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ABSTRACT:

By means of stochastic tools we describe wind gusts in a probabilistic way. In this sense gusts are defined as velocity changes
over short time intervals. We show evidence that the phenomenon of gusts is strongly connected to the well known
intermittent statistics of fully developed turbulence, i.e. anomalous high probability of finding high velocity fluctuations. As a
further characteristic we investigate the waiting times statistics of successive wind gusts. Most interestingly we find power
law statistics indicating scaling or self similar properties. On the basis of these statistics a forecast becomes difficult or even

impossible.

Furthermore we present in this contribution an approach how to extract stochastic models from measured time series. As an
application stochastic modeling of power output of wind turbines will be presented.

1 INTRODUCTION

Turbulence means a severe problem in wind energy
industry. One prominent phenomenon related to
atmospheric turbulence are the frequent occurrences of
wind gusts.

In this papper we will show how gusts can be described
by use of increment statistics and how they are related to
laboratory turbulence. Therefore we analyze a 275 h
excerpt of a data set of atmospheric velocity recorded
near the German North Sea coastline in Emden (30 m
height, 4 Hz sample frequency). Additionally we compare
these data with a turbulent velocity field far behind a
cylinder of a wind tunnel experiment where the
turbulence can be considered to be stationary and nearly
isotropic [1] (different to atmospheric velocity fields).

In a second part we introduce the principle relevance and
possible applications of a stochastic approach (using a
stochastic differential equation). This ansatz seems to be
promissing to understand and to describe dynamical
effects caused by the strongly turbulent velocities more
basically.

2 INCREMENT STATISTICS

For atmospheric velocity fields it is common to
distinguish between the mean velocity U (normally a
running /0 min average) and the turbulent fluctuations u
around it [2]. In this way the component of the horizontal
velocity in mean wind direction U attime ¢ can be
written as:

U(t) =U (1) + u(t). M

Starting from the so defined fluctuations velocity
increments over a certain time-distance T can be defined
as follows.

ou =U(t+1)-U(®)
=~u(t+71)—ut)

2

The increments directly measure the fluctuation
differences over the time step t. Every increment

exceeding a certain level - du_> A - can be defined as a
wind gust as illustrated in Fig. 1.
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Fig.1: The picture shows an arbitrary excerpt of the fluctuation
time series including an extrem wind gust. During 4 s the
velocity increases about 10 m/s.

2.1 Probability density functions

To get information about the frequency of occurances of
gusts the probability density functions (pdfs) P(du,) of
the increments are calculated.

As it can be seen in Fig. 2 these pdfs show clear non-
Gaussian shapes with marked peaks around the mean
value (u, =0) and fat tails for large increments. Note
that the large increments — located in the tails —
correspond to strong wind gusts. As illustrated in Fig. 2
(arrow) the probability density to find these large
increments for an intermittent distribution is several
orders of magnitude higher than for a Gaussian one [3,4].
Interestingly the distributions stay clearly intermittent
even for large t-values, different to stationary and
isotropic laboratory turbulence. In the latter a change of
the shape is observed as a function of t (see [5]). For
increasing T the distributions approach more and more to



a Gaussian one. The missing of this characteristic change
of shape for the atmospheric pdfs can be considered to be
the reason for the large amount of wind gusts.
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Fig. 2: In the left picture the pdfs for T=0.25s, 7.0 s and 35 min
are shown in a semilogarithmic presentation. The filled symbols
represent the measured distributions, the solid lines a fit
introduced by Castaing [5]. The pdfs are shifted vertically
against each other for a clearer presentation.

In the right graphic the pdf for T=4s is comparedtoa
Gaussian distribution (solid line). Both distributions have the
same standard deviation o©.

To explore how atmospheric and laboratory turbulence
are related to each other we consider the conditioned pdfs
for a fixed mean velocity P(Su, |U). This means that
only those increments are taken into account for those the
mean velocity U (t) (compare eq. (1)) rangesina fixed
velocity interval. In Fig. 3 the pdfs for the laboratory data
as well as for the conditioned wind data are shown. In
both cases a similar development of the stochastic
distributions from Gaussian shapes for large Tt to
intermittent ones for small t is observed.
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Fig. 3: In the left picture the pdfs of the wind tunnel
measurement are shown for tequal to 0.005T, 0.02T, 0.17T,
0.67T and 1.35T (from the top to the bottom) . The right side
shows the distributions of the conditioned wind increments
(U ranges in [4.5 ;5.6] m/s) T being 0.008T, 0.03T, 0.2T, 0.95T
and 1.9T.

In both pictures the symbols represent the measured pdfs
whereas the solid lines correspond to the fit introduced by
Castaing [5]. The distributions are shifted against each other.

From this finding we propose that the atmospheric
turbulence seems to consist of stationary, local isotropic
“turbulence packages™ as observed in laboratory
turbulence and wind gusts (large increments) seem to be
the result of the mixing of different turbulent packages
due to the instationarity of atmospheric winds.

To compare the different time scales of both data sets the
time is expressed in units of 7" which is the integral time

defined by means of the autocorrelation function of the
fluctuations:

T=[R(x)dr - ©)

0

For the laboratory data the integral time is about 6 ms, for
the wind data about 30 s.

2.2 Waiting Times Statistics

So far we have discussed the frequency of occurrences of
gusts but nothing is known about their temporal
distribution. For this purpose we also consider the
waiting times distribution P(A¢) ( distribution of the
time-distances At between successive gusts).

As it is shown in the plot below we find a clear power
law distribution (fractal distribution) up to time-distances
of about one hour. Greater distances are not resolved due
to the limited data of 275 hours. Obviously the exponent
depends on the combination of the chosen threshold A
and T.

Note that for a power law distribution the moments
diverge in general so that a mean value of the time-
distance between successive gusts does not exist which
prevents a proper estimation of Az.
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Fig. 4: The waiting times between successive gusts are plotted in
a double logarithmic presentation due to x =1In(At), so that the
exponential fits correspond to a power law.

3 DYNAMICAL FEATURES

So far we have explored the frequency- as well as the
magnitude distribution of wind gusts. For many
applications (e.g. the Annual Energy Production (AEP) of
a Wind Energy Converter (WEC), loads acting the
converter, etc.) it is important not only to know how often



a certain velocity interval AU arises but also to explore
the dynamical behaviour of the velocity field.

Due to inertia effects many short AU -intervals might
lead to a different energy output of the WEC than one
long period although in both cases P(AU) are the same.
This is illustrated in an exemplary way in Fig. 5 where
the total time the velocity ranges in AU is the same but
in the left picture U changes it’s value very rapidly.
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Fig. 5: The left picture shows a turbulent excerpt of the velocity
time series while the rigth one is an idealized, schematical
realisation of a more constant velocity.

To describe these dynamical effects we propose to
consider the velocity as a stochastic variable with a time
evolution described by a Langevin-equation [6]. For a
general stochastic variable X(f) with realisations ¥(¢)
this equation reads:

%xi(t)=D§”(£)+(1/D<2)(i))_-r(t) NG

While the first term on the right hand side of eq. (3)
describes the deterministc evolution of X (t) the second
reflects the influence of noise (I'(¢) stands for o-
correlated white noise). D" is called drift- and D@
diffusion coefficient and they can be evaluated by the
conditional moments [6].

DY = yg}%p(i(t +7)-x,)

X (1)=%

4)

D =lim (X, (1 + 7) = x)(X (1 + ) - x)
-0 T

X (1)=%

In this way D" and D™ can be calculated directly from
the data. If X isa two-dimensional vector the
deterministic as well as the stochastic (noisy) relations
between both components can be obtained quite easily.

As an example consider the velocity U(t) and the power
L(t) of a WEC to be the two components of the
stochastic variable. In Fig. 6 the drift coefficient
B(”(U ,L) for two different WEC is shown. In Fig. 6 a)
data from a 200 kW WEC (Vestas V25, WME Project,
Fehmarn, Germany) with a resolution of one hour and in
Fig.6 b) data from a small 250 W converter with a
resolution of 20 Hz are used [7].

As a new quality we obtain here the dynamical responses
of the WEC to wind fluctuations, which are visualized by
the arrows. The size of the arrows indicates the speed
with which the WEC reacts on a wind fluctuation.

As another example the velocity field itself may be
investigated. Considering the horizontal fluctuations
parallel (i) and perpendicular ( y,) to the mean wind we
find a very small drift around the state (0,0). While for
most points (0,0) is attractive, i.e. fluctuations have the
tendency to decay, we see for small and positive y, and
large u,, that y, tends to increase (see grey region in Fig.
7). This reveals a dynamical asymmetry of the horizontal
fluctuations that would have been unrecognized by only
plotting u, vs. u,.
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Fig.6: Vectorplot of DV(U,L) for a low and a high resolved
data set are illustrated in a) and b) respectively.
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Fig. 7: The driftcoefficient of the two horizontal fluctuation
components is illustrated. The right picture represents a zoom
into the area around the point (0,0).

4 CONCLUSIONS - OUTLOOK

In the first part we have shown how increment statistics
can be used to describe wind gusts in an adequate way
concerning their magnitude as well as their temporal
distribution. Furthermore the relation between the
stationary and isotropic turbulence of wind tunnel
experiments to atmospheric turbulence has been
discussed. The latter seems to be consistent with the
laboratory one when a proper condition on the mean wind
speed is used.
In the second part we have introduced the relevance of a
stochastic approach using the Langevin-equation. In this
way the velocity and velocity-dependant quantities such
as for instance the power output of a WEC can be
devided into a deterministic and a stochastic (noisy) part.
Doing so the dynamical reactions of a WEC on turbulent
fluctuations (gusts) of atmospheric winds can be taken
into account more properly than by only considering
averaged quantities as it is usually done.

Thus we have presented a new tool to
investigate the dynamical behaviour of instruments used
for wind energy applications.
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