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ABSTRACT We discuss near-field wave function imaging, intro-
ducing a model for high spatial resolution photoluminescence
imaging of semiconductor nanostructures. The model is ap-
plied to optically bright and dark exciton and biexciton states
in different quantum dot systems, explicitly taking the experi-
mental imaging configuration into account. Our results show
that direct imaging of the exciton density is only possible in
collection mode experiments with nonresonant excitation in the
high-resolution limit. For other geometries and for biexcitonic
states, the images reflect not only the size and shape of the wave
function and the spatial resolution of the near-field probe but
also in particular the inherent optical nonlinearity of the imaging
process. Different examples for the effects of this nonlinearity
are discussed, providing new insight into the interpretation of
existing experiments, and guidelines for designing novel experi-
ments.

PACS 78.67-n; 71.35.-y; 07.79.Fc

1 Introduction

Ever since the early days of near-field spec-
troscopy [1], near-field imaging and spectroscopy of low-
dimensional semiconductor nanostructures, i.e., of quan-
tum wells, wires and dots, has received considerable at-
tention [2–14]. Substantial experimental progress has been
achieved since then, and it is now possible to study the
optical excitations of individual semiconductor quantum
dots (QD) and quantum wires (QWR) with high spatial,
spectral and temporal resolution. Coherent optical manip-
ulation of individual quantum systems, specifically quan-
tum dots, is just emerging and a rapidly developing novel
field [9, 12, 13, 15–19]. For semiconductors, the study of in-
dividual quantum systems is particularly relevant, as – even
with the most advanced growth techniques – fluctuations
in size, geometry and/or composition of the nanostructures
or their environment result in considerable variations of the
optical spectra from one nanostructure to the next. Macro-
scopic far-field optical studies often probe densely packed and
inhomogeneously broadened ensembles of nanostructures,
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giving only limited information about their microscopic opti-
cal properties.

On the theoretical side, ultrahigh spatial resolution spec-
troscopy of semiconductor nanostructures, with a resolution
approaching or surpassing the spatial extent of the elec-
tronic wave functions, has sparked particular interest. Such
high-resolution spectra are expected to be qualitatively dif-
ferent from conventional far-field optical spectra, because of,
e.g., the non-local nature of the excitation and detection pro-
cess [20, 21], different polarization selection rules [22], the
loss of evanescent wave components in the far-field [23, 24]
near-field coupling to optically dark states and a possible
modification of their radiative decay [25].

Recent progress in apertureless near-field spectrosco-
py [26] and in the fabrication of aperture-based near-field
fiber probes [27] has pushed the spatial resolution in near-field
spectroscopy to less than 20 nm, reaching the spatial extent of
electronic wave functions in semiconductor nanostructures.
Such progress made it possible to attempt real-space imag-
ing of individual quantum dots [11]. The photoluminescence
(PL) of single excitons (X) and biexcitons (XX) localized in
interface thickness fluctuations (interface quantum dots, IQD)
of a thin GaAs quantum well (QW) were imaged with a reso-
lution of about 30 nm. This is well below the apparent size of
the measured X (100 nm) and XX (70 nm) PL images. Con-
sequently, it was concluded that the extent of the biexcitonic
center-of-mass wave function in these IQD is smaller than that
of a single exciton.

In [11], the wave function imaging experiments were ana-
lyzed using a theoretical model assuming infinitely high reso-
lution, and a full non-local description with finite resolution
was given in [28, 29]. In [29], we have studied in particular the
effect of the experimental configuration on the near-field im-
ages and shown that due to the inherent optical nonlinearity
in exciton and biexciton spectroscopy as well as in the near-
field imaging process, the near-field images represent a rather
complicated convolution of the true local wave function prob-
ability density and the local electric field. Thus considerable
care – and possibly a detailed theoretical analysis – is needed
for a quantitative interpreting experimental near-field images
in this high-spatial resolution regime.

It is the aim of this paper to describe in detail our theor-
etical approach used to simulate near-field wave function im-
ages and to extend this approach to the study of optically dark
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excitonic states, inaccessible by far-field studies. Again, spe-
cial emphasis is put on studying the effect of the experimental
imaging configuration to quantitatively predict the quite sub-
stantial influence of the near-field fiber probe on such images.
We trust that this discussion is helpful in advancing near-field
wave function imaging.

The article is structured as follows. In Sect. 2 we de-
scribe our theoretical model for simulating high-spatial reso-
lution near-field imaging of semiconductor nanostructures. In
Sect. 3, we discuss numerical results for imaging of optically
bright and dark excitonic and biexcitonic states in spatially
weakly confined (e.g., interface) quantum dots. In Sect. 4
these results are compared to studies of spatially strongly
confined (e.g., Stranski–Krastanov) quantum dots. Analyti-
cal results helpful in comparing images obtained in different
experimental configurations are given in Sect. 5. Some con-
clusions are presented in Sect. 6.

2 Theoretical model for near-field imaging
of semiconductor nanostructures

The elementary optical excitations of semiconduc-
tor nanostructures are excitons, pairs of a quantum-confined
electron in the conduction band and a hole in the valence band,
bound by the Coulomb interaction. Exciton generation and
luminescence are determined by the absorption rates rα and
inverse radiative lifetime τ−1

α of the individual exciton states
α, respectively. Up to constant prefactors, which shall be omit-
ted below, both rates are given by the square of the transition
amplitudes

M = 〈
Ψ f

∣∣Hlight–matt

∣∣Ψi
〉

(1)

of the fundamental light–matter interaction Hamiltonian
Hlight–matt ∼ ∫

d �rc†c(�r)cv(�r)(e�r) · �E(�r − �RT, t). This expres-
sion describes that the generation/annihilation amplitude of
a pair of an electron in the conduction band (c) and a hole in
the valence band (v) at the position �r is proportional to the
dipole operator e�r times the local photon field �E [29–32].
We limit ourselves to monochromatic excitation, so that the
latter is given by a time-dependent factor e−iωt and a factor
�E(�r − �RT) describing its polarization and spatial distribution,
which is centered around the NSOM tip position �RT. For ex-
citon transitions, |Ψi〉 and |Ψ f 〉 are the exciton state |X〉 and
the empty crystal |0〉, respectively. For biexciton transitions,
|Ψi〉 and |Ψ f 〉 are the biexciton |XX〉 and an exciton state |X〉,
respectively.

For semiconductor nanostructures, the quantum confine-
ment in at least one spatial direction is so strong that the carrier
motion is confined to a few nm thick plane within the semi-
conductor. We use boldface letters for in-plane vectors, e.g.,
�r = (r, z). Because of the strong carrier confinement to es-
sentially a plane with constant z, we can effectively drop the
z dependence of the electric field, i.e., �E(�r − �RT) = �E(r −
RT, z) ≡ E(r − RT). Furthermore, we will assume that in-
plane disorder is weak enough to allow excitons to move as
entities. Formally, this corresponds to a factorization of the
exciton wave function [33, 34]

Ψα(�re, �rh) ≈ ψα(R) ϕ(re − rh) ue(ze)uh(zh) (2)

or, in a slightly more general form,

Ψα(�re, �rh) ≈ ψα(R)ϕ(re − rh, ze, zh) (3)

with a wave function ϕ(re − rh)ue(ze)uhzh) or ϕ(re − rh,

ze, zh) for the relative motion and the confinement of elec-
tron and hole in z direction, which is the same for all quantum
states. The center-of-mass (COM) wave function ψα(R), on
the other hand, varies from eigenstate to eigenstate. Only
within an effective-mass one-band model is the COM coor-
dinate given as R = (mere +mhrh)/(me +mh). Nevertheless,
this factorization into a fixed relative wave function and
a state-dependent COM wave function is a good approxima-
tion under far more general conditions [35, 36].

The extent of the relative wave function is of the order of
the exciton Bohr radius, i.e., typically a few nanometers. We
make the realistic assumption that this is sufficiently smaller
than the characteristic length of the electromagnetic field (i.e.,
the tip size) and the extension of the COM wave function
within the nanostructure. This allows us to factor out the in-
tegrations over re − rh, ze, and zh in (1) and to put the result-
ing prefactors together with Kane’s matrix element and other
prefactors into constants C in the expression

MX,α ≡ MX,α(RT) = CIQD
X

∫
d RE(R− RT)ψα(R) . (4)

This so-called optical matrix element plays a central role in
the theory of optical spectra of disordered quantum struc-
tures [32, 33, 37]. The far-field limit is obtained for constant
E or for plane-wave-like fields as Mα ∼ ∫

d Rψα(R) or Mα ∼∫
d Reik·Rψα(R).
In the following, we are mainly interested in describing

luminescence experiments. This implies that we can neglect
effects of coherent excitonic polarizations and interpret the
results in terms of absorption and emission rates and prob-
abilities of finding an exciton in a specific quantum state α.
This is of course no longer justified in proposals to measure
amplitude and phase of the exciton wave function by inter-
ferometric near-field techniques [38] and related experimental
work [8] or in time-dependent coherent nonlinear near-field
spectroscopy [9, 12, 13].

In general, we want to be able to describe experiments
with both, resonant excitation of a specific quantum state
α and detection of re-emitted light from this state, as well
as with non-resonant excitation of (an ensemble of) quan-
tum state(s) β at different energy and luminescence detection
from state α. This requires in principle to account for the
complex and strongly temperature-dependent energy redis-
tribution processes within the nanostructure. To this end, we
denote by Nαβ the temperature-dependent probability that an
exciton generated in the eigenstate β with energy εβ decays ra-
diatively from state α with energy εα (either resonant α = β or
non-resonant α �= β).

Finally, we need to account for the experimental geom-
etry of the near-field study. As usual, we distinguish between
illumination-collection (i-c) mode, collection (c) mode and
illumination (i) mode experiments. In the i-c-mode, both ex-
citation and detection are performed through the near-field
probe. In the c-mode, optical excitation is provided by con-
ventional far-field light whereas the luminescence signal is
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detected with a near-field probe. In the i-mode, the sample is
locally excited in the near-field and the luminescence is de-
tected in the far-field.

Typical near-field experiments involve non-resonant ex-
citation and, mostly, real-space transfer of an exciton or
electron–hole pair from the initial state β to α [3], accom-
panied with a relaxation in energy space, from εβ to εα

(mostly < εβ). We start our discussion with a general expres-
sion for the near-field image. The incoherent excitonic lumi-
nescence IX collected at frequency hωc after illumination with
excitation intensity Iex at frequency ωi recorded as function of
tip position RT is

IX(RT, hωc) ∼
∫

dωi

∑

αβ

δ(hωc − εα)|Mα(RT)|2

× Nαβ|Mβ(RT)|2δ(hωi − εβ)Iex(hωi) . (5)

It involves a sum over all initial states β and all final states α at
the corresponding energies (enforced by the delta functions)
weighted with the rates rβ and τ−1

α and for absorption and
luminescence, respectively. The innocuously looking prob-
ability Nαβ is in the general the most difficult part in this
expression because it comprises the full non-equilibrium re-
laxation kinetics of a disordered quantum system [33]. Note
that not only the quantum mechanical wave function ψ is dif-
ferent in Mα and Mβ but also the electric field E . In collection
mode, only Eα is spatially localized.

Fortunately, with spatially weakly resolved far-field exci-
tation, spectrally sufficiently broad to excite an ensemble of
excitonic states, Iex(hωi), (5) simplifies to

Ic
X(RT, hωc) ∼

∑

α

δ(hωc − εα)|Mα(RT)|2 . (6)

For the last step, we used that in such experimental set-ups∫
dωi

∑
β Nαβ|Mβ(RT)|2δ(hωi − εβ)Iex(hωi) is expected to

act as a spatially and spectrally unspecific supply of excitons.
In contrast, in typical resonant experiments (ωi = ωc),

the diagonal terms α = β will dominate in (5). In particular
in illumination-collection mode experiments, non-diagonal
terms α �= β can generally safely be neglected because the
probability to find two different states at approximately the
same energy (α �= β, but εα ≈ εβ) is strongly suppressed by
quantum mechanical level repulsion, see, e.g., [7, 39, 40].
Thus

I i−c
X (RT, hωc) ∼

∑

α

δ(hωc − εα)|Mα(RT)|4 . (7)

The expressions (6) and (7) for the two practically relevant
cases describe two opposite limits of the general expression
(5). It is instructive to rewrite these in terms of exciton Green’s
functions

G(R, R′; E) =
∑

α

ψ∗
α(R)ψα(R′)
E + i0 − εα

(8)

and density–density correlators

G(2)(R, R′; E) =
∑

α

|ψα(R)|2|ψα(R′)|2
E + i0 − εα

, (9)

respectively. The intensity maps are convolutions of the form

Ic
X(RT, hωc)

∼ I
∫∫

d Rd R′E(R− RT)G(R, R′; hωc)E(R′ − RT) .

(10)

In the corresponding equation for I i-c
X , G should be replaced

by G(2). Expressions equivalent to (10) have been derived by
different groups and have, e.g., been used in [23, 24] in a dis-
cussion of the difference of spatially averaged local spectra
and far-field spectra. They show very explicitly that the near-
field response is a highly non-local optical process [20, 28].

In the following, we will use these expressions for simulat-
ing near-field optical images for specific experimental geome-
tries and different types of semiconductor quantum dots.

3 Numerical results: Interface quantum dots

An important quantum dot model system is pro-
vided by thin semiconductor quantum wells of few nm thick-
ness. In such quantum wells, local monolayer thickness fluc-
tuations at the interfaces (interface roughness) and fluctua-
tions of the alloy composition (alloy disorder) are unavoidable
and result in a disordered potential for the exciton motion.
This disordered potential leads to localization of excitons in
local potential minima with a confinement energy of typically
several meV. From a theoretical point of view these minima
may be viewed as optimum fluctuations within an Anderson
model with short-range disorder [41] and can be modeled by
parabolic (harmonic oscillator HO) potentials. Because of the
smoothness of hetero interfaces in high-quality samples, ex-
perimentalists often prefer to talk about growth islands and
“natural” interface quantum dots (IQD) [42].

In this section, we discuss near-field imaging of bright
and dark single exciton as well as biexciton states in interface
quantum dots. These images are modeled based on the expres-
sions (6) and (7) for the two different confinement potentials
of a parabolic potential (HO) and a cylindrical box (box) [29].
Both allow for an easy analytical treatment in terms of expo-
nential functions and Bessel functions. The respective ground
states are written as

ψ(HO)
gs (R) ∼ exp(−R2/5.544
2

F) (11)

and

ψ(box)
gs (R) ∼ J0(2.253R/
F) . (12)

The full width at half maximum 
F of the exciton density
|ψ|2 is related to the characteristic lengths 
0 of the oscilla-
tor and the extension 
box of the box via 
f = 
0/1.665 and

f = 
box/1.068, respectively. The electromagnetic field dis-
tribution used in this simulation is described below.

3.1 Electromagnetic field distribution

We model the near-field fiber probe by a circular
aperture of radius a0 in a thin, perfectly conducting metal
film placed a0 right above the semiconductor sample [43].
The semiconductor is characterized by its optical density n
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(n 	 3.5 for GaAs). This is essentially the Bethe–Bouwkamp
model [44, 45] of a circular metallic aperture illuminated with
a plane wave polarized along the x axis. The incident electro-
magnetic field is characterized by its vacuum wave number
k0, or in dimensionless units by k0a0 
 1. Bouwkamp [46]
solved the model analytically based on Bethe’s seminal pa-
per [47]. The resulting field distribution close to the interface
(|z|/a0 = 0.05) is illustrated in Fig. 1 for the strong trans-
verse component Ey und the longitudinal component Ez. Both
show pronounced features much narrower than a0. These re-
flect singular contributions to the field-induced currents in
the metal [44, 45]. Moving a few tens of nanometers further
into the semiconductor, these features are rapidly smeared out
and the transverse field components are close to an ellipti-
cal field profile polarized parallel to the incident field. At the
same time, the profile becomes more and more isotropic. This
transition from a highly anisotropic to an isotropic field distri-
bution is illustrated in Fig. 2.

We characterize the depth dependence of the transverse
electromagnetic field profile by its second moments

α2
x,y(z) =

∫∫
dx dy

{
x2

y2

} (
E 2

x (x, y, z)+E 2
y (x, y, z)

)
(13)

FIGURE 1 Illustration of field anisotropy: Electric field in y direction (up-
per panel) and z direction at distance z = 0.05a0 from metallic aperture.
Calculated in Bethe–Bouwkamp theory for k0a0 = 0.02 and linear incident
polarization along the x axis. Note the Ez vanishes along the y axis, where it
changes its sign

FIGURE 2 Electromagnetic field in a semiconductor medium with n = 3.5
below a circular aperture with radius a0 incident radiation with k0a0 = 0.02.
Circle and dots: mean-square width, (13), of field distribution in x and y
direction, respectively. Diamonds: anisotropy parameter. Triangles: field in-
tensity

along the principal axes, its anisotropy (αx −αy)/(αx +αy),
and its strength. The decay of the field divergencies occurs on
distances z < 0.1a0. For distances larger than about a0/n, the
field distributions start to diverge, resulting in a reduction of
the field anisotropy and a substantial loss in spatial resolution
with increasing depth of the nanostructure layer.

In our simulations, the longitudinal field components are
neglected, since they are reduced by a factor of 1/n2 (n 	 3.5
for GaAs) at the air/semiconductor interface and because
heavy-hole excitons in quantum wells have only in-plane
dipole moments [33]. This is different for light hole transi-
tions, which may therefore be enhanced in near-field experi-
ments [22]. Convincing experimental evidence for a strong
near-field effect on the polarization selection rules is, how-
ever, to our knowledge still lacking. Note the sign change of
Ez (lower panel of Fig. 1), which may lead to cancellations in
the matrix elements.

3.2 Near-field images
of optically bright and dark exciton states
Near-field images for ground state excitons in

a cylindrical box of 107 nm radius (
F = 100 nm) calcu-
lated for a collection and illumination-collection geometry
are shown in Fig. 3. An aperture radius of a0 = 10 nm is
assumed and the quantum dot is placed 20 nm below the sam-
ple surface. The circular symmetry of the excitonic wave
function is approximately reproduced in all cases. Only the
collection mode image match the probability density of the
excitonic wave function. In this case, the image in Fig. 3a
is close to that obtained in the limit infinitely high NSOM
resolution. Here, the field distribution E(R− RT) can be
replaced by a δ function. The collection-mode image is
Ic
X(RT, εα) ∼ |MX,α(RT)|2 ∼ |ψα(RT)|2, which is the exci-

ton density. In the illumination-collection mode, however, the
squared exciton density is imaged, I i–c

X (RT, εα) ∼ |ψα(RT)|4.
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FIGURE 3 Calculated near-field images of excitons (top row) and biex-
citons (bottom row) of an interface quantum dot in GaAs 20 nm below
the sample surface for a collection mode (left column) and illumination-
collection mode (right column) geometry. The FWHM width of the exciton
density is 
F = 100 nm, the aperture radius is a0 = 10 nm. The cylindrical
box potential with a radius of 107 nm is indicated by a dashed line. Inten-
sities are color-coded in linear 10% steps. Smaller images are found for the
illumination-collection mode geometry and for biexcitonic transitions due to
the non-linear nature of the corresponding imaging process

This corresponding reduction in image size results solely
from the nonlinearity of the imaging process, and does not
reflect a change in size of the quantum-mechanical wave
function.

We now turn to collection-mode near-field imaging of
optically dark states. As an example, we consider the two
degenerate first excited states in a circular box, which
both do not couple to far-field radiation. Their wave func-
tions are ψ

(HO)
1,x (R) ∼ R cos φRψ

(HO)
gs (R) and ψ

(HO)
1,y (R) ∼

R sin φRψ
(HO)
gs (R) for the parabolic potential as well as

ψ
(box)
1,x (R) ∼ cos φR J1(3.590R/
F) and ψ

(box)
1,y (R) ∼ sin φR J1

(3.590R/
F) for the cylindrical box. Obviously, the optical
matrix element (4) vanish if E is sufficiently slowly varying,
because the contributions from the positive and negative lobes
in the angular φR integrations cancel each other.

In the limit that the aperture diameter is considerably
smaller than the extent of the exciton COM wave func-
tion [Fig. 4b,c], the collection-mode near-field images indeed
match the excitonic density closely. The images of ψ1,x and
ψ1,y are rotated by 90◦, but otherwise almost identical. Their
total intensity is considerably smaller than for the bright
ground state.

More interesting, and probably more realistic, is the case
that the aperture is larger, and of similar dimension as the exci-
ton wave function, see lower row of Fig. 4. Now, the image of
the round (s-like) ground state exciton is strongly deformed by
the anisotropic electromagnetic field distribution [29]. Here,
the aperture can be moved along the y axis by almost the
distance a0 away from the exciton, still picking up some in-
tensity from the anisotropic field distribution. This effect is
strongly enhanced for the first excited states ψ1,x and ψ1,y.
As long as the exciton is close to the center of the aperture,
the field gradient is small and the image appears dark be-
cause positive and negative contributions to the optical matrix
element (4) tend to cancel each other. Noticeable intensity
is obtained when only one lobe (either positive or negative)
overlaps with the electromagnetic field distribution. Corre-
spondingly, the apparent images of the excited states ψ1,x and

FIGURE 4 Calculated collection-mode near-field images of excitons in
cylindrical boxes with 107 nm (upper row, 
F = 100 nm) and 32 nm (lower
row, 
F = 30 nm) radius. Aperture radii are 10 nm and 80 nm, respectively.
From left to right: ψ

(box)
gs , ψ

(box)
1,y , and ψ

(box)
1x . The incident light is linearly

polarized along the vertical y axis. The intensities are normalized and color-
coded in linear 10% steps. Normalization factors relative to the ground state
panel (left) in each row are included in exponential notation. Note that all
exciton densities strictly vanish outside the boxes marked by the dashed
circles

ψ1,y are localized almost exclusively outside of the potential
well (dashed circle in the figure), whereas the excitons them-
selves are exclusively inside the well. With Fig. 1 in mind, it is
easy to see why the maps of ψ1,x and ψ1,y differ so much and
why the latter leads to a larger overall extension, but to nar-
rower features. The figure includes the normalization factors.
These range from ≈ 20 for Fig. 4b,c to ≈ 400 for Fig. 4f. This
pronounced reduction in image intensity indicates that while
dark mode imaging appears in general feasible even if the
spatial resolution is only of the order of the exciton wave func-
tion [28], it becomes quite challenging because of the strong
reduction of image intensity with decreasing resolution. We
emphasize that the potential well in Fig. 4 was chosen to be
round and that the x–y differences are therefore solely due to
the anisotropic field. At the same time, we warn that round
potential wells are highly unrealistic. Experimentally, this is
empirically known from, e.g., scanning tunneling microscope
images or polarization anisotropies of natural interface quan-
tum dots [42]. It is less known, however, that such “round”
minima are highly unlikely in a statistical optimum fluctua-
tion scenario as well. Therefore, this is explicitly shown in the
appendix.

3.3 Biexciton non-linearities

Simultaneously with the first near-field images of
excitonic wave functions, images of biexciton states were re-
ported in [11]. A striking feature was that the apparent size
of the biexciton image, e.g., 70 nm, was considerably smaller
than that of the corresponding exciton image, e.g., 100 nm.
This raises the interesting question to what extent the inherent
nonlinearity and non-locality involved in the near-field imag-
ing process (5) affects such correlated excitonic states. Again,
a factorization into a COM part ψXX depending on the biex-
citon in-plane position RXX and a relative part ϕXX is a good
starting point for a theoretical discussion [29, 48]
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Ψ
IQD
XX (�re1, �re2, �rh1, �rh2) ≈ ψXX(RXX)

×ϕXX(re1 − rhh, re2 − rhh, rh1 − rh2, ze1, ze2, zh1, zh2) .

(14)

We use a representation in terms of the hole COM rhh = (rh1 +
rh2)/2, ignore for simplicity spin degrees of freedom, and as-
sume that the antisymmetry required by the Pauli principle
is provided by the spin wave function. This is the case for
the lowest optically active biexciton state. While the limits of
the factorization approximation have not yet been analyzed in
great detail for biexcitons, it is expected to be a good approxi-
mation for weak disorder and/or large IQD. Accurate relative
wave functions ϕXX calculated by Riva et al. [49] confirm that
the average e–e and h–h separations are of the order of aB, i.e.,
comparable to typical e–h distances. The total extent of ϕXX

is less than about 2aB even for XX binding energies of only
	 0.2 meV. Given that XX binding energies of 1–3 meV are
typically found [18, 50] in IQD in thin QWs, the actual extent
of ϕXX is expected to be even smaller [48].

Inserting the factorized forms for the bixeciton (14) and
exciton (3) wave functions into the optical transition matrix
element (1) yields

MXX,α ≡ MXX,α(RT)

= CIQD
XX

∫
d RψX,α(R)E(R− RT, z)ψXX,α(R) . (15)

In principle, this matrix element should have indices refer-
ring to the final biexciton state and indices referring to the
initial exciton state. However, we consider here for simplicity
the simplest case of a biexciton which can be thought of as
consisting of two excitons with the same quantum numbers α

(except for spin). Thus, α may refer to, e.g., the lowest state
in a local energy minimum at a specific real-space position.
Again, the optical matrix element (15) in the limit of spatially
constant or plane-wave-like fields E is a central ingredient for
the theory of biexciton far-field spectra of disordered QW and
QWR samples.

Analogously to the derivation of the exciton images in
collection mode with non-resonant excitation and illumina-
tion-collection mode with resonant excitation, one finds

I i–c
XX(RT) = |MXX(RT)|4|MX(RT)|2 (16)

Ic
XX(RT) = |MXX(RT)|2 . (17)

Note that the generation probability in the i–c-mode is propor-
tional to the square of the local intensity, because the exciton
has to be generated before the biexciton transition can be ob-
served [50]. This nonlinear intensity dependence gives rise to
important differences in the spatial variation of exciton and
biexciton PL images [29]. This is easily seen for the limit of
arbitrarily good resolution. The resulting “images” reflect nei-
ther the exciton nor the biexciton density, but certain products:

I i–c
XX(RT)

E→δ(R−RT)−→ const|ψX,α(RT)|6|ψXX,α(RT)|4
Ic
XX(RT) −→ const|ψX,α(RT)|2|ψXX,α(RT)|2 .

For specific illustrations, we consider again parabolic po-
tentials and box potentials. The biexciton ground-state COM

wave functions expressed in terms of their excitonic counter
parts are

ψ
(HO)
gs,XX(R) = √

2ψ(HO)
gs (R

√
2) (18)

ψ
(box)
gs,XX(R) = ψ(box)

gs (R) . (19)

The
√

2 factors for the harmonic potential result from the
smaller kinetic energy of the heavier biexciton and the
stronger confinement (twice as many particles) [29]. For the
comparison in Fig. 3, we consider the box confinement, where
the X and XX COM wave functions are identical. Thus, the
obvious differences between panels (a) and (c), as well as pan-
els (b) and (d) result solely from the non-linearities in the
imaging process, which – in a lax notation – can be summa-
rized as Ic

X : I i–c
X : Ic

XX : I i–c
XX ∼ ψ2 : ψ4 : ψ4 : ψ10

α . Note that in
this case not even the collection mode image in the limit of
infinitely high resolution reflects the XX wave function or its
density.

4 Images of small, strongly confining quantum dots

The factorization (3) of the exciton wave func-
tion in a COM part and a relative wave function obviously
breaks down for electron–hole pairs confined to quantum
dots with size comparable to the Bohr radius or below, i.e.,
� 10 nm. Typical examples are colloidal QD and, in par-
ticular, self-organized dots resulting from Stranski–Krastanov
growth [51]. As noted very early by Banyai [52], the ki-
netic energy contribution of the exciton’s constituents grows
with the squared inverse dot diameter, whereas the attrac-
tive Coulomb energy grows linearly. Thus in the limit of very
strong localization, the kinetic energy dominates and electron
and hole can be treated as independent entities. The corres-
ponding factorization

Ψ
SQD
0 (re, rh) ∼ φgs(re)φgs(rh) (20)

with the same confinement function (but different confine-
ment energies) for electron and hole give for the optical matrix
element (re = rh)

MSQD
eh (RT) =

∫
drE(r− RT)φ2

gs(r) . (21)

We assumed for simplicity of notation that the confinement
in z direction is so strong that we can neglect the correspond-
ing degrees of freedom. Even the best near-field microscopes
today have a resolution that is larger than the diameter of
such small dots, in particular, considering that they are mostly
buried below the sample surface. Thus, E varies slowly com-
pared to φ2

gs and can be replaced by its value at the average dot
position r. Consequently,

MSQD
eh (RT) ≈ E(r− RT) (22)

Ic
eh(RT) ∼ |E(r− RT)|2 (23)

I i–c
eh (RT) ∼ |E(r− RT)|4 . (24)

Near-field images of such small dots are thus essentially map-
ping a specific vector component of the electric field distribu-
tion of the near-field probe.
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For completeness, we mention that for 2e–2h states (cor-
responding to biexcitons) in small strongly confining dots the
ground state wave function is expected to approximately fac-
torize in four single-particle factors

Ψ
SQD
XX ≈ φgs(�re1)φgs(�re2)φgs(�rh1)φgs(�rh2) . (25)

The resulting “biexciton” transition matrix element coincides
with the exciton transition matrix element, because the second
e-h pair is (approximately) independent from the first one

MSQD
2e-2h(RT) ∼ MSQD

eh (RT) ∼ E(r− RT) . (26)

In analogy to (16) and (17), the intrinsic non-linearity of
biexcitonic absorption, i.e., the fact that excitons have to be
created first, leads to

Ic
2e-2h(RT) = |MXX(RT)|2 ∼ |E(r− RT)|2 ∼ Ic

eh(RT) (27)

I i–c
2e-2h(RT) = |M2e-2h(RT)|4|Meh(RT)|2 ∼ |E(r− RT)|6 . (28)

5 Analytical results

The model in Sect. 3.1 showed that, not too close
to the near-field probe, the electrical in-plane field can ap-
proximately be described by an anisotropic Gaussian profile
[R = (X, Y)]

E(R) ∼ e−X2/2α2
x e−Y2/2α2

y . (29)

Assuming Gaussian wave functions for exciton, ∼ e−R2/2
2
0 ,

and biexciton, ∼ e−R2/
2
0 , i.e., for parabolic potential minima,

one finds again Gaussian profiles for the optical matrix elem-
ents

MX(RT) ∼ e
−

X2
T

2
2
0

1

1 + α̃2
x e

−
y2

T

2
2
0

1

1 + α̃2
y (30)

MXX(RT) ∼ e
−

X2
T

2
2
0

3

1 +3α̃2
xe

−
y2

T

2
2
0

3

1 +3α̃2
y (31)

with the abbreviation α̃x,y = αx,y/
0. As products of Gaus-
sians, the spatial images I(RT) are all given by an anisotropic
Gaussian function. Their widths σx,y are directly taken from
(5), (7), (16), and (17) as
(

σc
X


0

)2

:
(

σ i–c
X


0

)2

:
(

σc
XX


0

)2

:
(

σ i–c
XX


0

)2

(32)

=
(

2

1 + α̃2

)−1

:
(

4

1 + α̃2

)−1

:
(

2 ×3

1 +3α̃2

)−1

:
(

4 ×3

1 +3α̃2
+ 2

1 + α̃2

)−1

= 1 + α̃2

2
: 1 + α̃2

4
: 1 +3α̃2

6
: 1 +4α̃2 +3α̃4

14 +18α̃2
.

We omit x, y indices. In the limit of infinitely high resolution
α̃ → 0:

σc
X : σ i–c

X : σc
XX : σ i–c

XX : 
0 = 0.71 : 0.50 : 0.41 : 0.27 : 1 . (33)

The results of [11] give roughly 100 nm:70 nm = 1.4 and are
thus not too far off this simple estimate σc

X : σc
XX = 0.71 :

0.41 = 1.7.
The width of the images of small, strongly confining dots,

(23), (24), (27), and (28), are related to each other by fixed
ratios [29]

σc
eh : σ i–c

eh : σc
2e-2h : σ i–c

2e-2h : α = 1√
2

: 1

2
: 1√

2
: 1√

6
: 1 . (34)

6 Conclusions

In summary, we have introduced a theoretical
model for high spatial resolution incoherent near-field pho-
toluminescence imaging of semiconductor nanostructures.
The model is applied to optically bright and dark exciton and
biexciton states in different quantum dot systems, explicitly
taking the experimental imaging configuration into account.
Perhaps the most general conclusion that can be drawn from
our simulations is that direct imaging of the local exciton
density happens only in collection mode experiments with
non-resonant excitation in the high-resolution limit. For other
geometries and for biexcitonic states, the images reflect not
only the size and shape of the wave function and the spatial
resolution of near-field probe but also, in particular, the inher-
ent optical nonlinearity of the imaging process. If the optical
resolution surpasses the size of the wave function structures,
the imaging nonlinearity mainly results in variations in size
of the near-field images in different configurations, whereas
the symmetry of the image reflects that of the excitonic wave
function. If the resolution is comparable to the wave function
size, this no longer holds. The images may reflect the char-
acteristic field divergences of metallic aperture probes if the
nanostructure is placed very close to the fiber probe or, more
typical for buried semiconductor nanostructures, the inher-
ent anisotropy of the electric field distribution at distances of
few tens of nanometers between probe and object. The rather
complex convolution of true local wave function probability
density, local electric field and imaging nonlocality and non-
linearity calls for a careful theoretical analysis of near-field
wave function experiments. It is the intention of this article to
contribute to such a discussion. For a full quantitative analysis
of experimental results it might be interesting and necessary
to go beyond the simplified model outlined. Radiative cou-
plings between near-field probe and quantum object and the
effects of carrier dynamics, quantum coherences and quantum
transport on the imaging process are interesting topics that
yet remain to be explored from both a theoretical as well as
experimental perspective.
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Appendix: Geometry of deep minima

To a good approximation, excitons in quantum strutures
with growth-related disorder can often be described as point-
like quantum particles in a random energy “landscape”
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v(r) [53, 54]. The landscape is characterized by the strength of
the energy fluctuations σ2 = v2 and the shape of the potential-
potential correlations v(r)v(r′)/σ2. The latter determines
a parameter

a = v2
xyv

2

v2
x

2 ≥ 1

2
(A.1)

which takes the value of a = 1 for Gaussian correlations. The
probability to find a minimum at energy vmin with the second
derivatives (curvatures) v± is [with σ ≡ 1 for ease of nota-
tion] [55, 56]

P (vmin, v+, v−) =
v+ −v−√

2πa
e− 1

8a (v+−v−)2 e− 1
2 v2

min√
2π

e− 1
2(2a−1)

(
v++v−

2 −vmin)2

√
2π(2a −1)

. (A.2)

One finds that even deep in the tail at vmin = 3σ the minima are
quite anisotropic, with (v+ −v−)/(v+ +v−) being of the order
of 20% [33]. The corresponding exciton wave functions will
be equally anisotropic (anisotropic harmonic oscillator po-
tential). This suggests that, whenever isotropic images wave
function images are recorded for IQD, this should thus be
taken as indication that the resolution is insufficient to resolve
the wave function.
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