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The standard two-dimensional Ising spin glass does not exhibit an ordered phase at finite tempera-
ture. Here, we investigate whether long-range correlated bonds change this behavior. The bonds are
drawn from a Gaussian distribution with a two-point correlation for bonds at distance r that decays
as (1 + r2)−a/2, a ≥ 0. We study with exact algorithms numerically the ground state and domain
wall excitations. The results indicate still the absence of spin-glass order at any finite temperature.
A further analysis reveals that the correlation has strong effects on local length scales inducing
ferro/antiferromagnetic domains into the system. The length scale of ferro/antiferromagnetic order
diverges exponentially as the correlation exponent approaches a critical value, a −→ acrit = 0. Thus,
our results suggest that the system becomes a ferro/antiferromagnet only in the limit a→ 0.

PACS numbers: 75.40.Mg, 02.60.Pn, 68.35.Rh

I. INTRODUCTION

Spin glasses are disordered magnetic materials which
exhibit peculiar properties at very low temperatures [1].
To understand these materials, the Edwards-Anderson
(EA) model and the Sherrington-Kirkpatrick (SK) model
[2, 3] have been developed. Spin glasses exhibit essen-
tial aspects of complex behavior [4] and research on spin
glasses [5–7] has stimulated progress in numerous other
fields, such as information processing [8], neuronal net-
works [9], discrete optimization [10, 11] or Monte-Carlo
simulation [12].

In this work we study the two-dimensional EA model
with Ising spins commonly referred to as two-dimensional
Ising spin glass. It exhibits Ising spins with short-range
quenched random pair-wise interactions, for details see
Sec. II. Its properties are well described in the frame-
work of the scaling/droplet picture [13–15], as has been
confirmed by numerical droplet calculations for large sys-
tems with exact ground-state algorithms [16, 17]. The
model exhibits no finite-temperature spin glass phase in
contrast to the three or higher dimensional variants [18–
20]. At the zero-temperature phase transition the distri-
bution of the interaction disorder has some influence on
some critical properties. The investigation of similarities
and differences between continuous Gaussian and discrete
bimodal ±J disorder were the origin of intensive research
[21–24]. Since the non-existence of a finite-temperature
spin-glass phase for short range two-dimensional models
is independent of the disorder distribution, we consider
here only the Gaussian case. Previous works have shown
how the manipulation of the mean of the Gaussian from
zero to a sufficiently large value, or the introduction of
other sufficient majorities of the ferromagnetic interac-
tions, causes a ferromagnetic phase [25–29]. In this work
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we address the question how long-range correlated disor-
der impacts the ordering behavior, in particular wether it
leads to a low-temperature spin-glass phase. Here, long-
range means that the correlation decays with a power
law such that it is not bound to a certain length scale.
In other disordered systems the subject of long-range cor-
relation has already been taken into account [30]. Our
study was partially motivated by a corresponding numer-
ical study for the three-dimensional random-field Ising
model with long-range correlation [31], where an influ-
ence on the quantitaive ordering behavior has been ob-
served for some critical exponents and in the case of
strong correlation. Note that the case of the random-field
model is a bit different, because the correlation acts on
the local random fields which work for the independent
randomness case against the ferromagnetic order. Conse-
quently, from an extended Imry-Ma argument it was pre-
dicted [32] that the random-field Ising model with strong
long-range correlation is expected to show an increase of
the lower critical dimension of the ferromagnetic order,
opposite to what may be expected for the spin-glass case.

The following content is structured into three parts.
First, the model is introduced and it is outlined how
ground state computations under changing boundary
conditions are used to inflict domain wall excitations.
Second, the results of the simulations will be presented.
We finish by a discussion.

II. MODEL AND METHODS

A. The Ising Spin Glass with Correlated Bonds

The Ising spin glass consist of Ising spins sm ∈ {±1}
on the sites m ∈ Λ of a two-dimensional lattice, i.e. Λ ⊂
Z2. In this study only quadratic systems are considered,
such that the spin glass has L spins in each direction and
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FIG. 1. (color online) Correlation of the bonds of a spin
glass, calculated with Eq. (3), with a = 1 and L = 46 spins
in each direction, x and y. The system has free boundary
conditions in one direction and periodic boundary conditions
in the other direction. The bond correlation was generated
according to the FFM with periodic boundary conditions in
both directions, but the size in the directions of free bound-
aries was chosen much larger than the corresponding system
size L. The line follows a fit of type BC(1 + r2)−AC/2, yield-
ing BC = 1.0003(12) and AC = 0.9953(13). The average was
taken over 10000 realization of the disorder. The good agree-
ment proves that the generation of the randomness works well.

|Λ| = L2. The Hamiltonian is given by

HJ (s) = −
∑

{m,n}∈M
Jm,nsmsn , (1)

where the sum runs over all nearest-neighbor spin sites
M = {{m,n} : ‖m − n‖ = 1 ∧m,n ∈ Λ}. The bonds,
Jm,n, which represent the interaction between two spins,
are random in strength and sign but remain constant over
time. Hence, one speaks of a quenched disorder when
the system is investigated under a fixed realization of the
bonds, J . Here, the bonds originate from a continuous
correlated Gaussian random field, J(x), with zero mean,
〈J(x)〉 = 0, and a covariance that reads as

〈J(x)J(x + r)〉 = (1 + r2)−a/2, (2)

x, r ∈ R2, a ≥ 0 and r = ‖r‖. The entries of J are
given by, Jm,n = J((m + n)/2), which ensures that the
correlation decays in the same manner along both axes.
The correlation exponent, a, is the only parameter to
control the correlation. For a = 0 one obtains the Ising
model of a ferromagnet or antiferromagnet, respectively,
depending on the bond realization. When a −→ ∞ the
uncorrelated Ising spin glass model with Gaussian disor-
der is recovered.

To generate the correlated bonds numerically we uti-
lized the Fourier Filtering Method (FFM) [31, 33]. The
FFM is a procedure to create stationary correlated ran-
dom numbers of previously independent random num-
bers. Because it is based on the convolution theorem it is

possible to benefit from the computational efficient Fast
Fourier Transform Algorithm [34]. For its implementa-
tion we relied upon the functions of the FFTW library,
version 3.3.5 [35]. Figure 1 shows the average bond cor-
relation along the main axes of a system with |Λ| = 462

spins calculated by the estimator,

C(r) =
1

|M′|
∑

{n,m}∈M′

〈Jm,nJm+r,n+r〉J . (3)

〈...〉J denotes the average with respect to the disorder.
M′ ⊂M is adapted to the boundary conditions (BCs).

B. Ground States and Domain Walls

The nature of the ground state (GS) of the two-
dimensional Ising spin glass is an intriguing subject on
its own [36, 37]. Beside that, GS computations of finite
systems are a well established tool [10, 11] to investigate
the glassy behavior of the model in the zero-temperature
limit [38]. The GS is the spin configuration which min-
imizes Eq. (1) for a given realization of the bonds. In
case of two-dimensional planar lattices there exist exact
procedures to generate the GS with a polynomial worst-
case running time. This is in contrast to the three or
higher-dimensional variants which belong to the class of
NP-hard problems [39]. In fact, there is more than one
approach to compute the GS such as the algorithm of
Bieche et al. [40] or Barahona et al. [41]. The key idea
of these algorithms is to create a mapping from the orig-
inal problem defined on the underlying lattice graph of
the spin glass onto a deduced graph which is constructed
in such a manner that the GS can be extracted from a
minimum-weight perfect matching, which is polynomially
computable. In this work we applied an ansatz which
includes Kasteleyn-city subgraphs into the mapping pro-
cess and thus is more efficient [42, 43] in terms of speed
and memory usage than the above mentioned algorithms.
This allowed us to investigate systems up to a linear sys-
tem size of L = 724 spins in each direction with de-
cent computational resources. For the computation of
the minimum-weight perfect matching the Blossom IV
algorithm [44] implemented by A. Rohe [45] was utilized.

To study the spin glass at nonzero temperature we in-
flict domain wall (DW) excitations into the system. This
was done by computing GSs under periodic and antiperi-
odic BCs also referred to as P-AP [46]. It works as fol-
lows: First, a spin glass with periodic BCs in one di-
rection and free BCs in the other direction is generated
under a quenched disorder, J (p). Then, its GS configu-

ration, s
(p)
gs , is computed. Now, the periodic BCs are re-

placed by antiperiodic BCs, by reversing the sign of one
column of bonds parallel to the direction of periodicity,
which leads to J (ap). Afterwards, the new GS configura-

tion, s
(ap)
gs , is calculated. The change of the BCs imposes

a DW of minimal energy between the two spin configu-

rations s
(p)
gs and s

(ap)
gs . The energy of the DW is given
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FIG. 2. (color online) The right hand side of the figure shows
one realization of the discretized Gaussian random field, from
which the bonds are extracted, for three different correlation
exponents. The corresponding GSs are on the left. The corre-
lations exponents are given by a −→∞ (top), a = 1 (center)
and a = 0.1 (bottom). Black points denote sm = −1 and
white points sm = 1. In ferromagnetic order two neighboring
spins have same sign and in antiferromagnetic order the sign
alternates. The system size is L = 100.

by

∆E = HJ(ap)

(
s(ap)

gs

)
−HJ(p)

(
s(p)

gs

)
. (4)

The geometrical structure of a DW can be charac-
terized by the number DL of bonds which are in-
cluded in the surface. To avoid including those bonds
which are a direct result of the different BCs, the sur-
face is defined to consist of those bonds which fulfill

J
(p)
m,ns

(p)
m s

(p)
n J

(ap)
m,ns

(ap)
m s

(ap)
n < 0, where m,n runs over

all unordered pairs of nearest neighbor lattice sites [21].

III. RESULTS

We have obtained exact ground states for systems with
correlation exponents in the range a ∈ [10−3,∞], where
a = ∞ corresponds to independently sampled bonds.
Since the GS calculation requires only polynomial time
as a function of the system size, we were able to study
sizes up to a large value of N ≡ L2 = 7242 for each value
of a. For each combination, we performed an average
over the realizations of the disorder, ranging from 106 re-
alizations for the smallest sizes up to 10000 realizations
for L = 512 and 2000 realizations for the largest system
size.

Figure 2 provides a first impression how the bond cor-
relation impacts the ordering of the GS. On one hand, it
is visible that for strong correlations there are large areas
where the spins are either in ferromagnetic or antiferro-
magnetic order. On the other hand, there are large areas
where, due to the correlation, the bonds have identical
sign and similar absolute value.

A. Domain Wall Energy

Next, we look at the influence of the bond correlation
on the properties of the previously discussed DW excita-
tions. The absolute value of the DW energy is propor-
tional to the coupling strength between block spins in the
zero-temperature limit [14]. A stable order is possible if
the average absolute value of the DW energy increases
with the system size. In the uncorrelated case, a −→∞,
one obtains a power law behavior [14, 20, 21, 47],

〈|∆E|〉J ∼ Lθ, (5)

where θ is the stiffness exponent with its current best
estimate θ = −0.2793(3) [21]. Since θ < 0 there is no
stable spin-glass phase for temperatures larger than zero.
Figure 3 shows the impact of the correlation on the scal-
ing of 〈|∆E|〉J . For a ≥ 0.9 one can still observe the
pure power-law decay of the uncorrelated model on suf-
ficiently long length scales. The inset demonstrates that
the stiffness exponent stays constant with respect to the
value of the uncorrelated model. For values of a ≤ 0.9
the average 〈|∆E|〉J initially grows with system size, but
starts decrease for larger system, i.e. the curves exhibit
a peak. The system size L∗ where the peak occurs shifts
to larger system sizes by decreasing the correlation expo-
nent a. This will be analyzed below.

Before this, we show the results for the average DW
energy 〈∆E〉J , which behaves in a similar manner as the
absolute value, as it is shown in figure 4.

If spin-glass order existed in this model for some value
of a one would observe an increase 〈|∆E|〉J in the limit
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FIG. 3. (color online) Scaling of the absolute value of the DW
energy as a function of system size L for different values of a.
The full lines are guides to the eyes only. The broken lines
are fits of type 〈|∆E|〉J = AθL

θ. The inset shows the values
of θ which were obtained by fits for values of a ≥ 0.9. The
red line marks the value of the stiffness exponent for a −→∞
according to [21].

L → ∞, while at the same time 〈∆E〉J would remain
at or converge to zero as a function of L. The latter
one would indicate the absence of a simple ferromagnetic
order, because for a spin glass the change of the bound-
ary conditions from periodic to antiperiodic is symmet-
ric, i.e., could either increase or decrease the GS energy.
The, possible only partial, increase of both 〈|∆E|〉J and
〈∆E〉J for small values of L and A corresponds to a
ferro/antiferromagnetic ordering on local length scales,
which is visible in Fig. 2 and will be discussed more be-
low. Whether there may be an ordered phase for very
small values of a, is discussed next.

To track how the length scale of local order changes in
dependency of the correlation strength we measure the
peak lengths L∗, for the domain-wall energy and the abo-
lute value, respectively, as a function of the correlation
exponent a. Numerically, L∗ was computed by fitting
parabolas in the vicinity of the peaks of 〈|∆E|〉J and
〈∆E〉J . As the fit in figure 5 demonstrates the data for
L∗(a) is well described by an exponential function

L∗(a) = AL exp
{
bL (a− acrit)

−cL
}
. (6)
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FIG. 4. (color online) A log-log plot of the DW energy 〈∆E〉J
as a function of the system size L for some values of correla-
tion exponent a. The inset shows the same data with linear
energy scale for a = 0.4, 0.5, 0.6 and 0.9 to highlight the peak
structure. The lines are guides to the eyes only.

Nonzero values of acrit would indicate that for a < acrit

an ordered phase exisits. A true spin-glass phase would
be possible if acrit for 〈∆E〉J is smaller than acrit for
〈|∆E|〉J . We obtained values of acrit = 0.13(0.10) for
〈∆E〉J and 0.10(0.17) for 〈|∆E|〉J with quality of the fit
Q = 0.87 and Q = 0.58, respectively. Thus, zero values
for the critical correlation exponents seem possible. To
evaluate this, we set acrit to zero and obtain the values of
the other fit parameters, which here are AL = 3.63(22),
bL = 0.39(4), cL = 2.10(6) (Q = 0.86) for 〈∆E〉J and
AL = 3.5(4), bL = 0.55(6), cL = 1.85(8) (Q = 0.63)
for 〈|∆E|〉J . Since the qualities of the fits remain almost
identical in comparison to acrit 6= 0 the data is considered
to be consistent with acrit = 0, which would imply that
there is no global order when a > 0, let it be ferromag-
netic or spin glass. The inset shows that the behavior
of L∗(a) is also compatible with cL = 2. Fits of this
type, with acrit = 0 and cL = 2 fixed, have quality of
the fit larger than 0.4, which is reasonable. Note that
an exponential dependence of the “breakup” length scale
of ferromagnetic order as a function of disorder strength
was also found in the two-dimensional random field Ising
model, at low temperatures [48] and for the GS [49].
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The lines are fits according to Eq. (6) in the range a ≤ 0.55,
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FIG. 6. (color online) Scaling of the DW surface 〈D〉J for
different values of a. The broken black line shows the scaling
of the DW surface in case of a ferro/antiferromagnet. The

full lines follow fits according to Eq. (8) with L
(fit)
min = 8.

B. Domain Wall Surface

The behavior of DW surfaces is regarded as one of
the essential parameters which describe the properties
of random systems [50, 51]. DWs separate spins in GS
and reversed GS. Their surface is defined as those bonds
which belong to the DW, we denote the size as D. In the
uncorrelated case, a −→∞, the average DW surface size
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FIG. 7. (color online) The fractal surface dimension of the
DW surface ds as a function of the smallest system size L1 of
a fit window.

exhibits a power law [52, 53],

〈D〉J ∼ Lds , (7)

where ds is the fractal surface dimension, which the so-
far best numerical estimate ds = 1.27319(9) [21]. When
a = 0 the system is a ferro/antiferromagnet and 〈D〉J =
L, implying that ds = 1, i.e., the surface is not fractal
here. Figure 6 shows the scaling of the DW surface size
for different values of a. In general, it can be seen that
the correlation decreases the number of bonds in the DW
surface. For a = 0.001 the data shows already a visible a
visible deviation from the linear behavior on the double-
logarithmic scale. To study this behavior we fitted pure
power-laws to the data. For this purpose, we did not a
full fit to all data points, but used the sliding-window
approach instead. Here, four values of 〈D〉J which are
adjacent in terms of system size were grouped together
in one fit window, respectively. The independent vari-
ables of such a fit window were given by (L1, L2, L3, L4)
with Li < Li+1, i = 1, ..., 4. The dependent variables
corresponded to the data, i.e. 〈DLi〉J . The smallest in-
dependent variable of each fit window is denoted as L1.
For each window, we fitted the power law to the data
resulting in a value of ds. The dependence of ds as a
function of L1 for different values of a can be found in
figure 7. In the uncorrelated case ds decreases as a func-
tion of L1, whereas for strong correlations ds increases.
In any case, for system sizes L1 < 32 and small values
a ≤ 1 we observed some notable dependence of ds on the
system size. This motivated us to include corretions to
scaling int the power law Eq. (7) by considering [16, 21]

〈D〉J = ADL
ds(1 +BDL

−ωs) . (8)

By using Eq. (8) the quality of the fit is larger than 0.79
for all studied values of a ≤ 0.1 with smallest linear sys-

tem size of the fit L
(fit)
min = 8. For larger values of a, the
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power law fits, i.e. 〈D〉J = ADL
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by fits to Eq. (8) with L
(fit)
min = 8. The red line marks the

value of ds for a −→∞ according to [21].

pure linear fit was always fine, given our statistical accu-
racy. Figure 8 shows the resulting fractal surface dimen-
sion for all considered values of a. At a ≈ 0.4 the fractal
surface dimension starts to decline from ds = 1.27319(9)
[21], in the uncorrelated case, to smaller values. This is
also visible in Fig. 7. Thus, it appears that for small
values of a the fractal structure of the cluster changes,
altough there is no phase transition. Note that we also
performed fits (not shown) of power laws plus a constant,
the extrapolated fractal dimension, to the sliding window
fractal dimensions shown in Fig. 7. The behavior of this
extrapolated fractal dimension also exhibits the same no-
table decrease of ds for a ≤ 0.4. Of course, it can not be
ruled out that on sufficiently large, i.e., much larger than
currently accessible, length scales the fractal dimension
of the uncorrelated model is recovered again and thus
ds = 1.27319(9) [21] for all values a > 0.

C. Ground State Correlation

In the following, the impact of the bond correlation on
the spin correlation of the GS will be discussed. Note
that at zero temperature there is no thermal disorder
and for our study the is not degenerate, i.e., unique.

The two-point spin correlation is given by 〈s(gs)
m s

(gs)
m+r〉J ,

where s
(gs)
m denote spins in GS configuration. In the

uncorrelated model 〈s(gs)
m s

(gs)
m+r〉J = 0 if r 6= 0. The

correlated bonds induce a local ferro/antiferromagnetic
order into the GS. When a = 0 the system is a
ferro/antiferromagnet and the order is global. In the fer-

romagnetic case s
(gs)
m s

(gs)
m+r = 1 and in the antiferromag-

netic case s
(gs)
m s

(gs)
m+r alternates between plus and minus

one. Therefore, the GS spin correlation can be estimated

by

Ggs(r) =
1

|Λ′|
∑

m∈Λ′

(
σ̂(r) + 1

2

)
〈s(gs)

m s
(gs)
m+r〉J , (9)

σ̂(r) =σ(r1)σ(r2) with σ(ri) =

{
1 if ri is even

−1 if ri is uneven

and r = (r1, r2) ∈ Z2. Λ′ ⊂ Λ is adjusted to the BCs.
Note that this definition means that the correlation is
measured for each site m ∈ Λ′ on one of the two sub-
lattices of a checkerboard partition of the square lattice,
such that the correlation is insensitive to whether the
order is ferromagnetic or antiferromagnetic.

In figure 9 one can see the GS correlation for different
values of a. The data is well described by a scaling form
of type

Ggs(r) ∼
1

rυ
exp

{
−
(
r

ξgs

)ϕ}
. (10)

From the perspective of ordering we are especially inter-
ested in the correlation length, ξgs, that provides the dis-
tance in which spins are notably correlated. The straight
forward method to extract ξgs is fitting the function of
Eq. (10) to the data. The problem with such an ap-
proach is that neither υ nor ϕ are known. Also finite-size
corrections reduce the match between scalingform and
actual data. Thus, we used different approaches to ob-
tain ξgs. First, we perform a separate fit for each value of
a down to small correlations where the error bars start to
exceed one quater of the correlation value. We observed
that for a ≥ 2, the values of the exponents υ and ϕ did
not change much, for smaller values of a the exponents
were a bit smaller. Therefore, we fixed the exponents to
the (averaged) values seen for a ≥ 2 and fitted only with
respect to ξgs.

Second, we also performed a multifit, i.e., we fitted the
correlation function simultaneously [54] with one value
for υ, one value for ϕ and many values ξgs = ξgs(a).
The results of this multifit are also shown in Fig. 9. The
obtained values for ξgs for these two fitting approaches
are shown in Fig. 10. As visible the results from fixing
the values of the exponents and from using the multifit
approach do not differ much.

Befor we disuss the behavior of ξgs(a), we describe the
third approach we have used to estimate the correlation
length. Here, we used the integral estimator that was
introduced in Ref. [55]. It presupposes that for r ≤ ξgs

the correlation function is dominated by a power law of
type r−υ, whereas for r > ξgs the correlation is negligible.
As a consequence, the integral

Ik =

∫ ∞
0

dr rkGgs(r) (11)

is given by Ik ∝ (ξgs)
k+1−υ and thus

ξ(k,k+1)
gs :=

Ik+1

Ik
∝ ξgs . (12)
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FIG. 9. (color online) Spin correlation of the GS for different
values of a. The correlation was computed by utilizing the
estimator of Eq. (9) along the main axes. The black lines are
fits according to Eq. (10) when using a multifit, i.e., fitting
two exponents υ and ϕ and many values of ξgs(a) simultane-
ously to the correlation obtaiend for all values of a.

This result would be exact and independent of k if the
correlation acutally was only a power law. For real cor-
relations, the value of k dictates which part of the corre-
lation function contributes most to the integral. Because
such a scaling approach is only valid when r is much
larger than the lattice constant a high value of k reduces
the systematic error of the method. On the other hand,
large values of k increase the statistical error of Ik. Fol-

lowing the recommendation of [56] we used ξ
(1,2)
gs as a

compromise. Note that since the statistical error of the
measured correlation grows with distance r, one usually
defines a cutoff distance up to which the data is directly
used for the integral. Similar to [56] we specified this cut-
off distance as the value of r where Ggs is smaller than
three times its error. For values of r larger than this cut-
off distance we computed the integral up to the maximal
length of L from fits to Eq. (10). The start value of these

fits were set to r
(fit)
min ≥ 2. Because it was observed that

the correlation decays slightly different along the direc-
tion with free and periodic BCs, the computation of the
GS were done with an independent set of simulations for
full free BCs.

Afterwards, the correlation length ξ
(1,2)
gs was extracted

from the average of the GS correlation, Ggs, along the

main axes. The statistical error of ξ
(1,2)
gs was estimated

by bootstrapping [54, 57] and the integrals according to
Eq. (11) were computed by utilizing the midpoint inte-
gration rule. For small values of a, the contribution to
Ik from the integral beyond the cutoff gets increasingly
large. For instance, when a = 1.15 this contribution
made up approximately 4% of the value of I2. Hence, to
estimate the total error, we added an extra systematical
error to the statistical error. This was done by analyz-
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FIG. 10. (color online) The correlation length of the GS,

ξ
(1,2)
gs , as a function of 1/a2, obgtained by three different ap-

proaches. For comparison the length scales L? of the maxima
are shown again.

ing the value of ξ
(1,2)
gs for two other choices of the the

cutoff distance, i.e., being the the distance where the er-
ror of the correlation function is two or four times larger
than its estimate, respectively. The maximal deviation
of these two values from the standard definition, which
uses a magnitude of three error bars to define cutoff, was
set to be the systematic error. Furthermore, because the
statistical error of Ik grows much large for small values
of the correlatiopn exponent a and the system has to be
sufficiently large to neglect boundary effects, values of
a < 1.15 were not considered for this approach.

Figure 10 shows ξ
(1,2)
gs as a function of the correlation

exponent. As the plot demonstrates, the behavior does,
in contrast to the data for the length scales L?, not follow
a perfect exponential behavior. But for a→ 0 it also may
converge to this behavior. We found that the data could
be well fit to a function of type

ξ(1,2)
gs (a) = Aξ(a− acrit)

−dξ exp
{
bξ(a− acrit)

−cξ} , (13)

to the data. The exponential in Eq. (13) is consistent
with the previous results for the length scale L∗ and will
dominate for a → 0. The power-law part is chosen to
describe the behavior for large values of a. We have fitted
the data to this function, e.g., for the data obtained from
the multifit. Here, we again obtained a small value of
acrit = 0.11(6), thus we again fixed acrit ≡ 0. In this case
we obtained as values of the remaining fit parameters
Aξ = 4.0(3), dξ = 0.81(3), bξ = 1.58(8) and cξ = 1.19(4)
with a good quality of the fit. Similar values, in particular
for cξ, are found for the other two data sets ξgs(a). This
means, for large correlation exponents a the behavior of
the correlation length as function of a seems to be better
described by a power law. Also, the behavior of the peak
lengths and of the ferromagnetic correlation lengths differ
a lot, but it is still possible that for very small values of a,
the exponential dependence on 1/a2 is recovered for ξgs.
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But to investigate this issue even much larger system
sizes would have to be treated, much beyond the current
numerical capabilities.

IV. DISCUSSION

The common two-dimensional Ising spins glass does
not exhibit a finite-temperature spin glass phase in con-
trast to the three or higher dimensional cases [18–20].
This work deals with the question how long-range cor-
related bonds influence this characteristic. Therefore,
the ordering behaviour of the two-dimensional Ising spin
glass with spatially long-range correlated bonds is studied
in the zero-temperature limit. The bonds are drawn from
a standard normal distribution with a two-point corre-
lation for bond distance r that decays as (r2 + 1)−a/2,
a ≥ 0. In the borderline case, when a = 0, the system
is either a ferromagnet or antiferromagnet, depending on
the bond realization. If a → ∞ the uncorrelated EA
model is recovered.

For 0 < a < ∞ we observed that the correlation
has local effects on the zero-temperature ordering be-
haviour. The correlation locally effects the average value
of the bonds as well as their standard deviation for each
individual realization of the disorder. These parame-
ters are decisive to distinguish between a spin glass or
ferro/antiferromagnet in case of the uncorrelated model
[25, 28]. In correspondence to that, the spin correla-
tion of the GS reveals how the correlation induces a lo-
cal ferro/antiferromagnetic order into the GS. This is re-
flected by a growing correlation length ξgs(a) when de-
creasing a.

Complementary results, to the direct study of the GS,
were obtained by investigating DW excitations. The ab-
solute value of the DW energy can be interpreted as the
coupling strength between block spins at zero tempera-
ture [14]. We found that for strong correlation the abso-
lute value of the DW energy increases as a function of the
system size to a peak and then decreases. Since we made
the same observation for the actual DW energy it shows
that the increase of the absolute value of the DW energy
is a consequence of local ferro/antiferromagnetic order of
the system in GS. The system size where the peak oc-
curs, L∗, is interpreted as the length scale of local order.
For small correlation exponents a, both L∗(a) and the
correlation length of the GS, ξgs(a), can be described by
exponential divergencies, with correations for ξgs(a). In-
terestingly, a similar exponential length scale was also
found in the two-dimensional random field Ising model
by GS computations [49] and at low temperatures [48].
In these studies the length scale of ferromagnetic order
was examined as a function of the standard deviation of
the random magnetic field.

In case of the two-dimensional Ising spin glass the dis-
tribution of the absolute value of the domain wall energy
is “universal” with respect to the initial bond distribu-
tion. This means for any continuous, symmetric bond

distribution with sufficiently small mean and finite higher
moments, the absolute value of the domain wall energy
should approach the same scaling function [13, 14, 58].
Thus, we expect the same kind of universality for our
model.

The stiffness exponent describes the scaling of the
width of this distribution and is related via ν = −1/θ
to the only independent critical exponent of the thermal
zero-temperature fixed point [14, 24]. Therefore, any cor-
relation which leaves the stiffness exponent unchanged
does not influence the universality of the model. From
the data of L∗ it is expected that there is no global or-
dered phase for a > 0. This implies that the stiffness
exponent is negative for a > 0. Furthermore, for any
considered a ≥ 0.9 the stiffness exponent stays constant
in comparison to the uncorrelated case. Due to the lim-
ited studied length scales it was not possible for us to
verify this for the values of a < 0.9.

Beside the DW energy the DW surface is an essential
parameter to describe the low-temperature behaviour of
the Ising spin glass [50, 51]. In the uncorrelated model
the domain-wall surface follows a power law, 〈D〉J ∼ Lds ,
where ds = 1.27319(9) [21]. Our results are compatible
to this for all considered correlation exponents a ≥ 0.5.
At a ≈ 0.4 the fractal surface dimension starts to de-
cline. For the values of a ≤ 0.1 the data is well de-
scribed by a power law with scaling corrections [16, 21],
i.e. 〈D〉J = ADLds(1 + BDL−ωs). The decrease in the
ds implies that for strong correlations DWs with shorter
lengths are energetic favorable. In the borderline case
when a = 0 the system is a ferro/antiferromagnet and
thus ds = 1. Of course, it can not be ruled out that the
decline in ds is local and on sufficiently long length scales
the pure power law with ds = 1.27319(9) [21] is recov-
ered again for all a > 0. In this context it is interesting
to note that there exist a relation which links directly
the stiffness exponent with the the fractal surface dimen-
sion, i.e ds = 1 + 3/(4(3 + θ)) [59]. According to highly
accurate numerical results [21] this equation is probably
not correct. Our results for the fractal surface dimension
ds = 1.27318(29) (Q = 0.99) and the stiffness exponent
θ = −0.2815(13) (Q = 0.13) deviate by approximately
6.5 standard deviations from the mentioned conjecture,
since ds−1−3/(4(3+θ)) = −0.0027(4). The latter result
was obtained by using standard error propagation, thus,
neglecting correlations between the estimates of ds and
θ which exist because both values were obtained from
the same data set. In any case, our results also rather
support that the proposed scaling relation does not hold.

In conclusion, it is observed that the correlation has
strong effect on the ordering on local length scales, in-
ducing ferro/antiferromagnetic domains into the GS. The
length scale of local ferro/antiferromagnetic order di-
verges exponentially when the correlation exponent ap-
proaches zero. The fractal surface dimension decreases
for strong correlations on the studied length scales. No
sign of a spin-glass phase at finite temperature is wit-
nessed.
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