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Short term wind power predictions should provide two types of information: The expected power output of wind turbines
and the expected uncertainty of this prediction. So far, the uncertainty is commonly given by annual averages such as the
root mean square error. But the prediction error depends on the complexity of the prevailing meteorological situation and,
therefore, should be newly assessed for each individual prediction. We investigate the impact of meteorological conditions
on the prediction accuracy. As a first approach we consider the wind speed and find that the uncertainty of the wind speed
prediction does only weakly depend on the magnitude of the predicted wind speed. Moreover, we derive a method to model
the uncertainty of a specific power prediction in terms of the power curve and the mean error of the underlying wind speed
prediction. Using an existing weather classification scheme we relate the prediction error of the wind speed to the overall
weather situation. While for a number of sites the prediction uncertainty is significantly lower in weather conditions dominated

by high pressure than in low pressure situations other sites do not show this effect.

1 Introduction

The efficient integration of wind energy into electrical grids
requires knowledge of the expected energy production from
wind farms. While conventional power plants are operated
according to fixed scheduling schemes the availability of
wind energy is determined by meteorological conditions.
In recent years wind power prediction tools based on nu-
merical weather forecasts have been developed for opera-
tional use to provide utilities, grid operators or energy bro-
kers with information concerning the upcoming amount of
this renewable energy 48 hours in advance [1 - 6].

Knowing the uncertainty of a wind power prediction en-
ables users to assess the risk of relying on the prediction
which, e.g., helps energy brokers to decide on making a
bid on the spot market. Therefore, prediction tools should
provide two types of information: the forecast itself and
the expected uncertainty of this forecast. The accuracy of
the wind power prediction is commonly given by statisti-
cal measures based on annual averages of the deviations
between prediction and measurements like the well-known
root mean square error (rmse). Such a statistical approach
gives a single value of the uncertainty for all predictions dis-
regarding the complexity of the current weather situation.

The approach followed in this work is to relate the predic-
tion error to the prevailing meteorological situation. The
investigation is based on historical weather prediction data
as well as measured wind speed and power output from 30
wind farms in Germany. In particular, we concentrate on
the role of the wind speed and its impact on the power pre-
diction error. Moreover, the overall weather situation is de-
scribed according to an existing classification scheme and
the prediction error for the most frequent weather situations
is calculated. The aim is to establish criteria which describe

the uncertainty of an individual prediction depending on the
current weather situation.
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Figure 1: Principle of the prediction system Previento with
a spatial refinement of the numerical weather prediction
leading to a local prediction of power output at one site.

2 Forecasting method and verification

The power predictions are made with Previento which is
based on a spatial refinement of the output of the numerical
weather forecast provided by the German weather service.
The prediction method we use and its performance are
described in detail in [1,2,4]. The principle scheme of
the prediction system Previento can be seen in figure 1.
As input the result of an operational numerical weather
prediction model is used. Our calculations are based on
the wind speed and direction forecasts up to 48 hours. The
resolution of the data is 14 x 14 km?, i.e. rather sparse, so
a spatial refinement is necessary to predict the wind power
at a specific site. We calculate the wind speed at hub height
under consideration of roughness, atmospheric stability,



orography and farm effects.

For verification purposes measured data from about 30 Ger-
man wind farms for 4 years is available. Measured wind
speed and power output are used to assess the respective
prediction errors which are expressed by the standard devia-
tion of the difference between prediction and measurement,
i.e.

M
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g = M Z[(xpred,i - -'I:meas,i) - (xpred - xmeas)]z

i=1
@
where zpreq i the predicted timeseries, zmeas the corre-
sponding measurement and M the number of datapoints.
The crucial point is that we use this error measure for sub-
sets of timeseries which are chosen according to common
meteorological conditions or certain ranges of wind speed.

3 Accuracy of wind speed prediction

The wind speed from the numerical weather prediction
(NWP) is the main input to the power prediction system.
Thus, prior to looking at the power prediction error we first
investigate the accuracy of the underlying wind speed pre-
diction. The general accuracy of the wind speed in 10 m
height is published by the German weather service on a reg-
ular basis, e.g. [7]. It is measured by the rmse and typically
of the order 1 to 2.5 m/s. We find about the same values if
we compare DWD’s wind speed prediction with our mea-
surement data.
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Figure 2: Deviations of predicted and measured wind speed
in 10 m height versus the predicted wind speed. Each data
point represents a 6 h prediction of the year 1996. A trend
towards larger differences for increasing wind speed can be
observed. Linear regression gives a slope of about 0.13. The
scatter of the data points around the regression line seems
to be independent of the wind speed.

One major question is: Does the accuracy of the wind speed
prediction depend on the magnitude of the wind speed? In
order to answer this we consider the deviations between pre-
dicted, upreq, and measured wind speed, wmeas, for differ-
ent wind speeds. Each data point in fig. 2 represents the
difference upred — Umeas Versus the predicted wind speed
Upred IN 10 m height for the 6 h predictions of the year
1996. Two observations strike the eye: The differences are
on average increasing with increasing wind speed and the
scatter of the data points does not change much over the

whole range of wind speeds. Linear regression reveals that
the trend of the deviations is about 0.13, i.e. at 12 m/s the
average deviation is 1.3 m/s larger than at 2 m/s. This lin-
ear trend in the prediction is normally related to systematic
errors in the local refinement of the prediction, e.g. a gen-
eral underestimation of the surface roughness. It can easily
be eliminated by model output statistics (MOS) applied to
the wind speed. Thus, what is more important to assess the
accuracy of the prediction is the scatter of the differences
around the line of regression (fig. 2).

We investigate the scatter, i.e. the variation of the deviations,
in more detail. The magnitude of the variations of uppcq —
Umeas are not influenced by MOS and express the inherent
uncertainty of the wind speed prediction. We calculate the
binwise standard deviation (eg. 1) with intervals of 1 m/s
width. Note that the mean value in each bin and, therefore,
the trend is removed. Fig. 3 and 4 show that the prediction
uncertainty does practically not depend on the wind speed
(for relevant wind speeds larger 2 m/s). Within the 95%-
confidence interval indicated by the errorbars the accuracy
of the predicted wind speed is nearly constant. This applies
for most stations and almost all prediction times.
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Figure 3: Binwise error of wind speed prediction expressed
by the standard deviation at one site for a prediction horizon
of 6 hours. Within the 95%-confidence interval indicated by
the errorbars the uncertainty of the wind speed prediction
does not depend on the magnitude of the wind speed. The
dashed line is the mean standard deviation averaged over
bins with wind speeds exceeding 2 m/s.
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Figure 4: Same as fig. 3 but for a forecast time of 36 hours.



4 Modelling the power prediction error

It is a well-known fact that the nonlinear power curve am-
plifies initial errors in the wind speed according to its slope
leading to a very pronounced increase of the power predic-
tion error for medium wind speeds. Fig. 5 shows a typi-
cal power curve of a wind turbine. As shown in fig. 6, for
wind speeds in the interval with steepest slope the result-
ing power bias, i.e. difference between predicted and mea-
sured power output, is considerably larger than for low or
high wind speeds. This indicates that the uncertainty of the
power prediction is proportional to the slope of the power
curve and the accuracy of the underlying wind speed pre-
diction.
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Figure 5: Power curve of wind turbine (stall machine). Due

to the large slope for medium wind speeds small errors in

the wind speed prediction are magnified.
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Figure 6: Bias of power prediction, each data point rep-

resents the differences between predicted and measured

power output at one point of time. In the interval with steep-

est slope of power curve (fig. 5) the bias increases.

In mathematical terms the relation between the slope of the
power curve and the uncertainty of the power prediction can
be approximated as

or(w) = | ()| 7 @)

where o p is the standard deviation representing the current
power prediction error, |[dP/du|(w) the absolute value of
the derivative of the power curve at » and &, the annual
mean of the wind speed prediction error. Note that this for-
mula is also valid if the wind speed prediction error is not
constant and depends on the predicted wind speed.

Fig. 7 shows the binwise power prediction error versus the
predicted wind speed at hub height for the 12 hours predic-
tion. Obviously, the behaviour of this error is rather pre-
cisely modelled by the curve calculated according to egn. 2
(dashed line). Within the errorbars the calculated uncer-
tainty of the power prediction describes the measured one.
For larger prediction times (e.g. 36 h in fig. 8) the prediction
error is generally higher but still covered well by our model.
Thus, it is now possible to assign an individual uncertainty
to each power prediction according to the predicted wind
speed. A possible way of doing so is shown in the timeseries
in fig. 9 where the shaded area indicates the uncertainty of
the power prediction. The shaded area is calculated using
egn. 2. Obviously, the uncertainty is considerably smaller
for low power output than for medium power output. The
measured power output shown for comparison lies inside
the uncertainty bounds for most of the time. However, on
day 44 the prediction was far too high. This error was pre-
sumably caused by a wrongly predicted low pressure sys-
tem. This type of event is not covered by our model.
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Figure 7: Binwise error of power prediction calculated with

standard deviation from measured power output. Same site

as before (bars) with prediction time 12 hours. The dashed

curve shows the calculated prediction error according to

eqn. 2. It describes the power prediction error very well.
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Figure 8: Same as in fig. 7 but for 36 hours prediction time.

The overall error level is higher but is still rather well cov-

ered by the calculated prediction error.

5 Impact of overall weather situation

The overall weather situation in Central Europe can be de-
fined by the configuration of low and high pressure systems
at the surface and 500 hPa pressure level (approx. 5.5 km
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Figure 9: Timeseries of power output at one site. The solid
curve is the prediction where the shaded area indicates the
uncertainty of the individual prediction. Obviously, the un-
certainty varies considerably depending on the underlying
wind speed prediction according to eqn. 2. The dashed
line shows the measured power output which is inside the
shaded for most of the time. The large error on day 44 is
caused by an event not covered by the modelling procedure.

height) and the position of the jetstream. The weather map
in fig. 10 shows a typical high pressure bridge over Cen-
tral Europe which is one of the most frequent weather situa-
tions. Another typical condition is low pressure with frontal
zones crossing Europe from the west. Using these crite-
ria a classification of the daily weather situations has been
recorded since 1881 in [8]. We use the results of this clas-
sification scheme to see if for some weather conditions the
wind speed prediction is more accurate than for others. In
particular, we expect a difference in the prediction uncer-
tainty between low pressure situations, where fast moving
frontal zones with complicated wind patterns cross the do-
main of interest, and high pressure situations with rather
stable wind conditions.
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Figure 10: Typical high pressure situation over Europe il-
lustrated by the surface pressure with additional frontal
zones. Weather situations can be classified according to the
configuration of low (T) and high pressure (H) areas and the
position of the jetstream.

Fig. 11 shows the uncertainty of the wind speed prediction
for two of the most frequent weather situations for an in-
land site. For all prediction times the prediction error is
much larger for the low pressure situation (WZ) than for the
high pressure bridge (BM) which is similar to fig. 10. This
indicates that the accuracy of the wind speed prediction is

indeed dependent on the overall weather situation and as
expected the low pressure situation which is assumed to be
harder to predict leads to a larger prediction error. But un-
fortunately, not all sites show this behaviour as can be seen
in fig. 12 where the difference between the two weather
types is not significant. This might be due to the local con-
ditions at the site but it is not clear yet why there is an effect
for some sites and not for others.
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Figure 11: Wind speed prediction error at inland site for the
two most frequent weather situations for various prediction
times. WZ is a low pressure situation with mainly westerly
wind direction whereas BM is a high pressure bridge over
Europe similar to the one shown in fig. 10. For this site the
prediction error is significantly lower for BM than for WZ.
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Figure 12: Same as in fig. 11 but for a different site at the

coast of the Baltic sea showing no significant differences

between the two weather situations.

6 Resume

In a first approach to assess the uncertainty of wind power
prediction with regard to the meteorological situation we
find that the uncertainty of wind speed prediction does prac-
tically not depend on the magnitude of the predicted wind
speed, i.e. low wind speeds are predicted with almost the
same accuracy as high wind speeds. The wind speed is
used as input for our prediction system where the nonlin-
ear power curve leads to an amplification of the error. Due
to the slope of the power curve small errors in the prediction
of the wind speed might result in large errors in the power
prediction. We show that this behaviour can be modelled
very well using the fact that the uncertainty of the power
prediction is proportional to the slope of the power curve
and the average uncertainty of the underlying wind speed



prediction. Thus, it is now possible to assign a specific un-
certainty to each prediction in contrast to having only one
value averaged over one year.

Concerning a classification of the prediction error depend-
ing on the overall weather situation we obtain first results in-
dicating that for some sites the uncertainty of the predicted
wind speed significantly varies for different weather types.
As expected the error is larger for low pressure situations
with frontal zones crossing. But on the other hand some
sites do not show these differences and it is so far an open
question why. The overall weather classification of Central
Europe might be too global to be a reliable indicator of the
expected prediction uncertainty. Thus, further research fol-
lowing this approach will focus on smaller scales and will
also consider local meteorological conditions. For this pur-
pose data provided by synoptic stations will be investigated
to classify the prediction error, e.g. temporal pressure gra-
dients, wind direction or vorticity. In particular, the passage
of frontal zones is of special interest with regard to the pre-
diction error as the wind fields in their vicinity are hard to
predict.

In this work the focus lies on investigating the uncertainty
of the prediction for single sites, i.e. single wind farms. In
[9] the statistical smoothing effects of the prediction uncer-
tainty that arise if a wind power forecast is made for a region
with spatially distributed wind turbines was considered. It
was shown that depending on the size of the region the pre-
diction of the aggregated power output has a smaller error
compared to a single site. Generally, the same holds for the
uncertainty due to the meteorological situation as discussed
above. For an aggregated power prediction the uncertainties
for individual predictions reduce roughly by a factor that is
determined by the size of the region. If there are different
regimes of meteorological conditions inside the region this
must be taken into account.
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