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Bootstrap percolation, the role of anisotropy.

Questions, some answers and applications.
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Bootstrap Percolation (also called: diffu-

sion percolation, jamming percolation, k-core

percolation, neuropercolation, quorum perco-

lation...). Models for metastable behaviour;

growth, fracture, nucleation, glasses, the brain,

contagion...

Contributions by computational phyicists, ma-

thematical physicists, neurophyicists, probabi-

lists, combinatorialists...

We consider variables σti = 0,1, living on a

lattice, so i ∈ Zd, at discrete times t. (Some-

times more general graphs)

Dynamics deterministic in discrete time.

Cellular Automaton rule:

σt+1
i = f({σtj, j ∈ N(i)}.

Depends on choice of function f and choice

of neighborhood N .

We choose f increasing (the more 1’s at time

t, the more 1′s at the next step, and allow only

the change from 0 to 1 (empty to occupied,

or healthy to sick).
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Standard choice in d=2: transition only if an

empty (= healthy) site has at least 2 occu-

pied (=infected) nearest neighbours.

Very similar model: modified BP, at least 2

occupied neighbours in two orthogonal direc-

tions.

(Site) percolation occurs if there is a top-

down connection (an infinite connected clus-

ter).
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QUESTIONS: Start with i.i.d initial conditi-

ons, probability of being sick is p, of being

healthy is 1− p
(Primordial Soup, only probability is in the be-

ginning).

Q1) What happens in the long run?

Q2) Is there a threshold (critical) value of p,

above which everyone gets infected?

Q3) How big is it?

Q4) What happens if you have a large

but finite box?

Q5) What happens in higher dimensions?

Q6) What happens with different,

anisotropic, neighbourhoods (or rules)?

Q7) What happens with anisotropic neighbor-

hoods in higher dimensions?

Q8) What are these models good for?

Known results on Q1) to Q5), new on Q6)

and Q7).
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Examples and notation:

d = 2, (a, b)-models;

Neighborhood N with a neighbours in x-direction,

b neighbours in y-direction.

d = 3, (a, b, c)-models;

Neighborhood N with a neighbours in x-direction,

b neighbours in y-direction, c neighbours in z-

direction.

Growth if at least half of the neighborhood

sites are occupied.

Example: (1,2)model
•

N = • • 0 • •
•
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Standard-BP answers to Questions 1-4)

For every p everyone will get sick, so pc = 0.

Proof: Let large (N by N) square be

occupied. Large here means N ≥ C × 1
p, with

C large. This happens with density pN
2
, which

is positive, so somewehere there is one.

The probability that it grows to an N + 2-by-

N + 2 square is

[1− (1− p)N ]4 ' [1− e−Np]4

which is close to 1.

The probability that it keeps growing is the

product Πj=N,...∞ of the above.

The log of this probability will then be a sum

of terms approximately of the form

4Σj=N,...∞−e−pj = −O(1
pe
−Np) which is small

when N ≥ C × 1
p. So then the probability

to keep growing forever is an infinite product

which still will be close to one, if C is large.

Such a box is example of ”Critical Droplet”.

(In fact an occupied diagonal is enough al-

ready.) You cannot do much better than above.

(meaning choose N smaller).
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Proper scale? Some results:
The minimal size of a volume V to show the ”
infinite-volume”behaviour (to contain a criti-
cal droplet -size N = C

p - with large probability

) is given by |Vc| = eO(N) = e
O(1

p)
.

Inversely
pc = O( 1

ln|V |),
large finite-size correction. Computational con-
fusion.

The hard direction of the proof is based on an
Iteration Lemma of Aizenman and Lebowitz.
Call a rectangular box ” internally spanned ”
if it fills up from the inside.
The Lemma says that for a large box (size
N) to be internally spanned, there has to be
a moderately large box, that is with size of
longest side at least half as big (to be precise,
N
2 − 2), which also is internally spanned.

Then establish for which size the probability
for a box to be internally spanned is minimal,
and for which sizes it grows to 1.
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More answers:

Sharp constants.

V = e
Cst1p+o(1

p)

with Cst often computable (Holroyd, leads to

integral which is computable, but not by Ma-

thematica). Bounds on second-order correc-

tion term o(1
p).

”Sharp threshold property”: Statistical error

much smaller than systematic error. Hence

numerical values of Cst are way off from the

true ones, and the literature is full of wrong

claims by numerical (computational) physi-

cists.

(Theorems by Balogh-Bollobas-statistical

error-, and Holroyd-Gravner and Morris-systematic

error). For your info, for BP and modified BP

CstBP = π2

18, and CstmBP = π2

6 .

Remark: Large finite-size effects translate in

slow dynamics. Long wait till origin is occu-

pied. Finite speed of growing critical droplet.
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Answer to Q5.

Higher dimensions.

In dimension d take threshold for infection 1
2d

neighbours. Still on the infinite lattice every-

one gets sick for any initial p.

Proof : Induction on dimension (Schonmann).

If a HUGE cube is occupied, on the sides we

have a two-dimensional BP model which will

grow, as we saw, once it is large enough (”re-

duced” model). By space ergodicity,

somewhere such a cube exists. The size of

the system to behave like an infinite lattice

now becomes, for d = 3, V = ee
O(1

p)
.

(Or, equivalently, pc = O( 1
lnlnN )).

Every dimension an extra exponent in the ex-

pression for N , cq an extra logarithm in the

expression for pc. Numerics even more hope-

less.
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Asymptotic bounds Cerf-Cirillo and Cerf-Manzo.

Generalisations of Aizenman-Lebowitz lemma.

Constants again exactly computable.

(Holroyd,

Balogh-Bollobas-Morris-(Duminil-Copin))

Idea: For a connection in a fixed direction

consider d-1-dimensional slices orthogonal to

that direction. For a connection it is neces-

sary that one of two things happens in each

slice.

a) Either a d-1-dimensional critical droplet oc-

curs in the slice, which is improbable,

b) or there exists no critical droplet but there

is a percolation connection to which the slice

helps between the filled slices, which typically

are quite far apart. This is improbable be-

cause one is in a subcritical regime of a kind of

percolation model with enough independence.
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Answer to Q6:

Anisotropic neighborhoods.

2 neighbours out of NSW (Duarte model).

3 neighbours out of EENWWS, the (1,2)-

model.

Critical droplet is large NS interval (long dou-

ble NS interval) of occupied sites. Definition

of ”large” slightly different (logarithmic cor-

rections). Take length

N = C′1p ln
1
p
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Probability of growing distance N,N2, ortho-

gonally to the interval, E, or EW, is:

(1− (1− p)N)N
(2) ' (1− e−pN)N

(2)

= (1− pcst)N(2)

Once it is that big, it starts growing with large

probability in both directions again.

(Proof: Take again logarithms and sum. Sum

is small for large C′).

Density of critical droplets becomes

pN = e
O(1

p ln
21
p)

.

(v.E.-Hulshof, using Gravner-Griffeath tools)

Exact constants known, e.g. 1
12 for the (1,2)-

model, and similarly known for (1, b)-models,

or conjectured (for Duarte model). (v.E.-

Duminil-Copin). (Optimal growth, faster than

NS interval, starts fast in NS, then mainly

EW, then all directions). Order of magnitude

for general (a, b) models. Critical droplets rec-

tangles of length p−a ln 1
p and width b provide

V = expO( 1
pa ln2 1

p)

(v.E, A. Fey).
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But more a precise analysis, in d = 2, gives

changing shape of critical droplet. Related

to anisotropic Ising model (Kotecký-Olivieri)?

Difference is that Ising model always has ”standard”2d

scaling. Standard BP closely related to T =

0 Ising model. Critical droplets are squares

(Wulff), in both situations. Shape-shifting

growth of the critical droplet in anisotropic

bootstrap percolation. Estimate via sequence

of rectangles Rn,p with sides

p
−1− 3n

(ln 1
p) by n

p ,

with n growing from some initial value to 1
3 ln 1

p.
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More general rules

Conjecture: the most relevant distinction is

”balanced”, speed of growth of a droplet the

same in different directions. versus ” unba-

lanced”, like the (1,2)-model, with slow- and

fast-growing directions. Partial results:

Duminil-Copin and Holroyd (general isotropic

and balanced),

Bringmann-Mahlburg-Mellit (not isotropic but

balanced example) ,

Bollobas-Smith-Uzzell (weaker results for very

general class of models).
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Anisotropy in high dimensions,(a, b, c)-models.

Neighborhood with a neighbours in x-direction,

b neighbours in y-direction, c neighbours in z-

direction, a ≤ b ≤ c (v.E.-A. Fey).

Answer: double exponent. One side via Schon-

mann’s induction-on-dimension argument. Other

side via generalisation of Aizenman-Lebowitz

Iteration Lemma.

(1,1,2)-model: upper and lower bounds on

V , of the form ee
O(1

p)
, also for (1,1, c)-models,

(just as Cerf-Cirillo proved for (1,1,1) mo-

dels).

(1,2,2)-model: upper and lower bounds on V

ee
O(1

p ln
2p)

, also for (1, b, c)-models.
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(a, a, c) − model: upper and lower bounds on

V

ee
O( 1

pa
)

, also for

(a, b, c)−model: upper and lower bounds on V

if a is less than b

ee
O( 1

pa
ln2p)

.

Second-level exponent is the first-level expo-

nent of ”reduced”((a, b)-model.

”Reason”:

If e.g. P = e
−C1

p , it holds

e
1

CPn lnmP = ee
O(1

p)
for all m,n.

Note Pn = e
−Cn

p = e
O(−1

p)
.
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Answer to last Question (What is it good
for?)
Metastability, caricature.
Slow creation, or arrival of ”critical droplet-
of stable phase in metastable environment.
(Steam bubble in overheated water, icecube in
undercooled water, water droplet in supersa-
turated steam, spontaneous creation by ther-
mal fluctuations, if not caused by mechanical,
external disturbance long wait).
Facilitated (kinetically constrained) models for
glasses (Fredrickson-Anderson, Kob-Anderson,
Martinelli-C.Toninelli-Cancrini-Roberto) you jump,
or move, if you have at least k neighbors.
Random, not deterministic dynamics, but still
similar mechanism. Droplets become ”cages”.
Glass, jamming. Still no infinite network of
cages, by same argument, hence slow move-
ment. No glass transition at finite density.

Rigidity, neural networks (neuron fires after
enough inputs), magnetic models, economic
models (buy Ipad if at least two of your neigh-
bours bought one).
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