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We consider the negative weight percolation (NWP) problem on hypercubic lattice graphs with
fully periodic boundary conditions in all relevant dimensions from d = 2 to the upper critical
dimension d = 6. The problem exhibits edge weights drawn from disorder distributions that allow
for weights of either sign. We are interested in in the full ensemble of loops with negative weight,
i.e. non-trivial (system spanning) loops as well as topologically trivial (“small”) loops. The NWP
phenomenon refers to the disorder driven proliferation of system spanning loops of total negative
weight. While previous studies where focused on the latter loops, we here put under scrutiny the
ensemble of small loops. Our aim is to characterize -using this extensive and exhaustive numerical
study- the loop length distribution of the small loops right at and below the critical point of the
hypercubic setups by means of two independent critical exponents. These can further be related to
the results of previous finite-size scaling analyses carried out for the system spanning loops. For the
numerical simulations we employed a mapping of the NWP model to a combinatorial optimization
problem that can be solved exactly by using sophisticated matching algorithms. This allowed us to
study here numerically exact very large systems with high statistics.
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I. INTRODUCTION

The statistical properties of lattice-path models on
graphs, equipped with quenched disorder, have experi-
enced much attention during the last decades. They have
proven to be useful in order to characterize, e.g., linear
polymers in disordered/random media [1–5], vortex loops
in high-Tc superconductivity at zero field [6–9] and the
d = 3 XY model [10, 11], networks of vortex strings found
after a symmetry-breaking phase transition in field the-
ories [12–14], as well as domain wall excitations in disor-
dered media such as spin glasses [15, 16] and the solid-
on-solid model [17]. The precise computation of these
paths can often be formulated in terms of a combinato-
rial optimization problem and hence might allow for the
application of exact optimization algorithms [18] devel-
oped in computer science.

For an analysis of the statistical properties of these
lattice path models, geometric observables and scaling
concepts similar to those developed in percolation theory
[19–21] have been used conveniently. In the past decades,
a large number of percolation problems in various con-
texts have been investigated through numerical simula-
tions. Among those are problems, where the fundamental
entities are string-like, similar to the lattice-path models
mentioned in the beginning, rather than clusters consist-
ing of occupied nearest neighbor sites as in the case of
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usual random bond percolation.
In a sequence of recent articles we have introduced [22]

and investigated (see below) the negative-weight perco-
lation (NWP), a problem with subtle differences as com-
pared to other string-like percolation problems. In the
most basic NWP setup, one considers a regular lattice
graph with periodic boundary conditions (BCs), where
adjacent sites are joined by undirected edges. Weights
are assigned to the edges, representing quenched random
variables drawn from a distribution that allows for edge
weights of either sign. The properties of the weight dis-
tribution are further controlled by a tunable disorder pa-
rameter, signified ρ. For a given realization of the dis-
order, one then computes a configuration of loops, i.e.
closed paths on the lattice graph, such that the sum of
the edge weights that build up the loops is minimal and
negative. As an additional optimization constraint we
impose the condition that the loops are not allowed to
intersect; consequently there is no definition of clusters
in the NWP model. Regardless of the spacial dimension
of the underlying (hypercubic) lattice graph, the observ-
ables are always line-like, i.e. have an intrinsic dimension
of d = 1. Nevertheless, the loops may be fractal with
fractal dimensions df > 1, see Ref. [23].

The problem of finding these loops numerically can be
cast into a minimum-weight path (MWP) problem, out-
lined in sect. II in more detail. A pivotal observation is
that, as a function of the disorder parameter ρ, the NWP
model features a disorder driven, geometric phase tran-
sition, [22–24] triggered by a vital change of the typical
loop size (as discussed below in more detail). In this re-
gard, depending on the precise lattice setup and on the
value of ρ, one can identify two different phases: (i) a
phase where the loops are “small”, meaning that the lin-
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FIG. 1: Samples of minimum weight configurations of loops
for a 2D square lattice with side length L= 64 and fully pe-
riodic boundary conditions. The snapshots relate to different
values of the disorder parameter ρ, where (a) ρ ≈ ρc, (b)
ρ′ < ρc, and, (c) ρ′′ < ρ′. In the limit of large system sizes
and above the critical point ρc, loops might span the lattice
along at least one direction as, e.g., the gray loop in (a). For
small values of ρ, loops with a comparatively large length
appear to be suppressed exponentially.

ear extensions of the loops are small in comparison to the
system size, see Figs. 1(b-c) (therein, the linear extension
of a loop refers to its projection onto the independent lat-
tice axes), and, (ii) a phase where “large” loops exist that
span the entire lattice, see Fig. 1(a). Regarding these two
phases and in the limit of large system sizes, there is a
particular value of the disorder parameter, signified as
ρc, at which system spanning (or “percolating”) loops
appear for the first time.

Previously, we have investigated the NWP phe-
nomenon for 2D lattice graphs [22] using finite-size scal-
ing (FSS) analyses, where we characterized the under-
lying transition by means of a set of critical exponents.
Considering different disorder distributions and lattice
geometries, the exponents where found to be universal in
2D and clearly distinct from those describing other perco-
lation phenomena. In a subsequent study we investigated
the effect of dilution on the critical properties of the 2D
NWP phenomenon [24]. Therefore we performed FSS
analyses to probe critical points along the critical line in
the disorder-dilution plane that separates domains that
exhibit or do not exhibit system spanning loops. One
conclusion of that study was that bond dilution changes
the universality class of the NWP problem. Further we
found that, for bond-diluted lattices prepared at the per-
colation threshold of 2D random percolation and at full
disorder, the geometric properties of the system span-
ning loops compare well to those of ordinary self-avoiding
walks. We performed further simulations for the NWP
model on hypercubic lattice graphs in dimensions d= 2
through 7 [23], where we found evidence for an upper
critical dimension du=6 of the NWP phenomenon. This
result was based on monitoring the critical exponents re-
lated to the NWP transition (one expects them to stay
fixed for d ≥ du). We also studied numerically as well as
analytically a variant of the NWP transition on 3-regular
random graphs (RRGs), i.e. graphs where each node has
exactly 3 neighbors and where there is no regular lattice
structure. Hence, we obtained direct access to the mean-
field exponents that govern the model for d ≥ du. We
obtained excellent agreement between numerical and an-

alytic results and could provide further support for the
claim du = 6.

All of the studies mentioned above where focused on
the statistical properties of the largest loop (or more pre-
cisely, the longest loop) for a given realization of the dis-
order and the critical properties of the NWP model that
derive from an analysis of these loops in the vicinity of
the critical point ρc. Up to now, limited attention was
payed to the ensemble of “small” loops that actually com-
prise the major part of loop segments in the vicinity of
ρc. As we found earlier, at this critical point the loops
are rather isolated and well separated from each other,
resembling a dilute gas of loops (cf. Fig. 1). Further,
the normalized and ensemble-averaged probability mass
function (pmf) n` of loops having length ` right at ρc was
studied in Refs. [22, 23]. It exhibits an algebraic decay
similar to the distribution of cluster sizes at the critical
point in ordinary random percolation [19, 20], i.e.

n`(ρc) ∝ `−τ at ρ = ρc. (1)

The numerical values of the decay exponent τ (also
termed “Fisher exponent”) found for the NWP model in
d = 2 through 7 are listed in Tab. I. Note that the Fisher
exponent is only one out of two independent exponents
that characterize the whole ensemble of loops.

In the present article, the second critical exponent that
characterizes the ensemble of small loops is addressed. In
this regard, the present article discusses the pmf n`(ρ) as
function of the disorder parameter ρ. Consequently, the
numerical effort to obtain these distributions, in several
dimensions d = 2, . . . , 6 was much larger, compared to
the previous studies where the distribution was obtained
just for ρ ≈ ρc. One of our main results is that for
values ρ < ρc, the pmf appears to scale similar to the
distribution of cluster sizes in usual percolation [19, 20],
i.e.

n`(ρ) ∝ `−τ exp{−TL(ρ)`} for ρ < ρc. (2)

TABLE I: Critical properties that characterize the NWP phe-
nomenon in d=2 . . . 6. From left to right: Lattice dimension
d, critical point ρc, product νp · df,p of the critical exponents
νp and df,p that describe the divergence of a typical length
scale and the fractal dimension df,p (measured at ρc), respec-
tively, as well as the length fluctuation exponent γp. Further,
the table lists the Fisher exponent τ and the loop-length cut-
off exponent σ. Note that the figures in all but the two right
columns are taken from Ref. [23]. The last column is meant to
check the scaling relation γp = (3−τ)/σ. The additional sub-
script p indicates that these exponents result from an analysis
of the percolating loops.

d L ρc νpdf,p γp τ σ (3− τ)/σ
2 512 0.340(1) 0.53(3) 0.77(7) 2.59(3) 0.53(3) 0.77(10)
3 64 0.1273(3) 0.69(2) -0.09(3) 3.07(1) 0.71(1) -0.10(1)
4 21 0.0640(2) 0.78(3) -0.66(5) 3.55(2) 0.78(2) -0.71(1)
5 12 0.0385(2) 0.86(4) -1.06(7) 3.86(3) 0.88(2) -0.98(1)
6 6 0.0265(2) 1.00(3) -0.99(3) 4.00(2) 0.97(4) -1.03(2)
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Therein, the exponential factor accounts for the obser-
vation that below the critical point ρc the proliferation
of “long” (still non-spanning) loops is suppressed due
to some finite “loop size cut-off parameter”. The lat-
ter might be captured by means of a scaling parameter
TL(ρ) [13] which depends on the subtleties of the dis-
order. Its inverse `0(ρ) = 1/TL(ρ) relates to a typical
length scale to which the perimeter of the loops is lim-
ited at a given value of ρ and it should not depend on
the side length L of the system (at least in the limit of
large system sizes where a loop of, say, length `0 fits well
into the simulation box). Therefore, loop configurations
a[19, 20] small values of ρ are consistent with a spanning
probability PL(ρ < ρc) → 0 in the limit of large sys-
tem sizes (L → ∞). As the critical point is approached
from below the loop size cut-off parameter vanishes, giv-
ing rise to the purely algebraic decay of n` observed at
ρc, as in Eq. (1), featuring loops with length ` on virtu-
ally all length scales. (A qualitatively similar observation
in the context of high-Tc superconductors is referred to
as “Onsager vortex-loop unbinding” that signals the su-
perconductor to normal metal transition [6, 7]. Further,
in string theory, the analog observation is referred to as
“Hagedorn transition” [12, 13].) The decrease of the pa-
rameter TL(ρ) can be related to a second, independent
exponent that, in addition to τ , serves to characterize
the ensemble of small loops. The respective critical ex-
ponent σ is defined via

TL(ρ) ∝ |ρ− ρc|1/σ , (3)

where σ might be referred to as “loop-size cut-off” ex-
ponent (i.e. the critical exponent related to the loop-size
cut-off parameter TL) and where ρ approaches ρc from
below. Similarly, the corresponding lengthscale `0, to
which the loops are confined, diverges. This implies that
loops might get arbitrarily long, limited only by the fi-
nite size of the underlying lattice. One might expect a
maximal loop length of `max∼Ldf , where df denotes the
fractal scaling dimension of the loops. Thus, at ρc and in
the limit L → ∞, the distribution of the loop perimeter
exhibits an algebraic decay, solely governed by the fisher
exponent τ . Finally, according to scaling theory [19, 20],
the scaling relations

νpdf,p = 1/σ, (4a)

γp = (3− τ)/σ (4b)

should hold, relating σ (as measured for the small loops)
to νp, df,p and γp (all measured from the system span-
ning loops; indicated by the subscript p). These three
exponents signify the critical exponents that describe the
divergence of the correlation length, the scaling dimen-
sion of the loops, and the fluctuations of the loop order-
parameter, respectively.

The remainder of the present article is organized as
follows. In section II, we introduce the model in more
detail and we outline the algorithm used compute the
loop configurations. In section III, we list the results of

our numerical simulations and in section IV we conclude
with a summary. Note that an extensive summary of this
paper is available at the papercore database [25].

II. MODEL AND ALGORITHM

In the present article we consider hypercubic lattice
graphs G= (V,E) with side length L and fully periodic
boundary conditions (BCs) for all relevant dimensions
d = 2 through 6. The considered graphs have N = |V |=
Ld sites i ∈ V and a number of |E| = zN/2 undirected
edges {i, j}∈E that join adjacent sites i, j ∈V . Above,
z signifies the coordination number of the lattice geom-
etry, where z = 2d. We further assign a weight ωij to
each {i, j} ∈ E. These weights represent quenched ran-
dom variables that introduce disorder to the lattice. Here
we consider independent identically distributed weights
which either have just weight one (probability 1-ρ) or
are drawn (probability ρ) from a Gaussian distribution
with zeor mean and veriance one. Hence, the disorder
distribution is given by

P (ω) = ρ exp (−ω2/2)/
√

2π + (1− ρ)δ(ω − 1), (5)

that explicitly allows for loops L with a negative total
weight ωL=

∑
{i,j}∈L ωij . To support intuition: For any

nonzero value of the disorder parameter ρ, a sufficiently
large lattice will exhibit at least “small” loops that ex-
hibit a negative weight, see Fig. 1(c). If the disorder
parameter is large enough, system spanning loops with
negative weight will exist, see Figs. 1(a).

The NWP problem then reads as follows: Given a re-
alization of the disorder for a hypercubic lattice graph
G, determine a set C of loops such that the configura-
tion energy, defined as the sum of all the loop-weights
E=

∑
L∈C ωL, is minimized. As further optimization con-

straint, the loops are not allowed to intersect. Note that
due to the “energy minimization principle” of the opti-
mization procedure, the weight of an individual loop is
necessarily smaller than zero. The configuration energy
E is the quantity subject to optimization and the result
of the optimization procedure is a set of loops C, obtained
using an appropriate transformation of the original graph
[26]. For the transformed graphs, minimum-weight per-
fect matchings (MWPMs) [27–29] are calculated, that
serve to identify the loops for a given realization of the
disorder. Since exact MWPMs can be obtained in poly-
nomial time, this procedure allows for an efficient imple-
mentation [30] of the simulation algorithms. Here, we
give a brief description of the algorithmic procedure that
yields a minimum-weight set of loops for a given real-
ization of the disorder. Fig. 2 illustrates the three basic
steps, detailed below:

(1) each edge, joining adjacent sites on the original
graph G, is replaced by a path of 3 edges. Therefore,
2 “additional” sites have to be introduced for each edge
in E. Therein, one of the two edges connecting an ad-
ditional site to an original site gets the same weight as
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FIG. 2: Illustration of the algorithmic procedure: (a) original
lattice G with edge weights. For clarity, a bimodal distri-
bution that yields edge-weights ±1 is considered. Further,
only negative edge-weights are shown. Unlabeled edges have
weight +1. (b) auxiliary graph GA with proper weight as-
signment. Black edges carry the same weight as the respec-
tive edge in the original graph and gray edges carry zero
weight, (c) minimum-weight perfect matching (MWPM) M :
bold edges are matched and dashed edges are unmatched,
and (d) loop configuration (bold edges) that corresponds to
the MWPM depicted in (c).

the corresponding edge in G. The remaining two edges
get zero weight. The original sites i ∈ V are then “dupli-
cated”, i.e. i→ i1, i2, along with all their incident edges
and the corresponding weights. For each of these pairs
of duplicated sites, one additional edge {i1, i2} with zero
weight is added that connects the two sites i1 and i2.
The resulting auxiliary graph GA = (VA, EA) is shown in
Fig. 2(b), where additional sites appear as squares and
duplicated sites as circles. Fig. 2(b) also illustrates the
weight assignment on the transformed graph GA. Note
that while the original graph (Fig. 2(a)) is symmetric,
the transformed graph (Fig. 2(b)) is not. This is due to
the details of the mapping procedure and the particu-
lar weight assignment we have chosen. A more extensive
description of the mapping can be found in [16].

(2) a MWPM on the auxiliary graph is determined
via exact combinatorial optimization algorithms [31]. A
MWPM is a minimum-weighted subset M of EA, such
that each site contained in VA is met by precisely one
edge in M . This is illustrated in Fig. 2(c), where the
solid edges represent M for the given weight assignment.
The dashed edges are not matched. Due to construction,
the auxiliary graph consists of an even number of sites
and the transformation procedure described in step (1)
guarantees that a perfect matching exists. Note that a

MWPM can be computed in polynomial time as a func-
tion of the number of sites, hence large systems with
hundreds of thousands of sites are feasible.

(3) finally it is possible to find a relation between the
matched edges M on GA and a configuration of negative-
weighted loops C on G by tracing back the steps of the
transformation (1). As regards this, note that each edge
contained in M that connects an additional site (square)
to a duplicated site (circle) corresponds to an edge on
G that is part of a loop, see Fig. 2(d). Note that, by
construction of the auxiliary graph, for each site i1 or
i2 matched in this way, the corresponding “twin” site
i2/i1 must be matched to an additional site as well. This
guarantees that wherever a path “enters” a site of the
original graph, the paths also “leaves” the site, corre-
sponding to the defining condition of loops. All the edges
in M that connect like sites (i.e. duplicated-duplicated,
or additional-additional) carry zero weight and do not
contribute to a loop on G. Once all loop segments are
found, a depth-first search [26, 28] can be used to identify
the loop set C and to determine the geometric proper-
ties of the individual loops. Here, the exemplary weight
assignment illustrated in Fig. 2(a) yields 2 loops, i.e.
C = {L1,L2}, with weights ωL1

= ωL2
=−4 and lengths

`1 =
∑
{i,j}∈L1

1 = 8, `2 = 4. Hence, the configurational

energy reads E=−8.
The result of the calculation is a collection C of loops

such that the total loop weight, and consequently the
configuration energy E , is minimized. Hence, one obtains
a global collective optimum of the system. Obviously, all
loops that contribute to C possess a negative weight. Also
note that the choice of the weight assignment in step (1)
is not unique, i.e. there are different possibilities to choose
a weight assignment that all result in equivalent sets of
matched edges on the transformed lattice, corresponding
to the minimum-weight collection of loops on the origi-
nal lattice. Some of these weight assignments result in a
more symmetric transformed graph, see e.g. [26]. How-
ever, this is only a technical issue that does not affect
the resulting loop configuration. Finally, for the purpose
of illustration, a small 2D lattice graph with free BCs
was chosen intentionally. The algorithmic procedure ex-
tends to higher dimensions and fully periodic BCs in a
straight-forward manner.

In the remainder of the article, we will use the pro-
cedure outlined above in order to study the pmf of loop
lengths in the NWP model on hypercubic lattice graphs
in d = 2 through 6.

III. RESULTS

Within our extensive numerical studies, we performed
exact NWP loop calculations for dimensions d = 2
through 6 for various values ρ ≤ ρc while averaging over
many realizations of the disorder. Details are given in
Tab. II.

In order to get a grip on the loop-size cut-off parameter
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σ for a particular hypercubic lattice setup of dimension d,
the pmf n`(ρ) of the loop length needs to be obtained for
different values of the disorder parameter ρ≤ ρc. Then,
a best fit to the form n`(ρ) = n0`

−τ exp{−TL(ρ)`} might
be used to obtain the three fit parameters n0, τ , and
TL(ρ) for different values of ρ. Finally, the sequence of
fit parameters TL(ρ) might be analyzed to yield the ex-
ponent σ according to Eq. (3).

However, a different procedure appears to be more ap-
pealing: from previous simulations in dimensions d = 2
through 7, reported in Refs. [22, 23], we found that the
pmf n`(ρc) exhibits an algebraic decay governed by the
exponent τ . For the largest lattice graphs simulated for
the various dimensions d, we obtain the numerical esti-
mates listed in Tab. I. For the corresponding data anal-
yses, very small loops have to be neglected since they are
affected by the granularity of the lattice and very large
loops have to be withdrawn since they are affected by
the lattice boundaries. Once the exponent τ for a given
dimension d is obtained, it can be utilized in the analysis
of the loop length pmf at ρ < ρc to limit the number of
fit parameters to only two (i.e. n0 and TL), allowing for
a more precise estimate of the individual values of TL(ρ).

So as to get a grip on the loop size cut-off parameter σ,
the loop perimeter distribution was obtained for different
values of the disorder parameter ρ ≤ ρc and the data
was fitted using a function as given in Eq. (2), with an
additional normalization factor. E.g., in d = 2 we use
τ = 2.59 fixed, see Tab. I and Fig. 3, wherein the fit
intervals for individual values of ρ where restricted to
the range [`min, `max]. We further fixed `min = 10 and
`max = 60 at ρ = 0.24 (the upper bound shifting up to
`max = 150 at ρc). The resulting values for the cut-off
parameter were then analyzed using a three parameter
fit to functions of the form of Eq. (3), i.e. TL(ρ) = A|ρ−
ρeff
c |1/σ. Therein the amplitudes A are not of interest

and the effective critical points ρeff
c can be expected to

differ slightly from the asymptotic critical points listed in
Tab. I (see discussion below). The resulting loop-length
cut-off parameters σ are also listed in Tab. I.

For d = 2 systems of side length L = 512 the anal-
ysis yields σ = 0.53(3) and ρeff

c = 0.344(2), see Fig. 4
(at L = 256 we find ρeff

c = 0.346(2) and σ = 0.53(2)).
For all values of ρ considered, the data curves of TL at

TABLE II: Simulation parameters: we performed our study
for nρ values of the disorder parameter ρ in intervals [ρ1, ρ2]
and for a number nR of realizations, for the different dimen-
sions d and system sizes L.

d L [ρ1, ρ2] nρ nR
2 256 [0.24, 0.34] 11 ∼ 2×104

2 512 [0.24, 0.34] 16 6400
3 64 [0.075, 0.1245] 100 4800
4 21 [0.022, 0.058] 19 8000
5 12 [0.02, 0.038] 19 6400
6 6 [0.015, 0.025] 21 ∼ 5×104
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FIG. 3: Results for d = 2 square lattice graphs. The main
plot shows the probability mass functions n`(ρ) of the loop
perimeter ` for different values of the disorder parameter ρ
for square systems of side length L = 512. The data curves
illustrate the suppression of loops with a perimeter larger than
some cut-off length scale `0, related to a finite “loop size cut-
off parameter” TL(ρ) for ρ < ρc (see text). The data curves
fit well to functions of the form of Eq. (2). Right at ρc the
data curve exhibits a pure algebraic decay according to Eq.
(1). The inset compares the resulting values of the cut-off
parameter TL(ρ) for systems of side length L = 512 and L =
256, where the solid line indicates a best fit to the L = 512
data using a function with four free parameters as explained
in the text.

L = 256 and L = 512 compare well as shown in the
inset of Fig. 3. This finding is further consistent with
the usual scaling relation 1/(νpdf,p) = σ that relates σ
to νp and df,p, where the latter two exponents signify
the critical exponent that describes the divergence of
the correlation length and the scaling dimension of the
loops at the critical point, respectively. From the re-
spective values previously obtained [22] one readily finds
1/(νpdf,p) = 0.53(3). Only the location of the (effec-
tive) critical point ρeff

c = 0.344(2), as estimated from
the complete ensemble of loops at the particular sys-
tem size L = 512, differs slightly from the one obtained
from the scaling analysis of the percolating loops, i.e.
ρc=0.340(1) [22] (a similar effect was found in the anal-
ysis of a d = 3 vortex loop network in Ref. [10]). Bear-
ing in mind that the latter value represents an extrap-
olation to the thermodynamic limit, the aforementioned
difference is likely due to finite-size effects. In this re-
gard it does not come as a surprise that an analysis
of the loop size cut-off parameter according to Eq. (3)
for fixed ρeff

c = 0.340 (instead of ρeff
c = 0.344) yields

the exponent σ = 0.61(1) which significantly overesti-
mates the result obtained from the three parameter fit
reported above. Finally, a four parameter fit according
to TL(ρ) = T ′L+A|ρ−ρeff

c |1/σ at L = 512 (see inset of Fig.
3) results in the estimates T ′L = 0.001(1), ρeff

c = 0.348(6)
and σ = 0.55(3), with the latter two fit parameters in
agreement with the ones found above and T ′L in agree-
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FIG. 4: Scaling analysis of the loop size cut-off parameter
TL(ρ) in dimensions d = 2 through 6. The solid lines indicate

fits to functions of the form TL(ρ) = A|ρ − ρeff
c |1/σ. Therein

the amplitudes A are not of interest and the effective critical
points ρeff

c can be expected to differ slightly, but within sta-
tistical error bars, from the asymptotic critical points listed
in Tab. I. The resulting loop-length cut-off parameters σ are
also listed in Tab. I.

ment with zero as one would naively expect.
So as to facilitate a qualitative comparison, considering

d = 3 hypercubic lattices with L = 64 we obtained the ef-
fective critical point ρeff

c = 0.1278(1) which slightly over-
estimates the asymptotic value of ρc = 0.1273(3) (similar
to what we observed above in 2D), see Fig. 4. The scal-
ing exponent σ = 0.71(1) compares well to the product
νp · df,p = 0.69(2) for the respective dimension. In the
analysis of the data for d > 3 we obtained most satisfac-
tory fits by fixing the parameters ρeff

c to their expected
asymptotic values ρc listed in Tab. I. The analysis of the
loop size cut-off parameter in dimensions d = 2 through
6 are shown in Fig. 4 and summarized in Tab. I.

In higher dimensions we also checked that the loop size
cut-off parameter TL(ρ) at a given value of ρ is practi-
cally independent of the system size (however, for larger
system sizes the loop yield is bigger and hence the statis-
tics get more reliable). E.g., for d = 4 hypercubic lattices
at ρ = 0.026, i.e. with some distance to the critical point
ρc = 0.0640(2), we obtained TL(0.026) = 0.43(5) at L =
16 and TL(0.026) = 0.45(4) at L = 21. Close to the criti-
cal point at ρ = 0.058 we further find TL(0.058) = 0.35(1)
at L = 16 and TL(0.058) = 0.036(1) at L = 21. Further,
we observe that in any dimension considered, the scaling
relation γp = (3 − τ)/σ appears to be satisfied within
errorbars.

IV. CONCLUSIONS

In the presented analysis of the NWP model, we
performed numerical simulations on hypercubic lattice
graphs for all dimensions relevant for the model, i.e. d=2

through 6. The aim of the study was to characterize the
ensemble of small loops in the NWP model using two
independent critical exponents: the Fisher exponent τ
(which was already known from previous studies, see Ref.
[23]), and the loop-length cut-off exponent σ. Both expo-
nents can be determined by means of an analysis of the
probability mass function n`(ρ) measuring the distribu-
tion of loop lengths `, considering a sequence of different
values ρ close to but below the critical point. This implies
a huge numerical effort, since we had to study in different
dimensions large systems, for several values of the disor-
der parameter, while averaging over many realizations
of the disorder. For the numerical simulations we used
a mapping of the NWP model to a combinatorial opti-
mization problem that allows to obtain configurations of
minimum weight loops via exact algorithms. Note that
due to the small side lengths of the lattice graphs that
are accessible in high dimensions, the data analysis is no-
toriously difficult at large values of d. However, we find
the results regarding the exponent σ consistent with the
scaling relations Eqs. (4a) and (4b) for any dimension
considered (see Tab. I). Thus, via this extensive numeri-
cal study we have completed a comprehensive description
of the static behavior of the NWP model in all relevant
dimensions d = 2, . . . , 6.

In particular, many of the d = 3 loop models stud-
ied in the literature report on values for the critical
exponents τ and σ that are close to τ = 3.07(1) and
σ = 0.71(1) (1/σ = 1.41(2)) found here. E.g., Ref. [7]
obtains τ = 2.4(1) (however, in a previous study they
report τ = 3, see Ref. [6]) and 1/σ = 1.45(5) (in that
study the latter quantity was called γ) for the d = 3
uniformly frustrated XY model as well as for the lattice
Ginzburg-Landau model in a frozen gauge approxima-
tion, and Ref. [8] yields τ = 2.8(1) and σ = 0.6(1) for the
strongly screened vortex glass model. Note that in d = 3
all the critical exponents of the NWP problem appear to
be quite close to those that describe the strongly screened
vortex glass model analyzed in Ref. [8]. As regards this,
it appears to be tempting to conclude that in d = 3 both
models are in the same universality class.
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