than those on the right, which means that the sign of motion is
corredly determined for all of them, bu the measured dsplacement is underestimated. When spatial
averaging takes placein every frame, this behaviour can be suppressed by pixel weighting [Cog99]. In
this subsedion, the faulty pixel clusters are seledively removed a paosteriori; they must not be included in
the displacanent computation [Hun93), for they will generate asystematic aror that is propational to
the asolute displacanent.
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6.7.2 Long-term observation of biological object

Many industrial ESH experiments allow to predict the number and shape of fringes with which a test
objed will respondto a cetain load. On the other hand, keing a nondestructive examination technique,
ESH is particularly useful for unique objeds abou whose properties littl e is known. Therefore it is in
genera difficult to foresee dianges in the fringe pattern, all the more when the objeds are not subjeded to
test sequences or cycles but left to fluctuations — or attempts of stabili sation — d ambient parameters. In
such cases, eventful periods may aternate with hous of little or no changes. A "good' experiment
requires that the objea motion ke alequately tradked in time, this is, neither fringe density nor spedle
deoorrelation must grow too large between the caturing of conseautive interferograms; and onthe other
hand, noredundant data shoud be produced. Whil e there may be tasks where ahuman operator can make
such deasions, thisis undesirable from an econamicd point of view. Also, some observations exclude the
presence of a person.

Temporal phase unwrapping is well suited to utili se the fringe order court n(x, y, t) to generate matched
data storage intervals At: from the continuowly updated values @(x, v, t), the extreme values @ and
®nin Can be extraded in every run d the temporal phase unwrapping loop. When the difference exceals a
certain threshdd @, it is assuumed that the crrespondng sawtooth phase map A¢(X, y) = ¢o (X, Y, t) —
do(X, Y, t;) between the present phase distribution ¢o (X, Y, t) and the stored initial one, ¢o(X, Y, t;), has
aquired mfringes with m = @ /21t In that case ¢o (X, Y, t7) is gored and re-labelled @go(X, Y, ti), D(X, Y, t)
is cleaed and the procedure begins anew. This tedhnique yields a sequence of few-fringe sawtooth images
that constitute no problem for spatial unwrapping. Note, however, that this method d fringe @urting
does nat limit the fringe density: when small defeds generate high locd phase gradients, it may possbly
come to urresolvable sawtoaoth fringe patterns. The phase gradient is easily accessble with the help of the
co-ordinates of @ and Dnin; but this procedure was omitted for the sake of simplicity.

Of course, the most convenient data evaluation would be to acawmulate @(x, y, t) throughou the whole
observation, whereby it may even beamme obsolete to save phase maps ¢(x, y) regularly. But with the type
of filter used here (6.26), it is sfer to eliminate acumulated ndse or acddental errors (e.g. by abrupt
stress relaxation in the interferometer) by cleaing @(x, y, t) when a phase map is dored. Thereby the
continuous tradking of phases @(x, y, t) is given up, bu the propagation d errorsis being limited to ore
measurement of @(x, y, t), correspondng to oy one storage interval At. Nevertheless the whole series of
k phase maps ®(Xx, y, t) may be stored and, if usable, added uplater onto yield &(x, y, tiota) = ZP(X, Y, 1).

To test this approach of dynamic data storage, | examined a biologicd test obeda whose likely
deformation is nat known in advance The white spat on a fresh chestnut, as sown in Fig. 6.26 was
found to be quite m-operative for interferometry: its surface is reasonably refledive and maintains
spekle rrelation ower sufficient time intervals. We can exped the displacements to proceed most
rapidly at the beginning of the experiment becaise the objed will relax in its holder. Also, the loss of
water from the surfaceshoud result in a constant shrinking, relatively fast initially and then levelli ng off.
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Fig. 6.26: White-light image (left) and deformation map (right) of fresh chestnut.

The dhanges of the dhestnut's surfacewere monitored over some days from shortly after its fastening in
the interferometer (which was the set-up o Fig. 5.1) until the deformation had settled somewhat. Besides
the matched storage of phase maps ¢(x, y) whenever the threshold of m=5 fringes was readed, additional

ones were stored at the stealy rate of 1 frame per 10 min to study possble performance diff erences
between the methods. Fig. 6.27 provides an owverview of the deformation dynamics. The bladk curves (left
ordinate) show the courses of the matched and static storage intervals At versustime dter the beginning of

the observation. The white aurves (right ordinate) show the wrrespondng courses of the hard dsk space
required for storing the phase maps.
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Fig. 6.27: Course of the matched and static storage interval At (bladk curves, left ordinate) during several days; for
static storage At isfixed to 10min. White aurves: hard disk spacerequired in MBytes/day (right ordinate).
The matched data storage went through several phases. in the first 3 hous, the dhestnut appeaed to settle
in its gring-loaded hdder and short storage intervals At were necessary. After = 15 h, the deformation
slowed down; the matched At were incidentally similar to the static ones in the time period between
= 25hand = 60 h. After = 60 h,adistinct slowing down o the shrinkage took dace and the matched At
remained around 20-25min for the rest of the observation. Hence temporal unwrapping was able to
avoid undersampling (in the sense of appropriate data storage) initialy and to save disk spacelater on.
To ill ustrate the value of this approad, we shall consider images from the two situations. In Fig. 6.28 a
comparison d a 10-minutes’ deformation measurement at t = 7% h is hown. Sincethe auitomatic routine
determined the instant of saving by itself, the initial and final objed states are only by chancevery nealy,
but not exadly, the same for the two storage series.
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Fig. 6.28: Comparison d matched vs. static data aquisition. Upper row: sequence of sawtooth images cdculated
from 5 automaticdly saved phase maps ¢ (x, y) (matched At), leading to the resulting grey-scde height
map onthe left in the lower row when spatially unwrapped, converted to heights and added. Lower row,
centre: sawtooth image for aimost the same displacement cdculated from only one phase map ¢ (X, y)
(static At); right: resulting height map.

The deformation is decompased into five parts (upper row) by the matched phase map aqquisition, and the

correspondng sawtooth images indeed show m = 5 fringes ead. The incremental sawtooth images can

al be spatially unwrapped with no poblems, and the crrespondng height data can be alded to yield a

flawlessdeformation map (lower row, left). Depending onthe individual phase gradients, the sum of these

incremental phase maps may contain well below 25 fringes, bu not more. The single sawtooth image

(lower row, centre) from the static data storage indeed contains only = 19 fringes. Their strongly

fluctuating density causes problems in spatial unwrapping, so that some height assgnments are faulty in

the result (lower row, right). While one would na lose tradk of the curse of displacanent in this
example, there may be caes where only a higher image rate can ensure getting safely through the process

After t = 65h, the situation is reversed: the deformation is oversampled by the static aquisition, which
generates alarge anourt of superfluous data. Fig. 6.29gives an examplefromt = 79h.

]

Fig. 6.29: Sawtooth image for matched data storage (left) and correspondng sequence of sawtooth images from
static storage interval (right).
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At that stage of the experiment, the aitomatic storage interva had expanded to At = 32min.
Consequently, the fringe density in the images from the fixed-rate series is unrecessarily low, disk space
is wasted and the data evaluation gets more laborious.

In Fig. 6.29 we dso find a hint that our cautious dedsion to regularly reset @(x, y, t;) after ead storage is
justified. As the objea deformation grows dower, At becomes larger, more noise is acamulated in the
temporaly unwrapped data, reduces the acerracy and aso triggers gorage too ealy: in the aitomaticdly
saved image, we findlessthan 4fringesinstead of m = 5.

The shown experiment demonstrates that fringe wurting by means of temporal unwrapping is suitable to
adapt the data storage rate to the acual displacanents. Thisis helpful nat only for long-term observations:
in any experiment where no assumptions abou the objed's dynamics can be made, its motion can reliably
be tradcked by the gpproadch proposed here.

6.7.3 Relative displacements of discontinuous object

Espedally in the investigation d historicd material, one frequently encounters crads in the surfaceunder
inspedion [GUI96] and it is important to know the relative motion d neighbouing sub-areas of the
objed. As a redistic spedmen o an aged material, a sice of a historicd brick (=2 cm thick) was
observed under temperature changes. The interferometer was again the out-of-plane assembly of Fig. 5.1,
only the test objed had been replacel by the brick slice in ugight position. The hed source was an
infrared radiator pasitioned some 30 cm behind the objed. Fig. 6.30 shows a white-light image of the
measuring field.

Fig. 6.30: White-light image of historicd brick.

When this sample is subjeded to cycles of aternately 15 min of heaing from the badkside and 15min of
coding, the resulting deformations reved 9 separately moving portions with rather different fringe
densities and complicaed boundries, as Fig. 6.31 demonstrates. The dashed line does naot mark a
cleavage; but the fringes dightly change their orientation, as may be verified by viewing them along the
bladk-white alges at a small angle to the paper. The shown dsplacanents ead have evolved in time
intervals of = 10min. For the heding period, ¢o(X, y, t;)) was dored at an ambient temperature T; when
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the heaer was switched on,while for the maling period ¢o(X, Y, ti)) was dored at an ambient temperature
T, when the heaer was witched of.

3.4 pmi

Fig. 6.31: Displacanent phases mod 2t (left) and correspondng "temperature" height maps as delivered by
temporal unwrapping (right), for heaing (top) and codling period (bottom). Numericd values dencte
maximum and minimum displacements.

While it would be very laborious to define and spatialy unwrap all the regions sparately, it is even
imposdgble to determine their relative heights from the sawtooth images on the left. When such
displacements are monitored with temporal unwrapping, the problems are overcome. Withou the need to
fit data from different sub-areas together, a complete profile of the surface tanges is obtained. One can,
and shoud, test its reliability by cheding the obtained surfacetilts for consistency with those following
from the number of sawtooth fringes. On removing the d@ovementioned "slow" pixels, @(x,y) from
temporal phase unwrapping did na deviate by more than 0.1 A from @(x, y) as produced by spatial
unwrapping of the crrespondng sawtooth images, which aso justifies sme @nfidence in the @solute
heightsthat are givenin Fig. 6.31

Acoording to the height maps from tempora unwrapping on the right, the deformations that developed in
the heaing period are dmost reversed duing coding, apart from some remaining displacenents and
deformations that are dealy emphasised by an addition d the height data from the two states, as
demonstrated in Fig. 6.32 on the right. Most of the remaining displacement is presumably caused by an
ambient temperature & the end d the adling period that differed from T.
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Fig. 6.32 Overal displacement after heaing and codling. Residual tilts are visible in the sawtooth image (l€eft);
rigid-body displacements are reveded in the "temperature” height map (right). Arrows mark locations of
possble misinterpretations of the sawtooth image.

On the other hand, the sum of the sawtooth images ladks important information. At the bladk arrow, a
substantial piston-type displacanent is not discernible from the sawtooth image, while & the white arow,
the nealy matching fringe positions almost conced the step of = 0.3um (1 fringe) that has adually
remained. On the @ntrary, the results based onthe height maps from the temporally unwrapped data ae
unambiguouws. They need nointerpretation and thus al ow an easier assessment of objed changes.
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7 Summary

This thesis work has presented a detail ed investigation d various aspeds that concern the gplicdion o
spatial phase shifting (SPS in ESH. The obedive was to broaden the previously somewhat sparse
knowledge of what happens in spatial phase sampling on spedle fields, and to uili se the findings to
introduce some improvements of SPS

The ground onwhich to base such an investigation is, first of al, an extensive study of the nature of
spedkle fields. Fortunately, spedkle statistics have been an important topic in ogticd reseach for some 40
yeas, so that many useful results could be wlleded and grouped. The theoreticd studies were
acompanied by experimental vali dations of some resullts.

With resped to SPS the one-dimensional intensity and phase gradients deserve particular interest, and it
was foundthat the spedkle intensity is correlated with the intensity gradient and anticorrelated with the
phase gradient. This smple rule of thumb provided valuable guidance @ to the adstance of spedle
statistics in improving SPS The spedkle intensity field, showing more spatial structure than the phase
field, hardly allows reasonable assumptions to be modelled in the phase cdculation, bu is diredly
accesgble in the eperiment. This extra information can be used to courterad the disadvantageous
influence of spedkle intensity fluctuations on the interferogram. The spedkle phase field was sen to be
co-operative for interferometry: the phase gradients are low where the spedkle field is bright, and those
regions of the field where the phase "legs" or is even undsfined, were seen to be rather dark anyway.
Since @nstant spedle phase gradients can be envisaged as linea phase-shift miscdibrations, the use of
phase-cdculation formulaethat are tolerant of this type of error seamed to be the most sensible dedsion
for effedively reducing measurement errors.

After getting familiar with the properties of the spedkled oljea wavefront, it was necessary to turn
towards optimisation d the way to process pedkle interferograms. For this purpose, digita spedkle
interferometry and the phase-sampling process have been reviewed. It was foundthat it is always better,
in SPSand TPS to subtrad spedkle phase maps than to work with correlation fringes; this has been
confirmed by experimental results.

The agpeds of spedle interferometry that pertain espedaly to SPShave been discussed in detall. The
gpatial phase shift was ®en to be geometricdly quasi-constant to a very high degreeof acarracy; however
the spatial frequency content of spedkle interferograms upersedes this theoreticd result, and the subjeds
of speckle size and phase-shift setting have been addressed from the viewpaint of spatial frequencies.

Since spedle phase gradients cause significant distortions in the carier fringe pattern, its gatial
frequency spedrum will be mnsiderably broadened. It is therefore worthwhil e to examine the dfed in the
spatia frequency domain. Consequently, the well-establi shed and powverful Fourier description o phase-
shifting formulae has been used. It interprets phase extradion as a digital signa filtering processin the
spedral domain, with charaderistic spedra amplitude and plese transfer functions. When using this



176 Summary

method to search for a phase-shifting formula with high phase-shift error resistance, the question arose
whether it would be better to optimise the amplitude or the phase spedrum of the phase extradion
formula for low phase-measurement errors. To settle the question, a smple auxiliary function was
introduced which isinvariant under the various optimisations and thus $iowed that nothing isto be gained
by simply representing aformulain dff erent ways. This behaviour was confirmed in SPSexperiments.

Ancther valuable means of charaderising the spatial phase evaluation is the dependence of the phase-
measurement error on the phase to be measured. It was elucidated how the phase reconstruction generates
periodic erors in the sawtocth fringes and systematic biases for the phase cdculation, and what role the
choiceof the phase-cdculation formulaplays for this effed.

The quest for areliable performance figure of ESH phase measurements, which is indispensable to cary
out comparisons and guantify improvements, has led to the aedion d a standardised ndse quantificaion
method that fits an ided data set to ared one and dHlivers the standard deviation d the remaining phase
differences. The displacements to use this method were standardised as well. The alvantages of the fitting
method have been demonstrated by confrontation with various other methods of generating reference data.

The noise quantificaion tod was then extensively used to compare the performance of SPSwith that of
TPS in various measuring geometries, where a simple phase-shifting scheme was used under stable
laboratory condtions. A multi-purpose interferometer all owed to carry out this comparison unady the best
possble @mnstancy of experimental parameters. By varying quantities like fringe densities, spedle size
and shape, and oljed illumination intensity, charaderistic behaviours of SPSand TPSwere explored. It
was found that TPS offers advantages for in-plane measurements and undr severe shortage of laser
power; for out-of-plane configurations, the diff erence was foundto vanish with increasing fringe density.

As an extension d the performance study with standard experimental parameter settings and dhta
processng, several ways to improve the SPStednique have been implemented and tested. A very
important result is the finding that the role of the bean ratio is deasive in SPSbut has far lessimpad on
TPS Then, in agreament with the hints from theoreticd considerations on spatial phase sampling, a phase
shift of 90° per sample was foundto yield better measurements than 120° @ sample.

Based onthe conclusion from the investigation d spedkle statistics, a formula was establi shed that can
make use of a separate recording of the spedle pattern alone to corred phase-cdculation errors
introduced by spedkle intensity gradients. The performance thus gained is however almost readed hy
uncorreded measurements when the beam ratio is st to its optimum, which was around 30for the
experimental set-up used.

To compensate measurement errors by spedkle phase gradients, a simple averaging formula was used and
seen to bring abou a relevant improvement. This improvement can orly partly be ascribed to the
cancdlation d phase-shift errors; also the enlargement of the spatial sampling window from 3 to 4 pixels
playsarole.
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The feasibility of combining intensity- and phase-gradient corredion was demonstrated and shown to
yield the least measurement error; however the intensity-gradient corredion daes not recommend itself
strongly, since dmost the same fringe quality can be adieved withou it and at an optimised beam ratio
instead.

An important step is the extension d the phase shift to two dmensions, which alows to use the spatial
frequency plane more dficiently; thus, multi ple phase measurements can be caried ou and averaged for
eat image pixel to make up more reliable values. The cmmbination d this experimental modificaion
with the computational solutions deaeases the rms of the phase-measurement error in urfiltered phase
maps to below A/20 for moderate fringe densiti es, which remains valid when the spedle size is reduced to
2.5 pxels.

This acairacy is abou the best that one can oldain by phase-shifting; therefore the Fourier-transform
approach to phase extradion has been tested, for which a spedkle-intensity corredion can also be caried
out by simple subtradion d the spedle pattern from the interferogram or, equivalently, the spedle halo
in the spatial frequency plane. It turned ou that the Fourier method yields an improvement only at very
low fringe densities. For higher fringe densities, the intrinsic data smocthing property of SPSformulae
due to the spatial extent of the phase-cdculation window gets apparent, and the noise introduced by
spekle decorrelationis somewhat small er than in the Fourier transform method.

Another method d error reductionisto use a"standard” phase-shifting methodand to enable it to process
only reliable data, i.e. to eliminate invalid pixels from the measurement. This has been redised by
merging valid phese data obtained from orthogonally polarised spedkle patterns.

Finally, SPShas been used to implement temporal phase unwrapping, and the combination d the two
tedhniques has successully been applied to ded with the pradicd problems of automating data storage in
long-term experiments and d measuring deformations of discontinuous objeds.

On the whaole, the mlledion d aspeds of and passhiliti es for SPSpresented in this work shoud prove
useful for its succesgul applicaion in various ESA measurements. It could be shown that the suspeded
disadvantages of SPS constitute no serious restrictions in pradice al the less as me simple ad
effedive performance anhancements are possble. With its ease of use nat being the least, there ae good
arguments to consider SPSas an alternative dso for situations where TPSis applicable, and to use it just
as confidently.
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Appendix A: Counting events

Intensity level crossings per unit length

In Chapter 2 we have encourntered two occasions where probabilistic events had to be cunted. The
derivation is smilar for both of them. The level-crosang problem of (2.14 starts from the integral
[Bar80]

(Na(1)) = [801 =12 / o4 ~
here Ny(l¢) is the number of times that the intensity crosses the value |; on a path d (the probability for the
point I=I; being an extremum has measure zero ona straight line). The d function asaures that the integral
responds only when I=l;; to make eat such contribution equal to ore, i.e. to establish a courting function,
the integration over x must be undore by the derivative 0l/0x; the moduus sgns ensure that +1 is being
courted for eath event. However, since now |, appeas, which is not independent of I, we need to know
its expedation value & agiven |, which requires the joint pdf p(l, Ix) and changes the integral to

(Ng (1)) = [ [801 =1)p(1, 1|1 el

d iy

(A.2)
=[ [P 1) [dl ax ;
d iy
onintegrating over unit length, ore obtains the density of the level-crossngs,
{p(1)) = r[ p(1, L1 (A.3)
whichis (2.14).
Intensity zero points per unit area
By the same line of argument as above, we can start from [Ber78, Bar81]
(Ngg ) = [[5(A)S(A)O(A  A) 1 9(x,y) dxdy, A
S

where the dislocaion is expressed by the vanishing of A, and A, the integral is over an area S and the
quantity between the moduus sgns is the Jambian [[Jl=|Ax Ay — Ay Aixl. Obviously, we neel
P(A, AL Arx, Aix Ary, Aiy) to evaluate this integral, or, more spedficdly, p(0, O, Arx, Aix, Ay, Aiy) after
the dfunctions are acourted for. In analogy to above, we write

=JI J. J. p(01 O, Ar,x ' Ai,x ' Ar,y’ Ai,y)|0(Ar ' A ) / d(X, y)|dAr,dii,dir,ydAi,dedy1 (A'S)
S A A



196 Appendix A: Courting events

and with Sequal to the aeaunit we then have

<pdis| > = I .[ I p(O, 0, Arxs Aixs Ar,y ' AivY)p(Ar A)o(x, y)|dA'erAideAr'ydAi*y :

A.6
AxAx Ay Ax (A-6)

with p(Ar, A, Arx, Aix, Ary, Aiy) given by (2.1), the integrationis not trivial; it has been shown in [Ber78,
Eqg. 43 that the integral is best evaluated in pdar co-ordinates, i.e. after conversionto | and ¢, similar to
(2.4). Fortunately, this needed be dore only once and for al, since the "threshald” intensity is fixed to
zerointhis case.
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Appendix B: Real-time phase calculation

To uili se the red-time phase measuring cgpability that SPSoffers, the generation o phase maps must be
acceerated by saving as many processor operations as possble. Particularly the actangent cdls, usually
one for eat pixel, leal to a grea computational burden that is unrecessary when the inpu "sine" and
"cosine" terms have areasonably narrow range of discrete values.

Given the expresson
I, —1
¢omod2m = arctan~/3—2—1— | (B.2)
20,-1_,-1, :

the at an2 cdl, and the division, can be drcumvented by generating a 2-D array from all possble vaues
of numerator and denominator and assgning the crrespondng ¢o (converted to a discrete grey value) to
ead grid pant, as s1own in Fig. B.1. Also, the @nstruction d M is indicaed; it can be seen that it is
simply the length of the phasor compaosed by the sine and cosine terms.

(2l 1-1)
- 510 0 510

>

255

[, —1
. =arctany/3——1—1—

(I.11)
0

ore : : : : ........... 0 MI :\/ 3(|_1_|])2+(2|0_|_1_|1)2

oooooooooooooooooooooo

............ LV - 255
look-up table

Fig. B.1: Caculation d ¢o and M, for 3-sample phase shifting formulawith a=120.

For 8-bit digitisation d the I, the size of the aray thus defined (1021x511 pants) is gill manageale
with aformulainvaving terms from 2 o 3 intensity samples. It is well known that for a=90° and (3.16
or (3.19, only 511x511 ponts are necessary. However, Fig. B.1 shows that also (3.17) can be
implemented by a LUT withou exaggerated expense. It is unrecessary to use the fador of /3 for the
arrangement of grid pants; instead it can be integrated in the LUT. Fig. B.2 presents the central portion d
the LUT, where the anisotropy is visualised by reduction d the grey scdeto 4 hts.

Fig. B.2: Anisotropy of LUT for (3.17) dueto haizonta stretching andinclusion o /3 from the sine term.
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The stretching in the horizontal diredionis clealy discernible; it acaounts for the maximal "stroke" of the
cosine term being twicethat of the sine term.

Depending on the number of invaved intensity samples and their coefficients, the byte arays needed for
the LUT may neverthelessget larger; for instance a LUT for (3.56) would need 511x1021entries. In that
case, the wefficient of 2 for both intensity samples in the numerator thins out the grid of possble values
and space ca be saved. However, the very same formula in the representation d (3.57) requires a
1531x153%poaint LUT, and for (3.58, 2041x1021 pasble values must be acourted for. This $hows
that a caeful choiceof the formula can be useful in pradice

Non-integer coefficients in the numerator and/or denominator can oy be implemented if a suitable fador
can be found that converts all the wefficients for the respedive expresson into integers, i.e. if the
coefficients are rational numbers. As sen above, a mmon fador of /3 constitutes no problem in (3.17)
or (3.58; however, if we had, say, /3 and 3as coefficients in the sine or cosine term, we would have to
use arational integer approximation d their values, for instance 7 and 12 this would allow to pu up a
LUT, bu remains a complicaed procedure. Hence, while it is passble to accéerate phase cdculation by
LUTs onmore occasions than ore might think, the goped of simplicity getslost in some cases.
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Appendix C: Derivation of intensity-correcting formulae

To include the influence of the spedkle intensity, we can rewrite (3.68 as
l n (Xk+n ' yl !t) =O| (Xk+n ' yl ) +R+ 2\/ O| (Xk+n ' yl ) REIOS((bO(ka ' yl ’t) +an(xk+n ' yl )) ' (C-l)

where R is asauimed constant, Oi(Xn,¥i1)*R=lp and 2,0 (Xc.n,Y;)R=M, ; we drop the spatia

dependencies for convenience of notation. With Dy, == 1,—O;,, we can write

D, = R+2[/O, [Rtos(¢, +a,)
R +2v/Rcosp,, cosa, /O, - 2x/_sm¢osma JO, (€2

=2 =3, N

where the quantities of interest are a; and a,, since they contain ¢o. Setting n [{ -1, 0, 1}, thus asauming
phase steps of (—a, 0, a), the linea equation system is given by

%L cosa,/O_; sma\/_%oD —1
C
JO, 0 Om0O=0D E, (€3

EL cosa\/_ —sma\/_%ag EDl

which we &breviate by Pa = D. As long as 0.,,00,0:Z20 and 0£a#180°, P is regular and
rank(P)=rank(P, D)=3 is valid; hencewe can solve the guation system by inverting: a=P™'D. This can be
caried ou by Cramer'srule [Bro87, p. 159. With the ebreviations

3 o SR P
1 C2 0e0O=0DC,

H c3 s3th,H Hp F c4

S ——

=P
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we have

C1 Sl%

P=1 C2 0[ det(P)=C2S3-C1S3+SIC3-SIC2

H c3 s

D, c1 s
P,=0D, C2 O0[det(P,)=D_,C2S3-C1D,S3+ SID,C3- SIC2D,
Hp, c3 s

[

3 P2 Sy €9

D, s3]

CL D[

H c3 p,H

P]_:

from which we get a, a;, a by

_ det(R,) _ det(P)) det(P,)

~det(P) 7 det(P) ' 2 det(P) - (C6)
For the quadient ay/a; =tan ¢o , we obtain

8 _ det(A,) _ CY(D, - D,) +C2(D, - D) +C3(D_;, — Dy)
a, det(A)) SYD, —Dy) +S3(D, = D_;)

(C.7)

_ 0y (D, = D.y) + cosar(/O., (Dg - D)) +4/O, (D, - Dy)
Sina(\/o_-l(D1_Do)+\/61(D—1_Do)) ’

which is (6.4).
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Appendix D: Alternative error-compensating formulae

In Chapter 3.2.2 we have restricted ouselves to a maximum of four intensity samples in the phase
reconstruction formulae If we do alow the inclusion d a fifth sample, we obtain ore more degree of
freadom to customise the compensation d errors. In the @ntext of spatial phase shifting, an interesting
solution hes been presented in [Kich91, Kiich97]. The derivation is based on the redisation that is it
possble to find three phase-shifting angles, or signal frequencies, for which the phase is determined
withou error when five intensity samples are available. With ore of them fixed at a=90%sample, the
other two can be aranged symmetricdly with resped to the nomina phase shift. In [Kich91], a formula
is described which works corredly at a=30, 90,and 1507sample, and with littl e eror in between. When
the intensity samples are weighted acerding to
—lo+3(I, = 15) +1,

o=l +4l, =151,

o mod 27T = arctan , (D.1)

this formulais produced. The mrrespondng amplitude and plese spedra ae & $own in Fig. D.1; note
that the frequency is now labelled v,y, sincethe formulaworks diagonally, as detail ed below.

7 3.14

ol /\/ | / |

34 1.57 // /

vao N velo

-10 :‘I. ‘2 3 4 0 1 2 3 4

ST amp(S(vy) 1571 ! // |

=T [ —amp(C(v,y) VAR /]
e \ —ag(C(v,)

7 -3.14

Fig. D.1: Filter spedrum for 5-step-30/90/150° phase-sampling formula (D.1); left: amplitudes, right: phases.

It can be seen that the phases are dways in quedrature, which foll ows from the fad that the formula has a
Hermitian arrangement of sample weights. The anplitudes are equal not at one, bu at threepointsin the
frequency spedrum between 0<v,,< Wn=2V,. The cnvdution, a more predsely, correlation kernels S.(n)
and C,y(n) — subscript xy denating the 2D arrangement — for the spatial implementation d the sampling
functions are shown in Fig. D.2; to make C,(n) symmetricad while maintaining integer coefficients, it is
necessary to expand (D.1) by afador of two.

Fig. D.2: Spatial weighting of the intensity samples for the gplication o formula (D.1) in spatial phase shifting;
the numbers on the pixels now indicae relative weights, and the phase cdculation refers to the central
pixel. Although the method was developed for high-predsion clasgcd interferometry, the outline of a
spedkleis dill i ncluded in the drawing, to compare with Fig. 6.11
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The sampling window thus defined offers excdlent phase-shift error suppresson while saaificing only
littl e spatial resolution; it has been panted ou in [Kich9]] that the dant of the carier fringes saves a
fador of /2 in this resped.

It is also passble to make dl three paints of zero error coincide & a=90%sample, which was aready
remarked in [Kich9]1] and later derived independently by [M1095, Schmi954]; in this case the phase
cdculation is very stable aound a=90° bu does not read zero error again when a#z90°. The
correspondng sampling formulareads

—lg+4(l - 13)+1,

#o mod 277 = arctan

—lg=2l,+6l,-2I,-1,"' (D.2)
and the correspondng filter spedrum is snown in Fig. D.3.
9 T~ N 3.14
6 |/ / N
, 1.57 / /
0 | Vaﬁ)o 0 VEIJ,IVO
0 ‘1 2 3 Whn 0 1 2 3 4

3T

amp(S(v,y)) 157 / ‘ // |
-6 T _ |/ . ny‘ e

amp(C(,) ‘ I

314
Fig. D.3: Filter spedrum for 5-step-90° phase-sampling formula (D.2); left: amplitudes, right: phases.

As familiar from the discusson d symmetricad formulaein 3.2.2.4 the phase spedrum is the same &
abowve; the amplitudes are very similar over a broad range of vy,, which asaures low errors even for large
phase-shift miscdibration. A passble implementation d (D.2) is presented in Fig. D.4.

Fig. D.4: Spatial weighting of the intensity samples for the gplication d formula (D.2) in spatial phase shifting;

the numbers on the pixelsindicate relative weights, and the phase cdculation refersto the central pixel.
To address the interesting question hav these formulae will perform in spedkle interferometry, we
consider again the experimentally obtained distributions of bsc(vy ,vy) in the frequency plane. With the
sameinpu interferogram as was already used in 6.3,we obtain the results shownin Fig. D.5.
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Fig. D.5: bsc(w, V) for (D.1) (left) and (D.2) (right). Blad lines: frequency co-ordinates leading to corred phase
cdculation, bsc(vy,y)==45°; white outlines; areas of -10°<d¢p<10°.

Asto be seen, bah formulae ae cgable of cdculating ¢o with |3¢| <10°in avery wide range of (vx,W);

(D.1) exhibits a slightly worse phase cdculation at very high spatia frequencies, so that we can exped to

find small performancedifferencesin phase measurements. When the interferograms alrealy used for 6.3

6.5 were re-evaluated with the formulaepresented here, the resulting oy(Nx) were & graphed in Fig. D.6.
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Fig. D.6: g4 from ESH displacement measurements as a function d Ny, oltained with (D.1) (white fill ed symbals)
and (D.1) (black symbadls). Inpu interferograms were from the same tilt seriesasin 6.3

The plots how that the performance of (D.1) and (D.2) is indeed very similar’; by comparison with the
results in terms of gy in 6.3-6.5, it can be seen that they are dso well suited for phase evaluationin SPS
and yield a performance simil ar to that obtained by (6.16) and its intensity-correding version, and by the
FTM. However a arredionfor spedkle intensity canna readily be incorporated in these formulae
Moreover, a caeful comparison d gy at higher N, with that in previous results shows that now the spatial
extent of the phase-sampling window contributes sgnificantly to the smoathing of phase maps. In this

" The same apli es to formulaewith zero error for a=4590/135° and a=60/90/12C°, which were tested as well .



204 Appendix D: Alternative aror-compensating formulae

resped, the schemes developed in 6.3 may be somewhat more suitable to preserve spatia resolution. The
relative pixel weightsfor (6.11) are visualised in Fig. D.7; it can be seen that the target pixel, in the centre
of the aoss $ape, contributes the largest part to phase cdculation.

Fig. D.7: Relative pixel weights for spatial intensity sampling by (6.11).
When the sampling pixel cluster is enlarged to enable the gplication d (6.16), we get the weighting
windows depicted in Fig. D.8.

Fig. D.8: Relative pixel weights for spatial intensity sampling by (6.16).

Also in this case, the intensity sample from the target pixel enters the phase cdculation with the greaest
weight; however, for C,(n) some more remote pixels must be included, fortunately with small

contributions.

Comparing the sampling windows shown in Fig. D.7 and Fig. D.8 with those from Fig. D.2 and Fig. D.4,
it gets apparent that the 5-sample formulae ae asciated with significant low-pass filtering of the
resulting phase maps. In particular, the central pixel has zero weight in the implementations of the S,(n),
this being anecessty in symmetrica 5-sample formulae

On the other hand, since spatia resolution is generally a small problem in pradicd ESH, the formulae
that have been lriefly investigated here shoud prove useful aswell.
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