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A framework for simulating auditory discrimination experiments, based on an approach from

Sch€adler, Warzybok, Hochmuth, and Kollmeier [(2015). Int. J. Audiol. 54, 100–107] which was

originally designed to predict speech recognition thresholds, is extended to also predict

psychoacoustic thresholds. The proposed framework is used to assess the suitability of different

auditory-inspired feature sets for a range of auditory discrimination experiments that included

psychoacoustic as well as speech recognition experiments in noise. The considered experiments

were 2 kHz tone-in-broadband-noise simultaneous masking depending on the tone length, spectral

masking with simultaneously presented tone signals and narrow-band noise maskers, and German

Matrix sentence test reception threshold in stationary and modulated noise. The employed feature

sets included spectro-temporal Gabor filter bank features, Mel-frequency cepstral coefficients,

logarithmically scaled Mel-spectrograms, and the internal representation of the Perception Model

from Dau, Kollmeier, and Kohlrausch [(1997). J. Acoust. Soc. Am. 102(5), 2892–2905]. The

proposed framework was successfully employed to simulate all experiments with a common param-

eter set and obtain objective thresholds with less assumptions compared to traditional modeling

approaches. Depending on the feature set, the simulated reference-free thresholds were found to

agree with—and hence to predict—empirical data from the literature. Across-frequency processing

was found to be crucial to accurately model the lower speech reception threshold in modulated

noise conditions than in stationary noise conditions. VC 2016 Acoustical Society of America.

[http://dx.doi.org/10.1121/1.4948772]

[MSS] Pages: 2708–2722

I. INTRODUCTION

Even though robust automatic speech recognition (ASR)

systems have been shown to profit from knowledge about

the human auditory system (Hermansky, 1990; Tchorz and

Kollmeier, 1999; Kleinschmidt and Gelbart, 2002; Meyer

and Kollmeier, 2011; Sch€adler et al., 2012) and—in

return—human auditory signal processing models may profit

from the framework and rigid theory behind ASR systems

(e.g., Holube and Kollmeier, 1996; Stadler et al., 2007;

J€urgens and Brand, 2009) both fields of research have tradi-

tionally evolved independently of each other. Typically, any

exchange between the two is unidirectional in the sense that

(modified) auditory signal processing models are considered

as front-ends in ASR, but ASR front-ends are not considered

as models of human auditory signal processing. Hence, the

aim of this study is to revise the traditional idea of “fitting”

auditory models “to the task” in favor of finding universally

valid functional models which are able to perform as well

as human listeners in a range of auditory recognition

tasks. Such an approach should bridge the fields of ASR,

human speech recognition, and psychoacoustics research.

Compared to many models of human auditory signal

processing, which are tailored to describe and model specific

properties of the human auditory system, ASR features are

subject to an extensive set of broad, sometimes even contra-

dictory, demands, e.g., sufficient spectral/temporal detail but

good generalization over acoustic conditions. These different

objectives (descriptive model vs universally applicable

model) are the reason for auditory models usually requiring

considerable modification and engineering towards the

appropriate ASR framework before they can be employed as

front-ends for ASR purposes. From a modeling point of

view, ASR features have desirable properties as a result of

the selection process that they undergo in ASR experiments:

They are the best known compromise between the diverse

demands which are made on the signal representation by

robust ASR tasks and, even beyond, audio classification

tasks. Hence, auditory-inspired robust ASR features are of-

ten simpler than the models by which they were inspired

because only the indispensable processing steps for solving

the ASR task were actually used. In fact, many common

ASR features incorporate only basic auditory signal process-

ing principles such as a limited spectral resolution as well as

a compressive intensity perception, e.g., all features which

are based on logarithmically scaled Mel-spectrograms

(LogMSs). It seems legitimate to ask for the “auditory fidel-

ity” of auditory-inspired ASR features, or in other words, if

they show those properties of the auditory system by whicha)Electronic mail: marc.r.schaedler@uni-oldenburg.de
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they were originally inspired. Hence, one of the aims of this

paper is to demonstrate how the “auditory fidelity” of signal

representations, including traditional models of auditory sig-

nal processing, might be tested and established.

To evaluate ASR features and auditory models on a set

of speech recognition and psychoacoustic discrimination

tasks with varying complexity and to provide an unbiased,

fair comparison between different features/models and em-

pirical data, a common simulation framework which is able

to obtain reference-free, i.e., without super-human prior

knowledge, objective thresholds is highly desirable. Thus, in

a first step, such a framework that allows the simulation of

simple and complex auditory discrimination experiments

(ADEs) using ASR features as well as the output of auditory

models with a single universal parameter set is investigated.

Traditional modeling approaches employ predefined

features of the change in the signal to be detected and are

typically based on signal-to-noise ratios (SNRs) only, such

as the power-spectrum model (Patterson and Moore, 1986),

the Speech Intelligibility Index (ANSI, 1997), the envelope

lowpass-filter model (Viemeister, 1979), or the envelope-

power spectrum model (Ewert and Dau, 2000). The resulting

detection threshold corresponds to a predefined feature value

which may be formalized, e.g., by the Signal Detection

Theory (Green and Swets, 1966). While these models only

use long-term features and thus only require statistical repre-

sentations of signal and noise, some more refined model

versions such as the multi-resolution speech-based ESPM

(Jørgensen et al., 2013) require reproducible or so-called

“frozen” noise to estimate SNRs in short time frames. More

sophisticated modeling approaches (Holube and Kollmeier,

1996; Dau et al., 1997; Jepsen et al., 2008; J€urgens and

Brand, 2009), perform a pattern match using an “optimal”

detector to predict human performance, thus providing an

automatic way of finding the appropriate feature(s) to be

detected. However, the exact temporal alignment between

template and pattern under consideration can only be secured

by a “double-ended” approach, i.e., by deriving the template

from a prior knowledge of the target signal alone or at a high

SNR and a typical representation of the noise. Moreover,

this approach is not able to predict plausible thresholds for

the outcome of complex ADEs, such as speech intelligibility

tests, without requiring an optimal detector that possesses

super-human prior knowledge, such as, e.g., the exact tem-

poral alignment of the target or masker signals.

As an alternative, the approach presented by Sch€adler

et al. (2015) relieves the strong assumptions about the fixed

temporal structure of the template, and hence about knowl-

edge of the to-be-recognized target or noise signal prior to

mixing, by assuming a training phase of a Hidden-Markov-

model-based automatic speech recognizer (ASR) at a broad

range of signal-to-noise ratios. During this training phase,

the ASR system learns the task on noisy data, just like

human listeners are assumed to do during an adaptation

phase. Unlike other approaches and like human listeners, the

ASR system then needs to infer the temporal alignment of

the target signal from the noisy mixture. This can be denoted

as a pseudo-single-ended approach which only relies on the

knowledge of a probabilistically controlled succession of

certain automatically learned features, which natively allows

the use of processed signals (e.g., including the effect of

noise reduction). Furthermore, this approach is reference-

free, since the predicted thresholds are not dependent on any

reference condition which is used by some traditional model

approaches to fit detection parameters (such as, e.g., internal

noise) to the average human performance.

Therefore, the modeling approach from Sch€adler et al.
(2015), originally designed to predict the outcome of the

German Matrix sentence speech recognition test, was

extended to simulate generic ADEs and obtain reference-

free objective thresholds. Sch€adler et al. (2015) successfully

predicted the outcome of the German Matrix sentence test

for different types of background noise by simulating the

experiment using a standard ASR system. They trained and

tested the ASR system with noisy matrix sentences on a

broad range of SNRs and determined the speech reception

threshold (SRT), i.e., the SNR at which the recognition rate

is 50% correct. In the current study, this approach was

extended to recognize tone-in-masker and only masker stim-

uli which allows one to simulate classical psychoacoustic

detection and discrimination experiments. A set of general

purpose back-end parameters was established with the aim

of allowing the simulation of different experiments using

different signal representations with the same parameter set.

The extended framework with the general purpose parame-

ters is referred to as the simulation framework for ADEs

(FADE). The goal of FADE is to provide a general purpose

framework to obtain thresholds which were constrained by

the task and the signal representation.

FADE was used to simulate basic, psycho-acoustical

experiments and more complex matrix sentence recognition

tasks with a range of feature sets (front-ends). On the side of

the psycho-acoustical experiments, simultaneous masking

thresholds depending on tone duration were included as well

as spectral masking thresholds depending on the tone center

frequency. On the side of matrix sentence recognition tests,

speech reception thresholds (SRTs) of the German Matrix

sentence test were included in a stationary and a fluctuating

noise condition. As signal representations, LogMSs, standard

ASR features, auditory-inspired ASR features, and the out-

put of a traditional “effective” auditory processing model

were employed. Mel frequency cepstral coefficient (MFCC)

features were used as standard ASR features. The recently

proposed Gabor filter bank (GBFB) and separable Gabor

filter bank (SGBFB) features, which were shown to improve

the robustness of the standard MFCC-based ASR systems of

Sch€adler et al. (2012) and Sch€adler and Kollmeier (2015),

encode spectro-temporal modulation patterns of audio

signals and were used as auditory-inspired ASR features.

The LogMS was also considered as a signal representation

because it represents the common basis for MFCC, GBFB,

and SGBFB features. The signal representation of the per-

ception model (PEMO) from Dau et al. (1997), referred to as

PEMO features, represented the output of a traditional audi-

tory signal processing model. ASR features are usually used

with feature vector normalization, such as mean and

variance normalization (MVN) (Viikki and Laurila, 1998),

while signal representations in auditory models are not. To
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assess the effect of MVN, LogMS, MFCC, and PEMO

features were employed with and without MVN. All consid-

ered experiments were simulated using all feature sets and

the obtained thresholds were compared to empirical and

model data from the literature.

II. METHODS

A. Experiments

The stimuli, the empirical data, and the PEMO model

data for the ADEs were taken from the literature (Moore

et al., 1998; Derleth and Dau, 2000; Wagener and Brand,

2005; Jepsen et al., 2008). While the model and empirical

data from the literature were measured using adaptive meth-

ods, the simulations using FADE were performed using a

constant-stimulus method which is explained in detail in

Sec. II C.

1. Simultaneous masking

The stimuli, the empirical data, and the PEMO model

data for the tone-in-noise simultaneous masking experiment

were taken from Jepsen et al. (2008). There, a 2-kHz tone

signal needed to be detected in the presence of a broadband

noise masker. The 500-ms Gaussian noise masker was lim-

ited to the frequency range from 20 Hz to 5 kHz and included

50-ms raised-cosine ramps. Detection thresholds correspond-

ing to the 70.7%-correct point on the psychometric function

were measured for signal duration from 5 to 200 ms which

included 2.5-ms raised-cosine ramps.

2. Spectral masking

The stimuli and the empirical data for the tone-in-noise

spectral masking experiment were taken from Moore et al.
(1998). The signal was a tone and the masker a 80-Hz wide

Gaussian noise centered at 1 kHz and presented at 45 dB

sound pressure level (SPL). Detection thresholds corre-

sponding to the 79.4%-correct point on the psychometric

function were measured. The tone frequencies considered in

this work were those at which the masking effect was

expected to dominate the absolute hearing thresholds: 0.75,

0.90, 1.00, 1.10, 1.25, and 1.50 kHz. The original study

considered more conditions including noise signals, tone

maskers, additional masker levels, and additional center fre-

quencies. The PEMO model data were taken from Derleth

and Dau (2000), which used the same model parameters as

Dau et al. (1997). In contrast to the original papers, the

thresholds are presented in dB SPL rather than in dB mask-

ing. Therefore, the dB masking values were transformed to

dB SPL using the absolute hearing thresholds defined in

(ISO, 2003).

3. German matrix sentence test

The stimuli and the empirical data for the speech intelli-

gibility experiment were taken from Wagener et al. (1999)

and Wagener and Brand (2005). In the sentence test from

Wagener et al. (1999), listeners needed to repeat sentences

of five words with a fixed syntactical structure which were

presented in noise. The SNR which corresponded to the

50%-correct point on the psychometric function, i.e., the

SRT, was measured using an adaptive method. The speech

material is phonetically balanced and represents the phonetic

variety of the German language. In addition to the unmodu-

lated test-specific noise condition, a condition with a single-

speaker modulated speech noise from a male speaker at

normal level, the IRCA5 noise from Dreschler et al. (2001),

was considered. The corresponding empirical thresholds

were taken from Wagener and Brand (2005).

B. Signal representations

The LogMS is the basis for all considered ASR features

(MFCC, GBFB, SGBFB) in this study. Mel-spectrograms

were extracted from an amplitude spectrogram of the input

waveform with a window length of 25 ms and a window shift

of 10 ms. Therefore, the linear frequency axis of the ampli-

tude spectrogram was transformed into a Mel-frequency axis

by combining the frequency bins from 64 Hz to 8 kHz with

triangular filters into 31 equally spaced Mel-bands. Finally,

the amplitude values are compressed with the decade loga-

rithm. An example of a LogMS is depicted in the upper

panel of Fig. 1. This 31-dimensional signal representation is

referred to as LogMS features.

1. Mel frequency cepstral coefficients

MFCCs are widely used in ASR and acoustic detection

tasks and are often used as a baseline. In this work, they

were extracted from LogMSs by applying a discrete cosine

transform (DCT) in the spectral dimension. Subsequently,

the MFCCs corresponding to quefrencies above 0.58 cycles/

Mel-band were removed and the remaining 18 MFCCs were

concatenated with their first and second order discrete

temporal derivative. The temporal derivatives are also called

deltas and double deltas and were extracted by applying a

slope filter with a total length of 5 frames once or twice,

FIG. 1. Taken from Sch€adler and Kollmeier (2015). The LogMS of clean

speech in the upper panel is 2D-convolved with a spectral 1D filter s, a tem-

poral 1D filter t, and the corresponding spectro-temporal 2D filter st. The

result of the filtering process is depicted to the left of the corresponding fil-

ter. The amplitude of the 2D filters and (filtered) spectrograms is encoded in

gray scale, where white encodes high amplitude and black encodes low

amplitude.

2710 J. Acoust. Soc. Am. 139 (5), May 2016 Sch€adler et al.



respectively. The 54-dimensional MFCC features were

used with mean and variance normalization as explained in

Sec. II B 5.

2. Gabor filter bank features

GBFB features were successfully employed as robust

features for ASR by Moritz et al. (2013) as well as robust

features for acoustic event detection by Schr€oder et al.
(2013). They are auditory-inspired and extract spectro-

temporal modulation patterns from LogMS using 2D Gabor

filters. The shapes of the 2D Gabor filter that were used are

depicted in Fig. 2 and were inspired by patterns found in

neural correlates in the auditory cortex of cats by Qiu et al.
(2003). To extract GBFB features, the LogMS was 2D

convolved with each of the 2D GBFB filters. Each filtered

version was subsequently (critically) down-sampled in

spectral dimension by a quarter of the width in spectral

dimension of the corresponding 2D filter. The filtered and

down-sampled versions of the LogMSs were than concaten-

ated and formed a 455-dimensional feature vector. Extensive

descriptions of the GBFB feature extraction were given in

Sch€adler et al. (2012) and Sch€adler and Kollmeier (2015).

GBFB features were used with mean and variance normal-

ization as explained in Sec. II B 5.

3. Separable Gabor filter bank features

The difference between GBFB and SGBFB features is

that SGBFB features are extracted with two separate modu-

lation filter banks, a spectral and a temporal one, instead of

using a filter bank of spectro-temporal filters. Nonetheless,

they cover the same spectro-temporal modulation space. The

SGBFB approach was shown to reduce the complexity of the

features and even to improve the robustness of an ASR

system (Sch€adler and Kollmeier, 2015). All SGBFB filter

functions and the corresponding separable 2D filter functions

of all combinations of spectral and temporal SGBFB filters

are depicted in Fig. 3. In the current study 1020-dimensional

SGBFB features were extracted using the full set, i.e., all

nine spectral and all nine temporal filters, which are referred

to as SGBFB features. An extensive description of the

SGBFB feature extraction was given in Sch€adler and

Kollmeier (2015). In addition to the 1020-dimensional

SGBFB features, a reduced set of 255-dimensional SGBFB

features which does not use the filters that are marked with I

(for imaginary phase) in Fig. 3, were considered and are

referred to as SGFB-RR features. Due to its design, the

FIG. 2. Taken from Sch€adler et al. (2012). Filter functions of the 2D Gabor

filter bank (GBFB) filters. Each tile represents the filter function of a

spectro-temporal 2D Gabor filter, where the horizontal axis within each tile

is the temporal one and the vertical axis is the spectral one. They are sorted

by their spectral and temporal center modulation frequencies. The amplitude

of the 2D filter functions is encoded in gray scale, where white encodes high

amplitude and black encodes low amplitude.

FIG. 3. Taken from Sch€adler and Kollmeier (2015). All possible combina-

tions of spectral and temporal 1D Gabor filter bank filters, and their equiva-

lent, separable spectro-temporal 2D filter functions. Each tile represents a

separable spectro-temporal 2D filter function, with the horizontal axis within

each tile being the temporal and the vertical axis being the spectral one. The

1D filters, depicted above and to the left of the 2D filters, are sorted by spec-

tral and temporal center modulation frequencies, and are grouped according

to the part of the complex 1D Gabor filter which is used: envelope (E), real

(R), imaginary (I). The amplitude of the 2D filters is encoded in gray scale,

where white encodes high amplitude and black encodes low amplitude.
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SGBFB allows one to apply only the spectral or only the

temporal modulation filtering. A set of features which was

extracted using only temporal R (for real phase) and E (for

envelope) filters is referred to as SGBFB-R-T, and another

set of features which was extracted using only spectral R and

E filters is referred to as SGBFB-R-S. All SGBFB based fea-

tures were used with mean and variance normalization as

explained in Sec. II B 5.

4. Perception model

The PEMO was successfully used to model various

experiments in psychoacoustics (e.g., Dau et al., 1997;

Verhey et al., 1999; Derleth and Dau, 2000). It was intro-

duced by Dau et al. (1996a,b) and later extended with a tem-

poral modulation filter bank by Dau et al. (1997). The

PEMO includes a signal processing part (front-end) which

effectively models several aspects of the human auditory

system. In the current study the PEMO front-end from Dau

et al. (1997) is used to extract features from input wave-

forms. Therefore, the freely available implementation from

Søndergaard and Majdak (2013) at git commit cc9c0d3c was

used, which considers auditory filters in the frequency range

from 80 Hz to 8 kHz and temporal modulation frequencies in

the range from 0 to 150 Hz. A block-diagram of the PEMO

feature extraction is depicted in Fig. 4. A Gammatone filter

bank was used to model the response of the basilar mem-

brane to the input signal. The subsequently applied half-

wave rectification and the 1 kHz low-pass filter model the

hair cell deflection. The adaptation loops account for tempo-

ral properties of the nerve cell firing probability at different

stages of the auditory pathway. The output of the modulation

filter bank was low-pass filtered and down-sampled to

100 Hz. These 275-dimensional feature set is referred to as

PEMO features.

5. Feature normalization

Feature vector normalization such as mean and variance

normalization (MVN) or histogram equalization were shown

to improve the robustness of ASR systems (Viikki and

Laurila, 1998; De La Torre et al., 2005) and are usually

employed in conjunction with robust ASR features. The

auditory models used to explain psycho-acoustical experi-

ments usually do not contain a similar processing step. This

is why in the current study by default all ASR features

(MFCC, GBFB, and SGBFB) are used with per-utterance/

per-stimulus MVN, while the LogMS and the PEMO

features are not.

In order to assess the effect of feature normalization,

LogMS, PEMO, and MFCC features were tested with and

without MVN. These feature sets are indicated by the suffix

MVN and NOMVN, respectively.

C. Simulation framework for ADEs

The simulation FADE is based on the approach from

Sch€adler et al. (2015), where an ASR recognition system

was used to simulate—and hence predict the outcome of—

the German Matrix sentence test with only few assumptions

compared to traditional speech intelligibility prediction

models. Here, this approach was extended to simulate

tone-in-noise detection (i.e., tone-in-noise from only noise

discrimination) experiments. A reference implementation of

FADE is available online (FADE, 2016).

1. Front-end

In the original work by Sch€adler et al. (2015), only

MFCCs were used as the front-end, while in this work all

signal representations presented in Sec. II B were employed

with FADE.

2. Back-end

The back-end used in FADE is the same as in Sch€adler

et al. (2015). HTK was used to build left-to-right whole-

word/stimulus Hidden Markov Models (HMMs) models

with six states per word/stimulus and Gaussian Mixture

Models (GMMs) with one component per state. For each

training condition, which in the case of the German Matrix

sentence test is determined by the SNR and for the psycho-

acoustic experiments by the absolute tone level, the GMM/

HMM parameters are estimated (learned) in a total of eight

iterations. Since the material of the German Matrix test

consists of 50 words, 50 whole-word models were learned

during the training period. For the tone-in-noise detection

experiments, two models were trained: A model for the stim-

uli in which the target is present (tone plus noise) and a

reference one for the stimuli in which the target is absent

FIG. 4. Modified from Dau et al. (1997). Block diagram of the auditory sig-

nal processing which is used to calculate the internal representations with

PEMO, also referred to as PEMO features. Essentially this is the model

from Dau et al. (1997) up to the modulation filter bank. The low-pass filter-

ing at 50 Hz and the down-sampling to 100 Hz is added to make the internal

representation compatible for the use in the recognition system.
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(noise only). In addition to the word/stimuli models, a

START, a STOP, a PRE-SILENCE, and a POST-SILENCE

model were trained for each training condition. The START/

STOP model covers border artifacts which are common to

all recordings of a training condition, while the PRE/POST-

SILENCE models represent the indistinguishable signal

parts before and after the speech/target. All four are shared

between all sentences/stimuli of a training condition.

The grammar, in HTK-terms, for a sentence/stimulus was

(START PRE-SILENCE $sentence/stimulus POST-

SILENCE STOP), where $sentence¼ ($word1 $word2

$word3 $word4 $word5) and $stimulus¼ (reference j target).

The corresponding grammar was converted to a word network

and used to limit the recognizer to search only for transcrip-

tions with valid syntax for the corresponding experiment. This

implements the knowledge of a trained listener, who knows

about the grammatical structure as well as about the limited

vocabulary of the matrix test. The effect of the number states

per model and the number of states per special model

(START, STOP, PRE-SILENCE, POST-SILENCE), and the

number of training iterations was assessed in Sec. III D.

3. Simulation

The regions of interest of the values for the independent

variables were defined as follows: For the simultaneous

masking experiment, tone levels from þ45 to þ75 dB SPL

in 5-dB steps were considered. For the spectral masking

experiment, tone levels from �10 to þ50 dB SPL in 5-dB

steps were considered. For the German Matrix sentence

experiments, SNRs from �24 to þ6 dB in 3-dB steps were

considered.

For each of these values, datasets for training and testing

were generated in the same manner. For the tone-in-noise

masking experiments, the two different types of stimuli (tar-

get and reference) were generated with random noise, such

that a repetition of the same stimulus waveform is practically

impossible. For the German Matrix sentence experiments,

the 120 available sentences were mixed with the noise signal

with random temporal offsets, such that a repetition of the

same waveform is practically impossible even if the same

sentences were mixed several times with the same noise sig-

nal. The 120 sentences contained each word of the 50-word

vocabulary exactly twelve times, and mixing all sentences

once with random portions of the noise signal resulted in

twelve samples per word.

From these (statistical) pools, which directly reflect the

difficulty of the corresponding recognition task at a given

tone level or SNR, a number of samples was drawn and

declared as the test data. Because the performance limiting

factor, i.e., the difficulty of the task, is inherent to the test

data under its projection into the feature space, an optimal

training data set was desirable. Hence, the training data sets

were drawn from the same pool as—but separate from—the

test data sets. By this means, we aimed to minimize the influ-

ence of the training data set and at the same time to maxi-

mize the influence of the test data set on the recognition

scores.

The recognition of all 120 available sentences of the

German Matrix test produces 600 binary (correct or incor-

rect) decisions, which was chosen to be the size of the test

data sets. It should be noted that each Matrix sentence results

in five binary decisions, one for each word, while a presented

psychoacoustic stimulus only results in one binary decision.

The size of the training data sets of 96 samples for each

word/stimulus was assessed in Sec. II C 4. For the matrix

sentence test, these were achieved by mixing all sentences

eight times with random portions of the noise signal.

Features were then extracted from the generated training and

test data sets.

For each condition (e.g., speech in fluctuating noise)

separately, models were trained and tested for all considered

values of the independent variable. For example, 11 mod-

els—one for each considered SNR—were trained on speech

in fluctuating noise and each subsequently tested in the 11

considered SNR conditions, which resulted in 11� 11¼ 121

recognition scores. These were represented by a (square) ma-

trix called “recognition result map” (RRM), where each row

represents a psychometric function of which the value of the

independent variable at a given target threshold could be

derived. For the matrix sentence test, the SNR at 50%-

correct, which is the standard procedure with human listen-

ers, was determined. For the psychoacoustic experiments,

instead of the 50%-correct point on the psychometric func-

tion (i.e., the SRT) the corresponding target %-correct point

was considered. For each psychometric function, the value

of the independent variable at the corresponding target

%-correct point was interpolated together with its estimated

uncertainty due to the size of test data set. Thus, for the tone-

in-noise experiments, several levels at threshold depending

on the training level, and for the German Matrix sentence

test, several SRTs depending on the training SNR were

available. As the result of the simulation, the lowest value at

threshold was reported, where two standard deviations of

margin were considered in order to report the outcome with

the lowest 95th percentile (assuming normal distributions).

This automatic determination of the optimal training data

set, which may depend on the task itself, the amount of train-

ing data and the feature representation, is aimed to reduce its

influence on the simulation results.

4. General purpose parameter set

At the core of FADE a set of general purpose parameters

exists which was employed for all features and experiments,

the simplest task being the detection of a tone, the most diffi-

cult the discrimination of words in modulated noise, the

lowest-dimensional features being 31-dimensional LogMS

features and the highest-dimensional being the 1020-

dimensional SGBFB features. These parameters were

• HMM states START/STOP: 6.
• HMM states per model: 6.
• Training samples per model: 96.
• Training iterations: 8.

These parameters were considered to be especially

important when differently complex features and tasks are
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involved. To demonstrate that the chosen parameter values

are optimal up to 61 dB for different features in differently

complex experiments, a set of features and experiments was

performed when varying the parameter values. Optimal here

means that the systems obtained the highest possible recog-

nition rates which translates to the lowest possible thresh-

olds, an optimization scheme commonly used in the field of

ASR. Optimal here does not mean that the results were close

to the empirical results, which is an optimization scheme

commonly used in the field of psychoacoustic modelling.

The considered values were

• HMM states START/STOP: 1; 2; 3; 4; 6; 8; 12; 16; 24.
• HMM states per model: 1; 2; 3; 4; 6; 8; 12; 16; 24.
• Training samples per model: 12; 24; 48; 96; 192; 384.
• Training iterations: 1; 2; 3; 4; 6; 8; 12; 16; 24.

Each of the parameters was varied while the others were

left unchanged. Simulations of the simultaneous masking

experiment and the German Matrix sentence test in the test-

specific noise condition were performed with varied parame-

ter values using MFCC and PEMO features.

5. Uncertainty calculation

The uncertainty of the simulated outcomes due to the

limited test data, which was 600 binary decisions per condi-

tion, was estimated using bootstrapping. It turned out to be

about 2.1 percentage points (pp) at 50% correct, about 1.8

pp at 75% correct, and about 1.2 pp at 90% correct. These

estimated uncertainties were assumed to be normally distrib-

uted and propagated to derived values, such as SRTs or

thresholds, where possible. The uncertainty due to the

limited test data was not assessed as it would have required

re-running the training stage several times with different

data. In addition, the limited step size of training and test

conditions could present another source of uncertainty,

which was not assessed either. Hence, the uncertainties

reported here only include those due to the limited test data

and should be considered orientative. Nonetheless, the

uncertainty can be assumed to be about 1 dB, which was

justified in Sec. II C 4.

III. RESULTS

Apart from the parameter variation experiment, all sim-

ulations were performed with all features. The results are

presented in tables and selected results are additionally

plotted.

A. Simultaneous masking

Figure 5 depicts the simulated detection thresholds

depending on the tone duration with PEMO, MFCC, and

SGBFB features alongside the empirical results and PEMO

model results from the literature (Jepsen et al., 2008). Table I

reports the corresponding results in numerical form for all

considered feature sets, and in addition, the average detection

threshold over all conditions.

FADE was able to predict detection thresholds for a

simultaneous masking experiment with a variety of front-ends.

All simulated thresholds were consistent with the empirical

thresholds within 610 dB, i.e., in the correct order of magni-

tude. MFCC features resulted in the most pronounced

over-estimation of the empirical thresholds, with an average

detection threshold of 60.0 6 0.2 dB SPL and PEMO features

resulted in the most pronounced under-estimation of the empir-

ical thresholds with an average detection threshold of

53.7 6 0.2 dB SPL, while the empirical results showed an av-

erage detection level of 56.6 6 0.5 dB SPL. Simulation results

with all other features lay between simulation results with

MFCC and PEMO features. The simulated thresholds with

GBFB based features (GBFB, SGBFB, SGBFB-RR, SGBFB-

R-S, SGBFB-R-T) were consistently found to be close to the

empirical thresholds.

The simulated thresholds with PEMO features are

generally about 2 dB lower than the PEMO data from the

literature, over-estimating the empirical thresholds for tone-

durations shorter than 100 ms. The simulated thresholds with

MFCC features under-estimate the empirical thresholds for

tone-durations longer than 15 ms. The simulated thresholds

with SGBFB feature resemble the empirical thresholds

remarkably well. Deviations of simulated thresholds from

the empirical data are further analyzed in Sec. III E.

B. Spectral masking

Figure 6 depicts the simulated detection thresholds

depending on the tone center frequency in Hz with PEMO,

MFCC, and SGBFB features alongside the empirical results

and PEMO model results from the literature (Moore et al.,
1998; Derleth and Dau, 2000). Table II reports the corre-

sponding results in numerical form for all considered feature

sets, and in addition, the calculated 20-dB-bandwidth.

FADE was able to predict detection thresholds for the

spectral masking experiment with a variety of front-ends.

FIG. 5. Simulated detection thresholds for the simultaneous masking experi-

ment depending on the tone duration with PEMO, MFCC, and SGBFB fea-

tures alongside the empirical data and PEMO data from the literature Jepsen

et al. (2008). The gray area indicates the 1-sigma uncertainty of the empiri-

cal data.
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Almost all simulated thresholds are within 610 dB of the

empirical thresholds, i.e., in the correct order of magnitude.

Only the PEMO and LogMS features with MVN resulted in

thresholds outside that range. Generally, the simulations

with all features show the highest thresholds at the noise cen-

ter frequency of 1000 Hz and decrease as the tone frequency

increases or decreases. Consistent with the results from

the simultaneous masking experiment, the simulated thresh-

olds with MFCC features exhibit the highest on-masker

(1000 Hz) thresholds with 47.4 6 0.2 dB SPL and the simu-

lated thresholds with PEMO features, with 43.2 6 0.3 dB

SPL, one of the lower thresholds. These are—unlike in the

simultaneous masking experiment—higher than the empiri-

cal threshold, which was 40.9 6 6.4 dB SPL. The empirical

20-dB-bandwidth was calculated to be 229.5 6 38.9 Hz.

Almost all simulated results fell into the 2-sigma range

(151.3 to 306.7 Hz) and hence did not differ significantly

from the empirically derived bandwidth. Only the PEMO

features with MVN exceeded this range with a bandwidth

of 396.2 6 5.8 Hz. All ASR features (MFCC, GBFB, and

SGBFB) result in rather narrow bandwidths around 180 Hz,

e.g., using SGBFB features, 172.3 6 3.3 Hz.

The simulated thresholds with PEMO features were

found to be similar or higher than the PEMO model data

reported by Derleth and Dau (2000). With MFCC features,

the simulated thresholds resembled the empirical data well

while with SGBFB features the thresholds on the low fre-

quency flank were over-estimated by about 6 dB. Deviations

of simulated thresholds from the empirical data are further

analyzed in Sec. III E.

C. German matrix sentence test

The recognition result map, which is the matrix that

contains the recognition rates depending on the training and

the test condition, and its evaluation is illustrated in Fig. 7

for the simulation results of the German Matrix sentence test

with MFCC features. In panel (A), the RRM, i.e., the recog-

nition performance depending on the training and test SNR,

is depicted in gray-scale, where black corresponds to 0%-

correct and white to 100%-correct. The iso-50%-correct

contour is indicated by the dotted black-and-white line and

the lowest achievable SRT, which at the same time is the

simulation result, is indicated by a circle. The corresponding

training condition (–3 dB SNR) is marked with a dash-dotted

line and the corresponding psychometric function is depicted

in panel (B). As expected, the recognition results are at

chance level (10%-correct) at low SNRs and tend towards

100%-correct for high SNRs.

Figure 8 depicts the simulated SRTs depending on the

noise condition and the employed feature set alongside the

empirical results from the literature (Wagener et al., 1999;

Wagener and Brand, 2005). Table III reports the correspond-

ing results in numerical form for all considered feature sets

and, in addition, the effect of modulation which is reported

TABLE I. Simulated detection thresholds in dB SPL for the simultaneous masking experiment depending on the tone duration and the feature set. The empiri-

cal data were taken from Jepsen et al. (2008).

Tone duration

Features 5 ms 10 ms 15 ms 35 ms 50 ms 100 ms 200 ms Average

Empirical 68.0 6 2.1 59.0 6 1.4 58.0 6 1.4 55.0 6 0.7 54.0 6 1.0 52.0 6 0.9 50.0 6 1.3 56.6 6 0.5

LogMS 63.0 6 0.3 60.6 6 0.7 58.4 6 0.5 56.9 6 0.2 54.0 6 0.5 50.7 6 0.3 48.2 6 0.5 56.0 6 0.2

LogMS-MVN 63.7 6 0.4 61.6 6 0.2 61.5 6 0.2 56.8 6 0.3 57.5 6 0.3 52.5 6 0.5 53.1 6 0.5 58.1 6 0.1

MFCC 66.0 6 0.3 61.6 6 0.3 61.2 6 0.3 59.0 6 0.4 58.9 6 0.7 57.6 6 0.6 55.4 6 0.6 60.0 6 0.2

MFCC-NOMVN 66.0 6 0.3 61.3 6 0.3 61.3 6 0.3 58.5 6 0.4 58.3 6 0.5 56.2 6 0.4 53.9 6 0.5 59.4 6 0.2

GBFB 64.8 6 0.5 60.8 6 0.3 59.0 6 0.5 56.5 6 0.3 56.1 6 0.3 52.6 6 0.4 51.9 6 0.5 57.4 6 0.2

SGBFB 64.5 6 0.6 60.9 6 0.3 58.5 6 0.4 56.0 6 0.3 54.6 6 0.5 52.4 6 0.4 51.7 6 0.3 56.9 6 0.2

SGBFB-RR 65.5 6 0.3 61.2 6 0.3 60.4 6 0.4 56.8 6 0.3 55.8 6 0.4 52.1 6 0.4 51.9 6 0.4 57.7 6 0.1

SGBFB-R-S 64.3 6 0.5 61.8 6 0.2 61.4 6 0.2 57.5 6 0.5 56.7 6 0.3 52.7 6 0.3 52.5 6 0.6 58.1 6 0.2

SGBFB-R-T 65.1 6 0.5 60.5 6 0.3 60.1 6 0.4 56.0 6 0.3 55.9 6 0.4 54.0 6 0.6 52.1 6 0.6 57.7 6 0.2

PEMO 60.0 6 0.4 55.8 6 0.3 54.3 6 0.6 52.6 6 0.5 51.0 6 0.4 50.9 6 0.3 51.0 6 0.3 53.7 6 0.2

PEMO-MVN 60.2 6 0.4 56.0 6 0.4 54.5 6 0.6 52.8 6 0.5 51.2 6 0.4 51.2 6 0.3 51.9 6 0.3 54.0 6 0.2

FIG. 6. Simulated detection thresholds for the spectral masking experiment

depending on the tone center frequency in Hz with PEMO, MFCC, and

SGBFB features alongside the empirical data and PEMO data from the liter-

ature (Moore et al., 1998; Derleth and Dau, 2000). The gray area indicates

the 1-sigma uncertainty of the empirical data.
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as the difference of the SRT in the modulated noise

condition (ICRA5) and the test-specific noise condition

(Olnoise).

For the stationary noise condition, the simulated SRTs

were found to be in the range from �8.2 to �6.7 dB SNR,

where the empirical value measured by Wagener et al.
(1999) was �7:160:8 dB SNR. Hence, the stationary noise

condition was well predicted by simulations with all fea-

tures. Using GBFB features resulted in the lowest simulation

results (�8:260:1 dB SNR). For the modulated noise, the

picture changes considerably. Simulated SRTs ranged from

�19 to 0 dB SNR depending on the employed feature set,

where the empirical values measured by Wagener and Brand

(2005) were on average �21:662:0 dB SNR. The lowest

simulation results and hence, those closest to the empirical

data, were obtained with GBFB and SGBFB features, with

�16:260:5 dB SNR and �19:060:4 dB SNR, respectively,

followed by MFCC features with �15:060:7 dB SNR. At

the far end of the range, the use of LogMS and PEMO

features resulted in simulated SRTs higher than in the re-

spective stationary condition with �0:560:3 dB and

�3:760:3 dB SNR, respectively.

The effect of modulation, which was defined as the dif-

ference in dB between the modulated (IRCA5) and the sta-

tionary (Olnoise) noise condition, was found to be

�14:562:2 dB for the empirical data. This means that for

listeners with normal hearing it was much easier to recognize

speech in the modulated noise condition than in stationary

noise condition. Comparing the modulation effect with the

LogMS feature set (þ6:360:3 dB), which performed no

modulation processing, the SGBFB-R-T feature set

(þ6:260:3 dB), which only performed the temporal modula-

tion filtering, the SGBFB-R-S feature set (�6:760:5 dB),

which only performed the spectral modulation filtering, and

the SGBFB-RR feature set (�10:860:4 dB), which per-

formed both, shows that spectral modulation processing

alone accounts for the major part of the modulation effect

and that temporal filtering alone has no effect. Deviations of

TABLE II. Simulated detection thresholds in dB SPL for the spectral masking experiment depending on the tone center frequency in Hz and the feature set.

The full widths were calculated at� 20 dB from the data. The empirical data were taken from Moore et al. (1998).

Tone center frequency

Features 750 Hz 900 Hz 1000 Hz 1100 Hz 1250 Hz 1500 Hz Width [Hz]

Empirical 7.1 6 2.7 23.1 6 1.2 40.9 6 6.4 21.8 6 3.9 5.8 6 3.5 3.7 6 4.1 229.5 6 38.9

LogMS 3.8 6 0.2 15.6 6 0.4 42.1 6 0.3 24.6 6 0.4 2.1 6 0.5 �1.1 6 0.4 192.3 6 2.9

LogMS-MVN 5.1 6 1.0 24.4 6 0.8 47.3 6 0.2 42.6 6 0.4 4.2 6 0.5 2.2 6 0.6 246.6 6 3.3

MFCC 9.1 6 0.5 26.3 6 0.6 47.4 6 0.2 23.7 6 0.5 12.7 6 0.4 8.1 6 0.3 179.6 6 3.4

MFCC-NOMVN 1.3 6 0.3 16.6 6 0.3 43.0 6 0.3 21.5 6 0.4 2.8 6 0.3 �2.7 6 0.4 168.7 6 2.1

GBFB 2.4 6 0.4 18.6 6 0.6 43.3 6 0.3 23.2 6 0.4 5.4 6 0.6 �1.2 6 0.4 180.4 6 3.0

SGBFB 0.8 6 0.5 16.4 6 0.6 43.1 6 0.3 22.6 6 0.5 3.5 6 0.3 �2.0 6 0.4 172.3 6 3.3

SGBFB-RR 1.7 6 0.4 16.4 6 0.5 43.0 6 0.4 21.6 6 0.6 3.4 6 0.4 �1.9 6 0.4 168.3 6 3.3

SGBFB-R-S 5.1 6 0.9 21.0 6 0.8 43.2 6 0.4 29.9 6 0.5 4.5 6 0.6 �1.3 6 0.5 229.4 6 4.7

SGBFB-R-T 4.2 6 0.9 22.0 6 0.6 47.2 6 0.2 28.2 6 0.7 7.2 6 1.1 2.7 6 0.7 186.0 6 5.2

PEMO 13.3 6 0.2 25.0 6 0.5 43.2 6 0.3 29.1 6 0.3 15.1 6 0.6 8.8 6 0.9 284.8 6 7.3

PEMO-MVN 16.5 6 0.2 35.7 6 0.3 44.6 6 0.4 37.4 6 0.5 19.9 6 0.7 13.2 6 0.2 396.2 6 5.8

FIG. 7. (A) Recognition result map (RRM) for the test-specific noise condition with MFCC features. The obtained recognition performance is plotted depend-

ing on the training and testing SNR. The word recognition rates are encoded in gray-scale, with white representing 100% correct and black 0% correct. The

dotted black-and-white line marks the iso-50%-correct contour. The dash-dotted line marks the training SNR which resulted in the lowest achievable test SNR

at 50%-correct WRR (SRT). The white circle indicates the predicted SRT. (B) Word recognition rates depending on the test SNR for the system that achieves

the lowest SRT [cf. the dash-dotted line in (A)]. The chance level (10%) and the 50%-threshold are marked with dashed lines. The white circle indicates the

simulated SRT. The box shows the estimated SRT and slope of the psychometric function, respectively.
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simulated thresholds from the empirical data are further

analyzed in Sec. III E.

D. Effect of back-end parameter variations

The simulation results with varied back-end parameters

are depicted in Fig. 9. For the simultaneous masking

experiment the average simulated thresholds and for the

German Matrix sentence test the simulated SRTs are plotted

depending on the varied back-end parameters for MFCC and

PEMO features.

Generally, the smallest parameter value from the range

of considered values which resulted in the lowest thresholds

61 dB was chosen if no reason existed not to do so. While

for the matrix sentence test, the words were best modeled

with HMMs with six emitting states, for the simultaneous

masking experiment it was sufficient to use HMMs with a

FIG. 8. Simulated SRTs in dB SNR for the German Matrix sentence test

depending on the noise condition and the feature set. The empirical data

were taken from Wagener et al. (1999) (stationary) and Wagener and Brand

(2005) (fluctuating).

TABLE III. Simulated SRTs for the German Matrix sentence test depending

on the noise condition and the feature set in dB SNR. The empirical data

were taken from Wagener et al. (1999) (Olnoise) and Wagener and Brand

(2005) (ICRA5). The effect of modulation is reported as the difference of

the SRT in the modulated noise condition (ICRA5) and the test-specific

noise condition (Olnoise).

Olnoise ICRA5 Modulation

System SRT [dB] SRT [dB] effect [dB]

Empirical �7.1 6 0.8 �21.6 6 2.0 �14.5 6 2.2

LogMS �6.8 6 0.1 �0.5 6 0.3 þ6.3 6 0.4

LogMS-MVN �7.1 6 0.2 þ0.2 6 0.4 þ7.3 6 0.5

MFCC �7.4 6 0.1 �15.0 6 0.7 �7.5 6 0.7

MFCC-NOMVN �6.9 6 0.1 �13.7 6 0.5 �6.8 6 0.5

GBFB �8.2 6 0.1 �16.2 6 0.5 �7.9 6 0.5

SGBFB �7.8 6 0.1 �19.0 6 0.4 �11.2 6 0.4

SGBFB-RR �7.9 6 0.1 �18.8 6 0.4 �10.8 6 0.4

SGBFB-R-S �7.3 6 0.1 �14.1 6 0.5 �6.7 6 0.5

SGBFB-R-T �7.6 6 0.2 �1.4 6 0.3 þ6.2 6 0.3

PEMO �7.2 6 0.1 �3.7 6 0.3 þ3.4 6 0.3

PEMO-MVN �7.3 6 0.1 �4.2 6 0.3 þ3.1 6 0.3

FIG. 9. Predicted SRTs (upper row) and tone detection thresholds in noise (lower row) from the back-end parameter variation experiment in dB SPL and dB

SNR. The number of states per model, the number of states of the special models (START and STOP), the number of training samples per model, and the num-

ber of training iterations were varied over wide ranges of possible values. The predicted thresholds for the Matrix test in the test-specific noise condition and

the average predicted thresholds for the tone-in-noise detection thresholds are plotted depending on the altered parameter values for both considered front-

ends. The circles and squares indicate the results when using the MFCC and PEMO front-end, respectively. The arrows indicate the default parameter values.

The small (partly hidden behind the markers) black error bars indicate the uncertainty due to finite number of testing samples, and the larger, gray error bars

indicate the target precision of 61 dB.
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single emitting state. The special states (START and STOP)

were chosen according to the simulation results from the

German Matrix sentence test because for the simultaneous

masking experiment long special states (>6 states) effec-

tively narrowed the region to search for the target tone and

hence improved the thresholds in an unwanted manner.

Hence, the border effects were modeled best with HMMs

with six emitting states. Reducing the amount of training

data resulted in higher simulated thresholds, while increasing

the amount of training data did not result in improvements of

simulated thresholds exceeding 1 dB. It should be noted that

the number of training samples per model guaranteed that

each mean and each variance in the GMM was estimated

from at least 96 samples, which was only the case if the

corresponding HMM state occupied only one frame, i.e., the

shortest possible duration of an HMM state. The number of

training iterations was sufficient, with a security margin of

factor 2, for all models to converge during the training

procedure.

E. Man-machine gap

To get a comprehensive overview of the model fidelity

depending on the employed feature set and experiment, the

maximum and minimum differences from the empirical data

are reported in Fig. 10. While negative values indicate an

over-estimation of the empirical thresholds, positive values

indicate an under-estimation. It should be noted that for

human listeners no significant difference was found if the

German Matrix test was presented in a closed-set or open

response format (Warzybok et al., 2015). The over all

maximum can be interpreted as the remaining (unexplained)

gap between human performance and machine performance.

In this regard, the German Matrix sentence test in the modu-

lated noise condition was the decisive condition, or very

near (<1 dB) to the decisive condition, for all feature types.

Over all considered experiments, only the feature sets with-

out spectral modulation processing, or in more general terms

across-frequency processing (LogMS, PEMO, SGBFB-R-T)

resulted in under-estimated thresholds that were off by

more than an order of magnitude (>10 dB). The ASR fea-

tures (MFCC, GBFB, and SGBFB) provided simulation

results which came closer to the human performance or even

exceeded human performance in some tasks. The simulation

results which least under-estimated the empirical thresholds

were obtained using SGBFB features, by under-estimating

the empirical performance by no more than 2.6 6 2.0 dB,

followed by GBFB features with 5.5 6 2.1 dB, and MFCC

features with 6.9 6 3.5 dB.

F. Effect of feature vector normalization

Considering the results in Tables I, II, and III, the MVN

was found to have a minor effect on the simulation results

except for the LogMS features in the spectral masking

experiment simulation, where the deviation of a simulated

threshold was exceptionally high. The use of MVN did

neither qualitatively improve the overall simulation fidelity

with LogMS-MVN or PEMO-MVN features nor did its

omission when using MFCC-MVN features.

IV. DISCUSSION

It was shown that FADE enables the simulation of

discrimination experiments of highly variable complexity

using different feature vectors. The simplest experiment was

a tone-in-noise detection task and the most complex the rec-

ognition of German Matrix sentences in a modulated noise

condition. The feature vectors included traditional and robust

ASR features as well as the output of a non-linear auditory

model. The simulated thresholds were interpreted as predic-

tions for the outcome of the corresponding experiment when

performed by listeners with normal hearing.

A. Interpretation of simulated thresholds

All simulated thresholds are reference-free (i.e., neither

the deviation from a reference-signal-based “optimal detector”

nor an empirical reference threshold was employed) and were

obtained with a recognition system that was primarily con-

strained by the input signals and the signal representation. In

comparison to many models of psychoacoustic performance,

the approach to construct or train an optimal detector with

prior knowledge about the exact temporal stimulus alignment

[such as, e.g., employed by Dau et al. (1996a); Dau et al.
(1997)] is replaced by a training phase of the Hidden Markov

Model and the selection of the respective training condition

yielding the lowest predicted threshold. This selection requires

feedback about the recognition performance and is the only in-

formation with that FADE in its current version is provided

and human listeners usually not. However, human listeners

FIG. 10. Differences between simulated thresholds and empirical data

depending on the feature set and experiment group. The difference is inter-

preted as the gap between human performance and machine performance;

the lower the values, the smaller the gap, where positive and negative values

indicate sub-human and super-human recognition performance, respectively.

For the masking experiments, each of which has several conditions, the

maximum and the minimum difference to the empirical data are depicted.

The error bars indicate the uncertainty of the corresponding (minimum/max-

imum) value.
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could probably guess the SNR at which they are listening.

Hence, to better simulate the human recognition task, it seems

worthwhile to investigate the possibility of taking the decision

blindly in future work. It should be noted that the criterion for

the decision on the optimal training data set is recognition
performance and independent from any empirical data, as

opposed to determining a fixed, e.g., training-test SNR offset,

based on empirical data. The FADE approach, which decodes

feature sequences instead of matching patterns, also models

the uncertainty about the temporal alignment of the stimuli.

Hence, it might be considered as more appropriate model of

the human recognition process than an optimal detector, which

requires a priori information that human listeners do not have

access to. In comparison to state-of-the-art methods of robust

ASR, the simulation of the German Matrix sentence test

actually is an ASR experiment, but with most of the generic

demands on a robust ASR system moved aside. That is to say,

the ASR setup is not constructed to accommodate, e.g., gener-

alization over speakers, noise conditions, reverberation, dia-

lects, and other factors. Over a common ASR experiment, the

approach to drastically reduce the number of those very broad

demands has the advantage that it clearly shows when a fea-

ture set is not able to cope with a situation, like in the fluctuat-

ing noise condition of the German Matrix sentence test.

As a simulation with FADE is a very controlled A(S)R

experiment, the same interpretation as in ASR is valid: the

lower the threshold the “better” the system. In this context,

thresholds below the corresponding empirical thresholds

mean super-human recognition performance and thresholds

above the corresponding empirical thresholds mean there is

a gap in performance between the man and the machine, also

referred to as the man-machine-gap. It should be noted that

this interpretation is only possible because the thresholds

with FADE are reference-free, objective thresholds and that

this property translates naturally to the domain of psycho-

acoustic experiments.

While in the domain of ASR it is difficult to achieve

(and hence predict) super-human performance because of its

extensive demands, which result in a high variability of the

signals to be recognized, in the domain of psychoacoustic

experiments it is relatively easy to predict super-human per-

formance because the trained detector stage (the HMMs in

our case) can be highly specialized to the well-defined stim-

uli, which show less variability. This hypothesis is supported

by the data in Fig. 10, where for the speech recognition tasks

no significant super-human performance was predicted,

while for the tone detection tasks, some simulated thresholds

were below the corresponding empirical thresholds. For

current optimal detector-based psychoacoustic models, the

additional a priori information about the temporal alignment

theoretically further facilitates achieving super-human

performance predictions.

Even though the main prediction result of the current

work concerns the threshold estimation discussed so far,

more details of the FADE simulations might be considered

to further validate the modeling of speech recognition and

psychoacoustic tasks performed so far. For example, the

slope of the psychometric function at the threshold could be

derived from the recognition result map (RRM) and

compared to empirical data. Likewise, the RRM could be

evaluated for, e.g., each word group separately and word

confusion matrices could be derived. Also, the selected train-

ing conditions could reveal differences between different

feature sets.

B. Signal processing dependence of simulated
thresholds

The simulated thresholds were found to depend on the

employed feature set, where, in the speech recognition cases,

the least variability was observed for the German Matrix sen-

tence test in the test-specific noise condition and the most vari-

ability was observed for the German Matrix sentence test in the

modulated noise condition. In the latter, the least fitting thresh-

olds (–0.5 dB SNR) were obtained with LogMS features while

the best predicting thresholds (–19.0 dB SNR) were obtained

with SGBFB features, spanning a range of almost two orders

of magnitude (20 dB). In the tone-in-noise detection experi-

ments the dependence on the feature set was not as pronounced

as in the modulated noise condition of the German Matrix sen-

tence test. As, apart from the feature set, nothing in the setup

was changed, this finding confirms the hypothesis that the sig-

nal processing employed in the feature extraction process plays

an important role in modeling auditory experiments.

Interestingly, the simulated thresholds for the German

Matrix sentence test in the test-specific noise condition were

not found to depend on the very different feature sets, i.e.,

PEMO and MFCC features, while the simulated thresholds

in the modulated noise condition exposed the decisive short-

comings of some of the considered feature sets (cf. Sec.

IV E). Hence, the modulated noise condition was found to be

the “critical” experiment to distinguish across the feature

sets employed here.

Sch€adler and Kollmeier (2015) observed in a robust

ASR experiment that an ASR system using GBFB features

outperformed one using MFCC features, and one using

SGBFB features outperformed one using GBFB features.

Further, one can assume that the LogMS features will gener-

ally not outperform MFCC features in robust ASR tasks as

well. The same pattern was observed in the simulated thresh-

olds of the modulated noise condition. Obviously, the most

complex experiment of the current study, the German Matrix

sentence test in the modulated noise condition, poses very

similar basic demands on the employed feature set as in real-

istic robust ASR tasks. In future work, it could be investi-

gated if this correspondence holds for different features and

robust ASR tasks.

C. Required assumptions for ADE simulations

In comparison to current psychoacoustical modeling

approaches, FADE poses comparatively few assumptions

about the tasks and stimuli, i.e., the following assumptions

must be valid in order to simulate an experiment with FADE.

1. Psychometric function

The primary assumption is, that the goal of the experi-

ment is to determine a point on a psychometric function. The
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psychometric function needs to indicate the recognition rate

on an auditory discrimination task depending on an inde-

pendent variable which controls the difficulty of the task.

The number of classes which have to be discriminated must

be limited. In the current study the classes were either target

and reference, or 50 different words of which 10 needed to

be discriminated at a time, i.e., 1-out-of-2 and 1-out-of-10

discrimination tasks.

2. The same stimuli as in the original experiment

As the basic idea is to estimate the lowest obtainable

threshold given a certain task, a set of stimuli, and a signal

representation (features), the signals used to perform the

simulation must be the same that were used in the original

experiment. More technically, the method to generate signals

of different classes (e.g., target and reference) for different

values of the independent variable must be provided. The

signal representations must exhibit a certain variability

which may be due to the signal itself (such as, e.g., external

noise or other sources of variations within the provided sig-

nals) or due to a stochastic process in the feature extraction

(such as, e.g., internal noise or uncertainty about the signal

and which feature is best suited). For the experiments in the

current work, the noise and speech signals caused sufficient

variations, and the feature extraction was deterministic. The

shortest stimulus used in the current study was a tone which

lasted 5 ms, the longest was a word (the German word

“achtzehn”) which lasted about 900 ms. Technically, no hard

limitations with respect to the stimulus length exist.

3. Observable effects due to signal processing

The observable effect must originate from the interac-

tion between the stimuli and the signal processing involved

in the feature extraction, where the stimuli incorporate the

task requirements and the signal processing the limitations

of the human auditory system. This condition expresses the

requirement that, differences in the stimulus which are not

apparent in the signal representation cannot be detected by

the recognition system and will hence not result in different

thresholds.

D. Generalization of the FADE approach

One set of parameters was shown to suffice for a variety

of experiments and features (cf. Fig. 9). The criterion to

determine these parameters was the lowest obtainable

thresholds and hence, they were independent of the empirical

data of the considered tasks. These parameters also worked

well in the simulation of the experiments which are not

included in Fig. 9, i.e., the spectral masking experiment and

the German Matrix sentence test in the modulated noise con-

dition. Hence, the FADE approach generalized well over the

considered experiments and features. The fact that a single

set of parameters was sufficient for a variety of complex

tasks and different types of features provides evidence that

the underlying approach might be appropriate to simulate

more experiments and that other features can be incorporated

as well to model an even larger variety of experiments with

the same set of parameters.

E. Across-frequency processing and relation to
temporal processing

The data from Table III indicate that a correct direction

of the modulation effect (i.e., a reduction in SRT by about

14.5 dB in humans due to modulations imposed on the noise)

was only found for feature sets which incorporated some

kind of across-frequency processing. For example, when

extracting MFCCs, the DCT was calculated in the spectral

dimension of the LogMS and hence MFCCs integrated over

the whole spectral bandwidth. With GBFB and SGBFB

features the LogMS was spectrally band-pass filtered. With

these feature sets improved thresholds were found in the

modulated noise condition. However, an opposite effect, i.e.,

the predicted thresholds increased in the modulated noise

condition compared to the stationary noise condition, was

observed for LogMS and PEMO features, of which the spec-

tral bands are assumed to be independent. The SGBFB-RR

features, a reduced set of SGBFB features, allowed one to

perform either only the temporal modulation processing

(SGBFB-R-T) or only the spectral modulation processing

(SGBFB-R-S). The simulated thresholds with these tailored

feature sets showed that the temporal processing alone

(SGBFB-R-T) did not show an appropriate modulation

effect, while the spectral processing alone (SGBFB-R-S)

was sufficient to obtain an improved threshold in the modu-

lated noise condition. With the set up implemented in this

study it was not possible to explain the modulation effect

without some kind of across-frequency processing.

A representation which allows the reliable detection of

local spectral maxima based on, e.g., slope or curvature,

instead of absolute values, which have to be relied on if no

across-frequency comparison is performed, could probably

help the back-end in decision-taking. Hence, it seems possi-

ble that at least some kind of across-frequency processing, in

its most explicit form the spectral modulation processing

performed by the SGFB-R-S feature set, is required to recog-

nize speech in fluctuating noise. If true, this finding might

have far-reaching consequences for any system (biological

or technical) with the intention to recognize human speech,

as it puts the common understanding that speech can be

processed in independent frequency bands into question. For

example, it might be desirable to preserve spectral modula-

tion patterns rather than temporal modulation patterns in

signal processing strategies of hearing devices if preserving

speech intelligibility in non-stationary background noise is a

declared intention.

Another yet unresolved question is if the spectral and

temporal modulation processing in the human auditory sys-

tem interact with each other or if they are separate processes.

Sch€adler and Kollmeier (2015) observed that no spectro-

temporal interaction in the modulation filtering, i.e., insepa-

rable spectro-temporal filters, was needed to outperform

MFCC and GBFB features in an ASR system employed in

acoustically adverse conditions which included spectrally,

temporally and spectro-temporally modulated noise. This
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observation is supported by the thresholds of the modulated

noise condition that were simulated in this study. In Fig. 10,

the simulated thresholds obtained with SGBFB features were

among the most suitable for explaining the empirical data.

This could indicate that the SGBFB features might be a rea-

sonable model of the auditory processing in the human audi-

tory system and, if so, hint that spectral and temporal

modulations in the human auditory system might be proc-

essed separately.

V. CONCLUSIONS

The most important findings of this work can be sum-

marized as follows.

• FADE was successfully employed to simulate, and hence,

predict the outcome of a broad range of auditory detection

experiments with an increasing complexity while requir-

ing fewer assumptions compared to traditional modeling

approaches.
• A single set of general parameters was determined which

was used to simulate all experiments from the basic tone-

in-noise detection experiment to the complex speech-in-

modulated-noise recognition task.
• Across-frequency processing was found to be crucial to

predict the improved speech reception threshold in modu-

lated noise conditions over stationary noise conditions.
• Of all considered signal representations, the Gabor filter

bank based features with some across-frequency process-

ing, most notably GBFB and SGBFB features, provide the

most suitable model of human performance across the

considered experiments.
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