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Forecasting of solar irradiance will become a major issue in the future integration of 
solar energy resources into existing energy supply structures. Fluctuations of solar 
irradiance have a significant influence on electric power generation by solar energy 
systems. An efficient use of solar energy conversion processes has to account for 
this behaviour with respective operating strategies. Examples are the management 
of electricity grids with high penetration rates from solar sources and the thermal 
control of buildings. This paper focusses on forecasting the surface solar irradiance 
in a short term time range of 30 minutes to 6 hours.             
As far as short term horizons are concerned, satellite data are a high quality source 
for irradiance information because of excellent temporal and spatial resolution. Due 
to the strong impact of cloudiness on surface irradiance, the description of the 
temporal development of the cloud situation is essential for irradiance forecasting. 
As a measure of cloudiness, cloud index images according to the Heliosat method, 
a semi-empirical methode to derive radiation from satellite data, are calculated from 
the satellite images. To predict the future cloud index image in a first step motion 
vector fields are derived from two consecutive images. The future image then is 
determined by applying the calculated motion vector field to the actual image. 
Finally, solar surface irradiance is derived from the predicted cloud index images  
with the Heliosat method. Figure 1 gives an overview of these steps to derive the 
irradiance forecast.              
 For an effective application of forecast information, it is important to estimate the 
uncertainty of the forecast accuratly. The accuracy of the forecasted irradiance 
depends on the meteorological situation. Thus, it is possible to distinguish different 
levels of accuracy. It will be shown that there are good results of the forecast for 
situations with high irradiance, where as it is more difficult to forecast situations 
with variable cloud cover or low sun elevations. The assessment of the forecast 
quality was performed for single metoerological stations and for a regional forecast. 
The first section of this paper gives a brief introduction to the calculation of cloud 
and radiation maps  from satellite data. In the next section the algorithm to forecast 
cloud index images is described.  Finally in the last section a detailed error analysis 
of the forecast is performed. 
 

Calculation of cloud and radiation maps  
Images in the visible range of the geostationary satellite METEOSAT are used as a 
database for the forecast. The satellite maps the full earth disc every 30 minutes with a 
spatial resolution of approximately 2.5 km x 3.5 km for central Europe. 
The surface irradiance and information on clouds are derived from the satellite 
measurements using an enhanced version of the semi-empirical Heliosat method (Cano et 
al., 1986, Hammer et al., 1999).  



 
 
Figure 1: schematic diagram of the forecast routine 

The original satellite radiometer count c is reduced by an offset c0 in a first step to account 
for the sensor offset and the reduction of the radiation on its way through a cloudfree 
atmosphere.  A relative reflectivity ρ is calculated from this corrected signal by applying a 
normalisation with respect to the solar zenith angle. In a second step, the cloud index n is 
derived from the relative reflectivity for each pixel as a dimensionless measure of 
cloudindess, where the fact, that ground and clouds show different reflectivities, is utilized. 
The cloud index value determines the contributions of cloud reflected radiation with 
refelectivity ρcl  and ground reflected radiation with refelctivity ρgr respectively: 
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From satellite images the constant cloud reflectivity ρcl  and monthly maps of the ground 
albedo ρgr are derived. The cloud index then is calculated using equation (1): 
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In the Heliosat method a linear relationship between cloud index n and the atmospheric 
transmission k* is assumed with k* being defined as the ratio beween surface global 
irradiance G and the clearsky irradiance Gclear : 
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The global irradiance G then can be calculated directly from k* using a clearsky model to 
determine Gclear. 
Average errors of satellite retrieved irradiance compared to hourly mean values of ground 
measurements are 20-25%. 

 



Forecast of cloudindex images 
As shown in figure 1 the forecast algorithm is applied to cloud index images. 
The advantage of operating on cloud index images instead of irradiance maps is the 
independency on daily 
patterns of irradiance. This 
allows to focus on the 
development of cloud 
structures, the deterministic 
daily variation of irradiance 
is added through the use of 
a clear sky model, according 
to equation (3). 
The temporal change of 
cloud strucures is, for short 
term scales, mainly caused 
by cloud motion. 
Therefore, motion vector 
fields were used to forecast 
cloud index images. This 
approach is illustrated in 
figure 2.   
Several approaches to 
derive motion vector fields 
have been proposed. (Beyer 
et al. (1994), Bannehr et al. 
(1994),  and Cote and 
Tatnall (1995)). 
The algorithm for detection 
of motion used within this 
paper is based on the 
following model of motion 
describing the basic 
assumptions about motion:  
•  Pixel intensities stay      

constant during motion. 
•  The motion vector field is       

smooth, i.e. neighbouring 
vecors do not differ a lot in direction and length. 

 
 
Figure 2: schematic diagram of forecast of cloud index  

images 

The calculated motion vector field is applied to the actual image to derive the forecast 
image. In a last step a smoothing filter is applied to the forecasted image. Small scale 
structures vary randomly and their development cannot be predicted. Thus, filtering this 
‘noise’ considerably improves the quality of the forecast.
 
Motion vector fields 
To derive motion vector fields corresponding regions are identified in two consecutive 
iamges according to the model of motion.  
The assumption of constant pixel intensities leads to: 
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for a vector v describing the motion. Here r )(xni

r
 is the cloud index at position in the image 

at time t
xr

i. The past image is subscribed with 0, the actual image with 1. As the vector field is 



assumed to be smooth, the vector v  is a good approximation for neighbouring pixels ofr
oxr  

also. Thus, 
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is small for pixels close to . oxr
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is chosen as the vector that describes motion best. 
On the one hand side the size of the region to determine the mean square pixel differences 
should be large enough to contain information on cloud structures. On the other hand the 
assumption, that the same vector describes the motion for the whole region is better fulfiled 
for small regions. Best results were achieved for regions with a minimum size of  5 x 30 
pixels (90 km x 90 km). Further 
extension of the regions does not 
incfluence the forecast quality 
significantly. 
The second parameter, that has to 
determined to derive the motion 
vector field, is the resolution of the 
vector field. The distance between 
vectors was chosen 25 km, 
because the improvement for higher 
resolutions is neglectable. 
The derived motion vector fields are 
applied to the present image n1  to 
derive the forecast image n2. 
Depending on the forecast horizon 
the vectors are scaled with the 
corresponding time difference 
between present and forecast 
image:  
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Smoothing of forecast images
The application of an appropriate 
smoothing filter on the forecast 
images significantly improves the 
forecast quality as stated above. 
Two different types of smoothing 
filters where investigated, binomial 
filters and rectangular filters. 
The mean rmse between the 
original and the forecast images for 
a time series is considered to 
evaluate the forecast quality.  For 
comparison errors of persistence 
are calculated, where persistence 
means that the actual image is 
                                                                            

 

 
gure 3: relativ mean rmse of forecast of cloud 
dex values depending on the filter size of the 
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taken as the forecast:  
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The results for the two filter types depending on the filter size are displayed in figure 3 for the 
forecast horizon of 30 minutes and 2 hours. 
The forecast shows considerably smaller errors than persistence for both forecast horizons. 
Furthermore, figure 3 illustrates the significant reduction of forecast errors by appliance of 
moothing filters. The optimum filter size is increasing with increasing forecast horizon.  For a 
forecast horizon 30 minutes the optimum filter size for the forecast with rectangular filters is 
3x3 pixels, while for a forecast of horizon of 2 hours a filter size of 30x30 pixel gives best 
results. Binomial filters lead to slightly better results for a forecast horizon of 30 minutes. For 
larger forecast horizons, where averaging over a larger area is required to achieve optimum 
forecast quality, rectangular filters are more suitable. 
The evaluation of the forecast quality for cloud index images shows, that the forecast 
algorithm based on motion vector fields in combination with the application of smoothing 
filters performs significantly better than persistence. 
A second approach to derive motion vector fields on a statistical base (Hammer et al. 
(2000)) resulted  in the same forecast quality.

Quality assessment of irradiance forecast 
The forecast of irradiance values is derived from the forecasted cloud index images using 
the Heliosat method (see figure 1). To evaluate the overall error of the method, the 
forecast results were compared to half hourly ground measured irradiance values. The 
quality assessment was performed for single stations and regional forecasts, 
corresponding to different scales of application. For the management of buildings and 
stand alone photovoltaic systems point forecasts are required. Large scale applications 
like grid integration of photovoltaics benefit from area averaged forecasts. 
Data (4/1995-3/1996) from a regional measurement network for global radiation in the 
region of Saarbrücken (Germany) were used for the evaluation. To derive the regional 
forecasts, average values of 8 stations distributed over an area of 31km x 45km were 
calculated. 
Figure 4 shows the relative rmse 
of the forecast of gobal irradiance 
for a single station. For 
comparison persistence, 
persistence with application of a 
smoothing filter, and the forcast 
without smooting are displayed. 
As a lower limit of the forecast 
quality the error of the Heliosat 
method to derive irradiance from 
satellite data is given. 

 
 

Figure 4: rel. rmse of forecast of global irradiance over 
the forecast horizon. 

As for cloud index values, the 
forecast algorithm significantly 
reduces the errors compared to 
persistence. With increasing 
forecast horizon  the influence of 
smoothing becomes more 
important compared to the 
reduction of errors due to the 
application of the motion vector 



fields. Furthermore, figure 4 illustrates that the error of the Heliosat method considerably 
contributes to the overall forecast error, especially for very short forecast horizons. 
An accuarate specification of forecast errors is an important point for an effective application 
of the forecast. Therefore, a detailed two-dimensional error analysis was performed to 
distinguish situations of different forecast quality. The detailed error analysis was performed 
for the clearsky index k* (see equation (5)). 
Two parameters were chosen to characterize situations with different levels of accuracy: sun 
elevation and variability of the cloud index images. For situations with inhomogene clouds, 
corresponding to a high variability in the cloud index images, forecasting of cloud index 
images as well as the derivation of ground irradiance from satellite data, are more difficult 
and larger errors are expected. As a measure of variability a local, spatial variability index is   
defined: 
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where ni,j is the cloud index value at postion i,j in the image, the summation is carried out  for 
a 7x7 pixel  region around the pixel corresponding to the ground station, and N is the 
number of pixels considered.  
As a first step of the detailed 
error analysis the relative 
standard error of the Helisoat 
method is displayed over sun 
elevation and the variability 
index in figure 5. The 
accuracy of the Helisoat 
method shows a clear 
dependency on both 
parameters. Forecast errors 
are increasing drastically for 
low sun elevations, while for 
sun elevations higher than 
20o the standard error is 
below 40% for all situations. 
For sun elevations higher 
than 20o there is a very high 
accuracy of the Heliosat 
method with errors smaller 
than 10 % for very low 
variabilities corresponding to clear sky situations. With increasing variability index the 
accuracy of the satellite derived irradiance is decreasing. 

  
 

Figure 5: rel. stderror of k* for the Heliosat method 
depending on the sun elevation and the variability. 

To extend the two dimensional error analysis to the forecast, different classes with respect 
to sun elevation and variability index are defined. For low sun elevations the forecast errors 
exeed 40% for all forecast horizons. For sun elevations > 20o  the relative standard error 
depending on the forecast horizon for the different variability classes is plotted in figure 6.  
The upper picture shows the evaluation for a single station. In cases of high irradiance with 
very low spatial variabilities the error for half hourly irradiance values ranges from 10% for a 
forecast horizon of 30 minutes to 25% for a forecast horizon of 6 hours. For higher 
variabilities the forecast errors are considerably higher. 
In the lower picture of figure 6 the forecast errors are given for an average regional forecast . 
The errors are reduced significantly compared to single stations. As for single stations 
different levels of accuracy are are given for the different variability classes.  For low sun 
elevations the errors of the regional forecast are comparable with the errors of a single 
station.  



To complete the error analysis, 
forecast errors are compared 
to persistence of ground 
derived values of k*and to the 
standard deviation of the 
irradiance time series as an 
upper limit for forecast errors. 
The corresponding curves for 
the relative standard error over 
the forecast horizon are given 
in figure 7 for the example sun 
elevation >20o and 0.025 < var 
< 0.05.  Figure 7 shows that 
the satellite based forecast as 
well as persistence of satellite 
data with application of a 
smoothing filter performs a lot 
better than persistence of 
ground derived values of k*. 
This result is due to the 
importance of spatial 
information on the cloud 
structure for irradiance 
forecasting.  

 
Conclusions 
A method to predict solar 
irradiance on the base of 
satellite data was presented. 
Motion vector fields are used 
to forecast cloud index images 
and smoothing filters are 
applied on the forecasted 
images. Evaluation with 
ground data showed that there 
is a remarkable  improvement 
in forecast accuracy compared 
to both satellite and ground 
derived  persistence. For 
regional forecasts the errors 
are signficantly lower compared to single stations. 

 
 

 
 

Figure 6: rel stderror of the forecast of k* depending 
on the forecasthorizon for different variability 
classes and sun elevation>20o   

upper picure: forecast for a single station 
lower picture: forecast for a region of 35kmx45km 

Different levels of accuracy can be distinguished by regarding the parameters sun elevation 
and spatial variability of the cloud index images. The forecast is very accurate in cases of 
high irradiance with low spatial varaibility and sun elevations higher than 20o.  Whereas for 
low sun elevation and high variabilities the error exceeds 40% for all forecast horizons. 
Further improvements of the irradiance forecast are expected with the development of  
improved algorithms for the conversion of satellite data to ground irradiance, because the 
error of the Heliosat method contributes considerably to the overall forecast error. With the 
introduction of the new satellite generation MSG (Meteosat Second Generation) more 
accurate algorithms to derive solar irradiance will be available in near future (Müller et al. 
(2003)).  



The presented algorithm to 
forecast solar irradiance is an 
appropriate method for short 
term forecast horizons.  
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Methods to predict irradiance  
for forecast  horizons up to two 
days on the base of 
mesoscale weather models 
are under development.   
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